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Abstract

In [24] and [26] Jørgensen introduced the Auslander-Reiten quiver of a simply
connected Poincaré duality space. He showed that its components are of the form
ZA∞ and that the Auslander-Reiten quiver of a d-dimensional sphere consists of d−1
such components. In this thesis we show that this is the only case where finitely many
components appear. More precisely, we construct families of modules, where for each
family, each module lies in a different component. Depending on the cohomology
dimensions of the differential graded algebras which appear, this is either a discrete
family or an n-parameter family for all n.

Zusammenfassung

Jørgensen hat in seinen Artikeln [24] und [26] den Auslander-Reiten Köcher ei-
nes einfach zusammenhängenden topologischen Raumes mit Poincaré Dualität ein-
geführt. Er zeigt, dass die Komponenten von der Form ZA∞ sind, und dass der
Auslander-Reiten Köcher einer Sphäre der Dimension d aus d − 1 solcher Kompo-
nenten besteht. In dieser Arbeit zeigen wir, dass dies der einzige Fall ist, in dem nur
endlich viele Komponenten auftreten. Wir konstruieren in Abhängigkeit von der Di-
mension der Kohomologie der zugehörigen differenziell graduierten Algebren diskrete
beziehungsweise beliebige Parameter Familien von Moduln, wobei alle diese Moduln
in unterschiedlichen Komponenten liegen.
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1. Introduction: Motivation and Summary of the main results

1.1. Motivation

Algebraic topology is concerned with the study of algebraic invariants of topological
spaces. Two important concepts in this subject are homotopy groups and (co)homology
groups. Let us restrict to cohomology here. Given a topological space and a field k one
method of calculating cohomology is to consider the singular cochain complex C∗(X; k)
with coefficients in k

· · · d→ Cn−1(X; k) d→ Cn(X; k) d→ Cn+1(X; k) d→ · · · .

Taking cohomology in position n gives the n-th cohomology group Hn(X; k) of the space
X. Considering all cohomology groups together and keeping track of the grading gives a
graded vectorspace

H∗(X; k) =
⊕
n∈Z

Hn(X; k).

Cohomology has in comparison with homology a richer structure: namely the cup product
defines a multiplicative structure on H∗(X; k) and we get a graded algebra. In general the
singular cochain complex includes more than just the information about the cohomology
so it is natural to consider the singular cochain complex itself as algebraic object. The
cup product is already defined on the singular cochain complex and makes it into a graded
algebra. Additional structure is provided by the differential d mapping from degree n
to degree n + 1. It satisfies d2 = 0 and behaves well with the multiplication, namely it
satisfies the Leibniz rule

d(ab) = d(a)b+ (−1)deg aad(b).

A graded algebra together with a differential satisfying the Leibniz rule is called a differen-
tial graded algebra. These objects, especially those differential graded algebras appearing
as the singular cochain differential graded algebra of a simply connected topological space
X are the objects of study in this thesis.

In order to understand algebraic objects, in representation theory one studies repre-
sentations of these objects. These are structure preserving morphisms from the given
object to an object with the same algebraic structure that comes from linear algebra. For
example a representation of a group G over a field k is a group homomorphism from G
to the group of k-linear automorphisms of a k-vectorspace V .

G→ Autk(V )

Similarly, a representation of a k-algebra A is a k-algebra homomorphism from A to the
k-algebra of k-linear endomorphisms of a k-vectorspace V .

A→ Endk(V )

Equivalently, one may describe a representation of an object A by giving a linear object
V with an action of A that satisfies the corresponding properties. One calls the object V
together with the action of the object A an A-module.
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In this thesis we will consider differential graded modules over differential graded alge-
bras. They are representations of the differential graded algebra A in the following sense.
Given a complex of k-vector spaces

V : · · · → V n−1 → V n → V n+1 → · · ·

one can construct the endomorphism differential graded algebra End(V ). A representa-
tion is then a morphism of differential graded algebras

A→ Endk(V ).

In order to study homological properties of modules like Ext-groups, homological di-
mensions, etc. there is a natural environment, namely the derived category. Many al-
gebraic invariants of a ring like the centre, Hochschild cohomology, the Grothendieck
group, etc. are also invariants of the derived category. The derived category of a ring
R is usually constructed in three steps: One first considers the category of complexes
of R-modules; then one forms the homotopy category by factoring out the homotopy
relation for morphisms of complexes; and the third step is to get the derived category by
formally inverting all quasi-isomorphisms, i.e. isomorphisms in cohomology. The homo-
topy category and the derived category are in general no longer abelian categories, but
they carry the structure of a triangulated category, i.e. there is a class of distinguished
triangles

A→ B → C → ΣA

that satisfy several axioms.
The construction of the derived category generalises to our case of a differential graded

algebra. In this case the category of differential graded modules over A already corre-
sponds to the category of complexes. The construction of the homotopy category and
the derived category then goes through as before.

The Auslander-Reiten quiver of an additive category C gives a visualisation of the
indecomposable objects and irreducible morphisms between them as a directed graph.
In particular, it makes sense to consider the Auslander-Reiten quiver if every object
decomposes uniquely as the direct sum of indecomposable objects, i.e. C is a Krull-
Remak-Schmidt category. If C is a triangulated Krull-Remak-Schmidt category that has
Auslander-Reiten triangles, then one gets the irreducible morphisms from these triangles
and the quiver is equipped with the richer structure of a stable valued translation quiver.

The aim is now to study Auslander-Reiten theory over differential graded algebras.

1.2. Jørgensen’s results

Our work is based upon the results of Jørgensen from [24] and [26], which we now sum-
marise. The precise statements are Theorem 3.5, Theorem 3.8 and Example 3.10 in
Section 3. Given a simply connected topological space X, Jørgensen considers inside the
derived category D(X) := D(C∗(X; k)) of the singular cochain differential graded algebra
the full subcategory of compact objects Dc(X), where the compactness of an object is a
certain finiteness condition. For example, over a ring R all finitely generated R-modules
are compact in the category of all R-modules ModR. He shows that the existence of
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Auslander-Reiten triangles in Dc(X) is equivalent to the condition that X is a Poincaré
duality space. This is equivalent to say that C∗(X; k) is a Gorenstein differential graded
algebra (cf. [12]). The corresponding Auslander-Reiten quiver is the combinatorial object
that has as vertices the isomorphism classes of indecomposable objects and as arrows the
irreducible maps between them. It is a weak homotopy invariant of the space X since
the singular cochain differential graded algebra of X has this property. Jørgensen shows
that the components of the Auslander-Reiten quiver that appear are always of the form
ZA∞:
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He further computes that the Auslander-Reiten quiver of the d dimensional sphere Sd

consists of d − 1 such components. A natural question is then whether the number of
components for a Poincaré duality space of Poincaré dimension d will in general be d−1.
Our main result will give a negative answer to this question.

1.3. Organisation of the paper and the main results

In the following we describe how the paper is organised and state the main results:
In the second section we consider a differential graded k-algebra A with degreewise

finite dimensional cohomology and summarise results concerning the full subcategory
of compact objects in the derived category of A. We recall that it is a Krull-Remak-
Schmidt category and the existence of Auslander-Reiten triangles is equivalent to having
Serre duality.

In the third section we consider simply connected differential graded algebras. We
explain the construction of a so-called free model that is inspired by rational homotopy
theory and the construction of minimal semi-free resolutions that are important for the
proofs. We state Jørgensen’s results from [24] and [26]. For his result about the shape
of the Auslander-Reiten components we are able to remove the assumption that the
characteristic of the ground field is zero. This is possible since we give the following
cochain analogue of the amplitude inequalities in [25].

Proposition 3.11. Let A be a simply connected differential graded algebra of finite type,
0 6= M ∈ Dc(A), and 0 6= X ∈ D(Aop) with dimk H∗X <∞ . Then

(1) inf H∗(M ⊗LA X) = inf H∗M + inf H∗X.

(2) supH∗(M ⊗LA X) ≥ inf H∗M + supH∗X.

(3) amp(M ⊗LA X) ≥ ampX.
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In particular, ampM ≥ ampA.

In the fourth section we are concerned with the number of Auslander-Reiten compo-
nents for a simply connected Gorenstein differential graded algebra A of finite type. If
dimk H∗A = 1, then the Auslander-Reiten quiver consists of countably many components
each of them containing just a single vertex. If dimk H∗A = 2, then we are in the case of
the spheres where Jørgensen has computed that the Auslander-Reiten quiver consists of
sup{i | HiA 6= 0} − 1 components of the form ZA∞. Our main result shows that these
cases are quite special:

Theorem 4.1. Let A be a simply connected Gorenstein differential graded algebra of
finite type. Then the following hold.

(1) The Auslander-Reiten quiver of A has finitely many components if and only if
dimk H∗A = 2. In this case the number of components equals sup{i | HiA 6= 0}−1.

(2) If dimk HeA ≥ 2 for some e, then there is an n-parameter family of Auslander-
Reiten components for each n ∈ N. In fact there are objects, each lying in a different
component, that can be parametrised by P1(k)n.

To prove this theorem we construct objects which lie in different components. For
those objects we can inductively describe the endomorphism ring (see Proposition 4.6 for
the precise statement).

In the fifth section we give, based on the functorial approach to Auslander-Reiten
sequences that Auslander describes in [2], a different interpretation of the number of
components in the Auslander-Reiten quiver of a triangulated Krull-Remak-Schmidt cate-
gory T having Auslander-Reiten triangles. This is in terms of certain equivalence classes
of finitely presented simple functors in the functor category T̂ = Fp(T op,Ab). We prove

Proposition 5.1. Let T be a triangulated Krull-Remak-Schmidt category having
Auslander-Reiten triangles. Then there is a natural one-to-one correspondence between
the Auslander-Reiten components of T and the equivalence classes of simple objects in T̂ .

In the sixth section we discuss some open questions and conjectures.
The remaining sections are appendices about the derived category of a differential

graded algebra, Auslander-Reiten theory and a little topological background.

1.4. Notation and terminology

Throughout this thesis the differential graded objects will usually be denoted in the co-
homological notation, i.e. the differential increases degree by 1. Furthermore k will
denote a field and A a differential graded k-algebra. The opposite differential graded
algebra will be denoted by Aop. Further C(A) will be the category of differential graded
A-modules, H(A) the corresponding homotopy category, and D(A) the derived category
(for further explanations look at [27] or the Appendix A). We write superscript f for the
corresponding subcategories consisting of all objects X with the n-th cohomology HnX
finitely generated over k for all n ∈ Z, superscript b for the corresponding subcategories
consisting of all objects X whose underlying complexes are bounded in cohomology, and
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superscript c for the corresponding subcategories consisting of all compact objects. We
will denote the shift of (differential) graded objects by Σ. If we consider just the under-
lying graded structure of a differential graded object X, then we will sometimes write
X\. Furthermore, let D := Homk(−, k) be the k-duality functor. Given a complex X the
cohomology H∗X is the Z-graded object that consists in degree n of the n-th cohomology
HnX. We sometimes denote the graded object H∗ RHomA(X,Y ) by Ext∗A(X,Y ). We
also define

supX := sup{i ∈ Z | Xi 6= 0} and infX := inf{i ∈ Z | Xi 6= 0}.

For a given category C and two objects X,Y ∈ Ob(C) the set of morphisms HomC(X,Y )
will sometimes be denoted by C(X,Y ) or just (X,Y ) for short. Given a triangulated
category T and a set of objects S in T , we denote by 〈S〉thick the thick subcategory
generated by S, i.e. the smallest triangulated subcategory of T that contains S and is
closed under direct summands. Similarly, we denote by 〈S〉loc the localising subcategory
generated by S, i.e. the smallest triangulated subcategory of T that contains S and is
closed under taking coproducts. For us a triangulated subcategory will be strict (i.e.
closed under isomorphisms) by definition. We say that a k-linear category is Hom-finite
if all homomorphism spaces are finite dimensional.

Further notation is explained in the appendices.

Acknowledgements. I would like to thank my advisor Henning Krause for his support
of my dissertation. I also thank the representation theory group in Paderborn and their
various guests for their mathematical and non-mathematical support. In particular, I am
grateful to Dave Benson and Srikanth Iyengar for some helpful discussions. I also thank
Kristian Brüning and Andrew Hubery for some useful comments on a preliminary version
of this thesis.
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2. Preliminaries

Let k be a field and A a differential graded k-algebra. Before we get to the simply con-
nected differential graded algebras in Section 3, we consider differential graded algebras
with degreewise finite dimensional cohomology. We recall some facts related to the ex-
istence of Auslander-Reiten triangles in Dc(A), i.e. the full subcategory of the derived
category D(A) consisting of the compact objects. For the convenience of the reader some
proofs are included.

Lemma 2.1. Let A be a differential graded k-algebra, X,Y be objects in D(A), and in
addition let X be compact. Then there is an isomorphism that is natural in X and Y

DHomD(A)(X,Y ) ∼= HomD(A)(Y,X ⊗LA DA).

Proof. The same calculation as in the ordinary algebra case (cf. [30, Example 1]) gives
the desired result.

Lemma 2.2. Let A be a differential graded algebra with degreewise finite dimensional
cohomology. Then

(1) HomD(A)(X,Y ) is a finite dimensional k-vectorspace for every pair of compact ob-
jects X,Y .

(2) EndD(A)(X) is local for every indecomposable compact object X.

In particular, Dc(A) is a Hom-finite k-linear Krull-Remak-Schmidt category.

Proof. (1) Consider the full subcategory M in D(A) consisting of all objects X such
that HomD(A)(X,ΣnA) is finite dimensional over k for all n ∈ Z. The category M is
a thick triangulated subcategory of D(A) containing AA. Here one uses the fact that
HomD(A)(A,ΣnA) ∼= HnA is finitely generated. Hence M contains 〈A〉thick = Dc(A).
Now consider the full subcategory N in D(A) consisting of all objects Y such that
HomD(A)(X,Y ) is finite dimensional over k for all X ∈ M. The category N is again
a thick triangulated subcategory of D(A) containing AA, hence N contains 〈A〉thick =
Dc(A).
(2) Since D(A) is a triangulated category with coproducts every idempotent morphism
in D(A) splits (see [33, Proposition 1.6.8]). Since Dc(A) = 〈AA〉thick is closed under
direct summands, also every idempotent in Dc(A) splits. Therefore an object X is in-
decomposable if and only if 0 and 1 are the only idempotents in the endomorphism ring
R := EndD(A)(X) of X. This is equivalent to R being indecomposable as module over
itself, and this is the same as R ∼= EndR(R) being local, since for a compact object X its
endomorphism ring R is finite dimensional by (1).
Given a compact object, it is the direct sum of finitely many indecomposables by (1) and
since the indecomposables have local endomorphism rings by (2) this decomposition is
essentially unique. Hence Dc(A) is a Krull-Remak-Schmidt category.
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So for a differential graded algebra A with degreewise finite dimensional cohomology,
the compact objects in the derived category which we denote by Dc(A) form a triangu-
lated Hom-finite k-linear Krull-Remak-Schmidt category. The following proposition gives
some characterisations for the existence of Auslander-Reiten triangles in this category.

Proposition 2.3. Let A be a differential graded algebra with degreewise finite dimensional
cohomology. Then the following conditions are equivalent:

(1) The category Dc(A) has Auslander-Reiten triangles.

(2) The category Dc(A) has Serre duality, i.e. there exists an exact autoequivalence
S : Dc(A) → Dc(A) and natural isomorphisms

DHomD(A)(X,Y ) ∼= HomD(A)(Y, SX) for all X,Y ∈ Dc(A).

(3) A(DA) ∈ Dc(Aop) and (DA)A ∈ Dc(A).

(4) The k-duality D restricts to a duality on the compact objects

Dc(A)
D //

Dc(Aop)
D

oo

Moreover, in this situation the Serre functor is S = −⊗LA DA and the Auslander-Reiten
translate is (−⊗LA DA) ◦ Σ−1.

Proof. The equivalence of (1) and (2) is shown in [35, Proposition I.2.3] as well as in [30,
Theorem 4.4]. It follows from Lemma 2.1 that the Serre functor is − ⊗LA DA. For the
equivalence of (2),(3) and (4) one can use dévissage arguments.

Remark 2.4. Following [28] or [35] one can construct the Auslander-Reiten triangle cor-
responding to an indecomposable compact object Z as follows. Serre duality gives an
isomorphism

DEndD(A)(Z) = DHomD(A)(Z,Z) ∼= HomD(A)(Z,Z ⊗LA DA)

Let Γ := EndD(A)(Z). Since Γ is a finite dimensional local algebra, the projective cover of
Γ-modules Γ → Γ/radΓ gives rise to an injective envelope of Γ-modules Γ/radΓ → DΓ.
The corresponding canonical map Γ → Γ/radΓ → DΓ is given by an element in DΓ =
DEndD(A)(Z). Take the map Z → Z ⊗LADA that corresponds to this element under the
Serre duality isomorphism and complete it to a triangle. This gives an Auslander-Reiten
triangle

Σ−1Z ⊗LA DA→ Y → Z → Z ⊗LA DA.

Remark 2.5. In the case of a finite dimensional k-agebra considered as differential graded
k-algebra concentrated in degree zero, the derived category D(A) is the usual (un-
bounded) derived category D(ModA) of the category of all A-modules and Dc(A) is the
category of perfect complexes, i.e. complexes isomorphic in D(A) to a bounded complex
of finitely generated projective modules. In this situation we have:
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(1) The third condition in Proposition 2.3 says that A and Aop have finite injective
dimension. This is the definition of a Gorenstein algebra given by Auslander-Reiten
in [4].

(2) In the case where A has finite global dimension, Happel’s result in [18], where
he shows that Db(modA) has Auslander-Reiten triangles, is a special case of the
proposition since in this case Db(modA) ' Dc(ModA) = Dc(A).

Remark 2.6. Let A be a differential graded algebra with degreewise finite dimensional
cohomology. In addition, let Dc(A) be Calabi-Yau of dimension d, i.e. the Serre functor
S = −⊗LA DA is naturally isomorphic to Σd, the d-fold composition of the shift functor.
In this case Dc(A) has Auslander-Reiten triangles, and we clearly have that DA ∼= ΣdA
is compact. The Auslander-Reiten translate in this case is S ◦ Σ−1 ∼= Σd−1.
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3. Simply connected differential graded algebras

Let k be a field. In the following we will consider simply connected differential graded
k-algebras of finite type, i.e. positively graded differential graded k-algebras A with finite
dimensional cohomology algebra, H0A ∼= k, and H1A = 0. For simplicity, at some stages
in Sections 3.3 and 3.4 we will assume that our simply connected differential graded
algebras are augmented, i.e. the natural morphism of differential graded algebras k → A
has a splitting A → k called the augmentation morphism. In particular, k gets the
structure of a differential graded A-module. All results in these sections carry over to
not necessarily augmented simply connected differential graded algebras but kA has to
be replaced by an appropriate object.

3.1. A finite dimensional model

Up to weak equivalence (i.e. equivalence via a series of quasi-isomorphisms) one can
replace a simply connected differential graded algebra of finite type by a finite dimensional
differential graded algebra A with A0 = k, A1 = 0, and supA = supH∗A =: d.

A : · · · → 0 → k → 0 → A2 → · · · → Ad → 0 → · · ·

Note that A is an augmented differential graded algebra with augmentation morphism
A→ A/A≥1 ∼= k.

The construction of such a finite dimensional model proceeds in two steps:

(1) Inductive construction of a free model using graded tensor algebras.

(2) Right truncation of the free model (cf. [13, Section 12 Example 6]).

ad (1): The construction has its origin in [1] in which the so-called Adams-Hilton model
for the singular chains of the loop space of a simply connected CW-complex is introduced.
The construction of the free model for our simply connected differential graded algebra
A, that we will recall now, is the same as in the graded commutative case where one
can construct a minimal Sullivan model using the free graded commutative algebra (see
[13, 12.2 Proposition]), but one uses the graded tensor algebra instead of its graded
commutative quotient. Given a graded vector space V , let TV :=

∐∞
i=0 V

⊗i be the
associated graded tensor algebra. The following two properties of the tensor algebra are
important for the inductive construction of the free model.

(i) Every k-linear map of degree zero from V to a graded algebra B can uniquely be
extended to a morphism of graded algebras TV → B.

(ii) Every k-linear map of degree n from V to TV can be uniquely extended to a
derivation d : TV → TV of degree n, i.e. a k-linear map of degree n satisfying
d(xy) = d(x)y + (−1)n|x|xd(y) for all x, y ∈ TV and x homogeneous.

One starts with the vectorspace V 2 = H2(A) in degree 2 and defines m2 : (TV 2, 0) →
(A, d) by extending the k-linear map that assigns representing cocycles to the elements of a
chosen basis of H2(A). Clearly Hi(m2) is an isomorphism for i ≤ 2 and H3(m2) is injective
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since (TV 2)3 = 0. If mk : (TV ≤k, d) → (A, d) has been constructed, then let V k+1 be the
vectorspace in degree k + 1 that is the direct sum of a complement C of Im Hk+1(mk)
in Hk+1(A) and Ker Hk+2(mk). Extend the differential on TV ≤k+1 by sending C to zero
and the elements of a chosen basis {zα} of KerHk+2(mk) to corresponding representing
cocycles zα. Define mk+1 : (TV ≤k+1, d) → (A, d) by sending the elements of a basis
of C to corresponding representing cocycles and the elements zα of the chosen basis of
Ker Hk+2(mk) to elements in the preimage under d of mk(za).
ad (2): Note that there is a vectorspace decomposition

Ai ∼= Ker(di)⊕ Im(di) ∼= Im(di−1)⊕HiA⊕ Im(di).

We choose some k-linear splitting pi for di : Ai → Im(di). Using that A is positively
graded, A0 = k, and A1 = 0 one sees that the following subcomplex is a differential
graded ideal in A.

· · · // k // 0 // A2 d2 // · · · // Ad−2 dd−2
// Ad−1 dd−1

// Ad
dd

// Ad+1 // · · ·

· · · // 0 //
� ?

O

0 //
� ?

O

0 //
� ?

O

· · · // 0 //
� ?

O

Im(dd−1)
[10] //

� ?

pd−1

O

Im(dd−1)⊕ Im(dd)
[0 incl]//

� ?

[incl pd]

O

Ad+1 // · · ·

The quotient differential graded algebra is then the desired algebra.

Remark 3.1. (1) Since quasi-isomorphic differential graded algebras give equivalent de-
rived categories (see Lemma A.7) and we are interested in properties of the derived
category we may always replace our simply connected differential graded algebra of finite
type by a differential graded algebra A that is a finite dimensional positively graded dif-
ferential graded k-algebra with A0 = k, A1 = 0, and supA = supH∗A. In the following
we will refer to such a replacement as a finite dimensional model.
(2) If we start with an augmented simply connected differential graded algebra A of fi-
nite type then the finite dimensional model is weakly equivalent to A in the category of
augmented differential graded algebras.

Example 3.2. The singular cochain differential graded algebra C∗(X; k) of a simply con-
nected topological space X with finite dimensional cohomology is a simply connected dif-
ferential graded algebra of finite type. The Hurewicz theorem gives H0(X) ∼= k, H1(X) =
0 and therefore H0(X) ∼= k, H1(X) = 0. The cohomology algebra H∗(X; k) is graded
commutative, and provided the characteristic of k is zero it is even possible to construct
a graded commutative finite dimensional model for C∗(X; k) (see [13]). If we fix a base
point x in the topological space X, then the inclusion map {x} → X induces an augmen-
tation morphism C∗(X; k) → k.

3.2. Minimal semi-free resolutions

Let us now assume that our simply connected differential graded algebra A of finite type
is finite dimensional, positively graded with A0 = k, A1 = 0, and supA = supH∗A.

A : · · · → 0 → k → 0 → A2 → · · · → Ad → 0 → · · ·
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For all differential graded modules over differential graded algebras of this form there exist
minimal semi-free resolutions (cf. [9]). A semi-free resolution of M is a quasi isomorphism
L → M , where L is semi-free, i.e. there exists an ascending exhaustive filtration of A-
modules

0 ⊆ L(0) ⊆ L(1) ⊆ · · · ⊆ L(i) ⊆ · · · ⊆ L,
⋃
i≥0

L(i) = L

with subquotients L(i)/L(i − 1) that are isomorphic in C(A) to direct sums of shifts of
copies ofA. Note that a semi-free differential graded module is in particular homotopically
projective (see Lemma A.4). A differential graded module L is called minimal if every
morphism of differential graded modules L→ L that is a homotopy equivalence is already
an isomorphism. In the situation of our particular differential graded algebra A an A-
module L is minimal if and only if

d(L) ⊆ radA · L = A≥1L.

This implies: If L is minimal, then HomA(L, k) and L⊗A k have vanishing differentials.
The existence of minimal semi-free resolutions for differential graded modules M with
inf H∗M > −∞ was stated without a proof in [12]. In particular this gives the existence
of minimal semi-free resolutions for differential graded modules that are compact in the
derived category. In the following form this result is stated and proved in [15].

Lemma 3.3. Let A be a differential graded algebra that is finite dimensional, positively
graded with A0 = k, A1 = 0, and supA = sup H∗A. Further let M be a differential
graded A-module with inf H∗M = i > −∞ and Hn(M) finite dimensional for all n ∈ Z.
Then the following hold.

(1) There exists a minimal semi-free resolution L→M which has a semi-free filtration
with quotients as indicated,

Σ−iA(γ0) Σ−iA(γ1) Σ−(i+1)A(γ2) · · ·

0
���
⊆ F (0)

???

???
⊆ G(1)

���

���
⊆ F (1)

???

???
⊆ G(2)

���

���
⊆ F (2)

???

⊆ · · · ⊆ L

Σ−(i+1)A(δ0) Σ−(i+2)A(δ1) · · ·

with γj and δj finite.

(2) L\ ∼=
∐
j≥i Σ

−j(A\)(βj), where βi = γ0 + γ1 and βj = δj−(i+1) + γj−i+1 for j > i.

(3) If the filtration terminates, then there exists a semi-split exact sequence (i.e. it splits
as a sequence of the underlying graded modules)

0 → P → L→ Σ−wA(α) → 0

with α 6= 0 finite, εj finite, w ≥ i, P being homotopically projective, and

P \ ∼=
∐
j≤w

Σ−j(A\)(εj).
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Following the proof of this lemma in [15] we describe the construction of such a minimal
semi-free resolution: One starts with a morphism

α : F (0) := Σ−iA(γ0) →M

such that
Hi(α) : Hi(Σ−iA(γ0)) → Hi(M)

is an isomorphism. If one has constructed

α(n− 1) : F (n− 1) →M

such that
Hi+j(α(n− 1)) : Hi+j F (n− 1) → Hi+jM

is an isomorphism for 0 ≤ j ≤ n− 1, then one first extends α(n− 1) to

β(n) : G(n) := Σ−(i+n)A(δn) q F (n− 1) →M

such that
Hi+n(β(n)) : Hi+nG(n) → Hi+nM

is surjective, Hi+n(β(n))(Hi+n(Σ−(i+n)A(δn))) is complemental to Hi+n(β(n))(Hi+n(F (n−
1)), and Ker(Hi+n(β(n)) ⊆ Hi+n(F (n − 1)). In the next step one ‘kills’ representing
cocycles in Ker(Hi+n(β(n)) by constructing the mapping cone of a morphism

δ : Σ−(i+n)A(Y ) → G(n), 1y 7→ y

with Hi+n(δ) injective, and Y a set of representing cocycles such that their cohomology
classes generate Ker(Hi+n(β(n)). One extends β(n) to

α(n) : F (n) →M

by mapping 1y ∈ Σ−(i+n)+1A(Y ) to m, where β(n)(y) = d(m).

Example 3.4. A minimal semi-free resolution of kA can be constructed as follows: First
one considers the projection m0 : A → kA. Then degree by degree one inductively ‘kills’
cocycles in a basis of KerH∗(mi).

3.3. Jørgensen’s results

Using minimal semi-free resolutions Jørgensen shows the following characterisations for
the existence of Auslander-Reiten triangles in Dc(A).

Theorem 3.5. [24, Theorem 5.1] Let A be a simply connected differential graded k-
algebra of finite type and d := sup H∗A. Then the following conditions are equivalent.

(1) The category Dc(A) has Auslander-Reiten triangles.

(2) The category Dc(A) is Calabi-Yau of dimension d, i.e. the Serre functor is naturally
isomorphic to Σd.
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(3) The differential graded algebra A satisfies Poincaré duality of dimension d, i.e.
DH∗A and Σd H∗A are isomorphic as left H∗A-modules and as right H∗A-modules.

(4) The objects DA and ΣdA are isomorphic in D(A) and in D(Aop).

If A is augmented, then the conditions are also equivalent to:

(5) The differential graded algebra A is Gorenstein of dimension d in the sense of
Avramov-Foxby [7] respectively Félix-Halperin-Thomas [12], i.e. there are isomor-
phisms of graded k-vectorspaces

Ext∗A(k,A) ∼= Σ−dk and Ext∗Aop(k,A) ∼= Σ−dk.

In the following we will refer to a simply connected differential graded algebra A of finite
type satisfying the equivalent conditions in Theorem 3.5 as simply connected Gorenstein
differential graded algebra of finite type. Note that we do so even if A is not augmented.
If we use the notion Gorenstein for a differential graded algebra in a different context,
then this will be mentioned explicitly.

Remark 3.6. In [16] Frankild-Jørgensen define a differential graded algebra to be Goren-
stein if the contravariant functor

RHomA(−, A) : Df,b(A) → Df,b(Aop)

is a duality. Note that Df,b(A) consists of those differential graded A-modules X with
dimk H∗X < ∞. Let the characteristic of the field k be zero and A be an augmented
simply connected differential graded algebra of finite type that is graded commutative in
cohomology. Then it is shown in [14] that the Gorenstein condition of Félix-Halperin-
Thomas [12] respectively Avramov-Foxby [7] (condition (5) in the theorem) is equivalent
to the definition of Gorensteinness of Frankild-Jørgensen. We also recommend [11] to the
reader for another consideration of Gorenstein differential graded algebras.

Remark 3.7. For A = C∗(X; k) the singular cochain differential graded algebra of a simply
connected topological space X the condition (3) in Theorem 3.5 says that X has Poincaré
duality.

In addition to the result about the existence of Auslander-Reiten triangles, Jørgensen
also studied the shape of the components that appear in the corresponding Auslander-
Reiten quiver Γ(A). He formulated and proved the following result under some additional
assumptions that we have been able to remove (see the discussion below and Section 3.4).

Theorem 3.8. [26, Theorem 4.2] Let A be a simply connected Gorenstein differential
graded algebra of finite type with dimk H∗A ≥ 2. Then all connected components of the
Auslander-Reiten quiver of Dc(A) are of the form ZA∞.

For the proof of the theorem Jørgensen replaces A by a finite dimensional model that
we also denote by A and considers the function

f : Ob(D(A)) → N0 ∪ {∞}, M 7→ dimk H∗ RHomA(M,k).
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He shows that f is an additive, unbounded, Auslander-Reiten translate periodic function
on each component of the Auslander-Reiten quiver of Dc(A). Therefor he needs that kA
is not compact and shows that this is the case for the singular cochain differential graded
algebra C∗(X; k) of a simply connected Poincaré duality space X of Poincaré dimension
d ≥ 2 provided the characteristic of k is zero. In fact, this is true for augmented simply
connected differential graded algebras A of finite type with dimk H∗A ≥ 2 in general as
will follow from the amplitude inequality (Proposition 3.11) in Section 3.4.

We remark that the function f has the following properties.

Lemma 3.9. (1) The function f is subadditive on triangles, i.e. for all exact triangles
X → Y → Z → ΣX it holds f(Y ) ≤ f(X) + f(Z).

(2) An object M ∈ D(A) is compact if and only if dimk H∗M < ∞ and f(M) < ∞.
Moreover, in this case f(M) = dimk H∗ RHomA(M,k) = dimk H∗(M ⊗LA k) counts
the number of shifted copies of A that appear in the minimal semi-free resolution of
M .

Proof. (1) This follows immediately from the fact that RHomA(−, k) : D(A) → D(A)
is an exact and H∗ : D(A) → Cgr(k) a cohomological functor and looking at the corre-
sponding long exact sequence.
(2) If M is compact, then it is finitely built from A, hence dimk H∗M < ∞ and
f(M) < ∞. On the other hand if dimk H∗M < ∞ and f(M) < ∞, then there is a
minimal semi-free resolution L → M as in Lemma 3.3 with semi-free filtration that ter-
minates after finitely many steps. It follows that M is finitely built from A, hence M is
compact. Now let M be compact and L → M be a minimal semi-free resolution as in
Lemma 3.3. We have

RHomA(M,k) = HomA(L, k) ∼= HomA(L, k)\ ∼= HomA\(
∐
j≤−u

Σj(A\)(βj), k\)

∼=
∏
j≤−u

Σjk

and
M ⊗LA k = L⊗A k ∼= (L⊗A k)\ ∼= (

∐
j≤−u

Σj(A\)(βj) ⊗A k\) ∼=
∐
j≤−u

Σjk.

So if M is compact, then f(M) = dimk H∗ RHomA(M,k) = dimk H∗(M ⊗LA k) counts the
number of shifted copies of A that appear in the minimal semi-free resolution L of M .

For spheres Jørgensen computes the Auslander-Reiten quiver. We remark that he has
stated the following result in the case where the ground field k has characteristic zero,
but the proof goes through also in arbitrary characteristic.

Example 3.10. [24, Theorem 8.13] For the d-dimensional sphere Sd, d ≥ 2 the Auslan-
der-Reiten quiver Γ(Sd) consists of d− 1 components of the form ZA∞.
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We will come back to this example in Section 6. For this reason we will sketch
Jørgensen’s arguments: The singular cochain differential graded algebra C∗(Sd; k) of
a d-dimensional sphere Sd is weakly equivalent to its cohomology differential graded alge-
bra H∗(Sd) ∼= k[x]/(x2) =: A, where deg x = d. Note that A is a finite dimensional model
for C∗(Sd; k) in the sense of Remark 3.1(1). Consider B = k[y] with deg y = −d+1. The
mapping cone L of the canonical morphisms

Σd−1B → B

is a minimal semi-free resolution of kB. Let E := EndB(L) be the endomorphism differ-
ential graded algebra of L. Consider the adjoint pair of functors

D(E)
−⊗L

E k //
D(B)

RHomB(k,−)
oo .

In [10] it is shown that these functors restrict to an equivalence D(E) ' 〈kB〉loc ⊆ D(B).
Note that 〈kB〉loc ⊆ D(B) is closed under direct summands and that E and A are quasi-
isomorphic differential graded algebras. Hence we have an equivalence

Dc(Sd) ' Dc(H∗(Sd; k)) ' Dc(A) ' Dc(E) ' 〈kB〉thick ⊆ D(B).

Jørgensen computes the Auslander-Reiten components by analysing 〈kB〉thick = Df (B).
It is not clear to us how to produce equivalences like this for examples other than the
spheres.

The question of the number of components for a simply connected Gorenstein differ-
ential graded algebras of finite type in general will be treated in Section 4.

3.4. An amplitude inequality

We give a cochain analogue of the amplitute inequalities in [25]. Corollary 3.12 is then
exactly the statement that lets us weaken the assumptions on the finite dimensional
model of the simply connected Gorenstein differential graded algebra of finite type in
Theorem 3.8 from kA is not compact to dimk H∗A ≥ 2.

The amplitude of a differential graded module M is defined to be

ampM := sup H∗M − inf H∗M.

Proposition 3.11. Let A be a simply connected differential graded algebra of finite type,
0 6= M ∈ Dc(A), and 0 6= X ∈ D(Aop) with dimk H∗X <∞ . Then

(1) inf H∗(M ⊗LA X) = inf H∗M + inf H∗X.

(2) supH∗(M ⊗LA X) ≥ inf H∗M + supH∗X.

(3) amp(M ⊗LA X) ≥ ampX.

In particular, ampM ≥ ampA.
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Proof. By Lemma A.7(2) we can replace A with a finite dimensional model. Furthermore,
without loss of generality we may assume that X ∈ D(Aop) satisfies infX = inf H∗X and
supX = supH∗X. This follows from the construction of a minimal semi-free resolution
of X as described in Lemma 3.3 and right truncation as done with the free model of the
simply connected differential graded algebra of finite type in the beginning of this section.
Since M is compact there exists a semi-free resolution L → M as in Lemma 3.3 with
semi-free filtration of L that terminates after finitely many steps.
(1) Of course we have

inf H∗(M ⊗LA X) ≥ inf(M ⊗LA X) = inf(L⊗A X) = inf L+ infX = inf H∗M + inf H∗X.

On the other hand two non zero elements

m̄ ∈ Hinf H∗M L and x̄ ∈ Hinf H∗X X

give a non zero element

m⊗A x ∈ Hinf H∗M+inf H∗X(L⊗A X) = Hinf H∗M+inf H∗X(M ⊗LA X).

Hence it also holds inf H∗(M ⊗LA X) ≤ inf H∗M + inf H∗X.
(2) We take from Lemma 3.3 (iii) the semi-split short exact sequence

0 → P → L→ Σ−wA(α) → 0

with α 6= 0 finite, w ≥ inf H∗M , and P \ ∼=
∐
j≤w Σ−j(A\)(εj). Then we apply − ⊗A X

and get again a semi-split short exact sequence

0 → P ⊗A X → L⊗A X → Σ−wA(α) ⊗A X → 0.

This gives a long exact cohomology sequence

· · · → Hw+supX(L⊗A X) → Hw+supX(Σ−wA(α) ⊗A X) → Hw+supX+1(P ⊗A X) → · · ·

We have (P ⊗A X)\ ∼=
∐
j≤w Σ−j(A\)(εj) ⊗A X\ ∼=

∐
j≤w Σ−j(X\)(εj). Hence

Hw+supH∗X+1(P ⊗A X) = (P ⊗A X)w+supH∗X+1 = 0.

It follows that Hw+supH∗X(L⊗A X) maps onto

Hw+supH∗X(Σ−wA(α) ⊗A X) ∼= Hsup H∗X(X(α)) 6= 0.

Therefore, Hw+supH∗X(M ⊗LA X) = Hw+supH∗X(L⊗A X) 6= 0 and we finally get

supH∗(M ⊗LA X) ≥ w + supH∗X ≥ inf H∗M + supH∗X.

(3) This follows directly by combining (1) and (2).

The following corollary is now an immediate consequence of the previous proposition.

Corollary 3.12. Let A be an augmented simply connected differential graded algebra of
finite type with dimk H∗A ≥ 2. Then kA ∈ D(A) is not compact.

To prove his result about the shape of the Auslander-Reiten components Jørgensen
needs that kA is not compact if dimk H∗A ≥ 2. By our result this assertion is now
generally fulfilled for augmented simply connected differential graded algebra of finite
type and in particular independent of the characteristic of the ground field.
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4. The number of Auslander-Reiten components

Let A be a simply connected Gorenstein differential graded algebra of finite type. By
Theorem 3.5 the category Dc(A) has Auslander-Reiten triangles. The following theorem
states that the situation in Example 3.10, namely that the Auslander-Reiten quiver of a
sphere consists of Gorenstein-dimension minus 1 components is quite special. To follow
the proof of the theorem we suggest the reader for the first reading to look at some
example (cf. Example 4.8).

Theorem 4.1. Let A be a simply connected Gorenstein differential graded algebra of
finite type. Then the following hold.

(1) The Auslander-Reiten quiver of A has finitely many components if and only if
dimk H∗A = 2. In this case the number of components equals sup{i | HiA 6= 0}−1.

(2) If dimk HeA ≥ 2 for some e, then there is an n-parameter family of Auslander-
Reiten components for each n ∈ N. In fact there are objects, each lying in a different
component, that can be parametrised by P1(k)n.

Proof. Let d := sup H∗A. If dimk H∗A = 1, then A is quasi-isomorphic to the ground field
k viewed as differential graded algebra concentrated in degree zero, and the Auslander-
Reiten quiver clearly consists of countably many components each of them containing
just a single object. If dimk H∗A = 2, then A is quasi-isomorphic to the differential
graded algebra k[x]/(x2) with deg x = d. These are the differential graded algebras
weakly equivalent to C∗(Sd; k) for some d ≥ 2, for those Jørgensen has computed that
the Auslander-Reiten quiver consists of d − 1 components of the form ZA∞ (see Exam-
ple 3.10). If dimk H∗A ≥ 3, then we will get indecomposable modules that lie in different
components via iterated mapping cone constructions. Under the additional assumption
in (2) we are in this way even able to construct n-parameter families of modules in dif-
ferent components. Before we continue with the proof, we will make some preliminary
observations and explain the skeletal structure of the mapping cone constructions.

4.1. Preparations for the proof

In the following we will always assume that dimk H∗A ≥ 2. As Theorem 3.8 tells us, the
components of the Auslander-Reiten quiver of A are of the form ZA∞ and the Auslander-
Reiten translate is τ = Σd−1 hence the components look as follows:

...

Σd−1M3

''OOOO
M3

##G
GGG

Σ−(d−1)M3

((QQQ
QQ

Σ−2(d−1)M3

· · · Σd−1M2

&&MM
MM

88qqqqq
M2

%%KKKKK

99ssss
Σ−(d−1)M2

((RRR
RR

66lllll
· · ·

Σ2(d−1)M1

77oooo
Σd−1M1

;;wwww
M1

66mmmmmmm
Σ−(d−1)M1

Recall from Section 3.3 the function f := dimk H∗ RHomA(−, k). Since f is additive
and f ◦ Σ = f , it holds f(Σn(d−1)Mi) = i · f(M1) for i ∈ N, n ∈ Z. Hence objects in
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the same component with the same value under f are just iterated (d− 1)-shifts of each
other. If we can construct indecomposable non-isomorphic differential graded A-modules
that have the same value under f and are not iterated (d− 1)-shifts of each other, then
they have to lie in different components of the Auslander-Reiten quiver. In particular,
the number of components of the Auslander-Reiten quiver of Dc(A) is at least d − 1
since for an indecomposable compact differential graded A-module M all the objects
ΣiM, i ∈ {0, 1, 2, . . . , d− 2} have to lie in different components.

4.1.1. The basic construction

We start to describe the skeletal structure of the mapping cone constructions and state
some properties of the objects that we get in this way. We will specialise to the specific
constructions later. We start with C0 := A and some e1 ∈ N with He1 A 6= 0. We define
ϕ : Σ−e1A → A, 1 7→ ζ where ζ ∈ Ae1 with ζ̄ 6= 0 ∈ He1 A. Let C1 = C0(e1) = A(e1) be
by definition the mapping-cone of ϕ.

Σ−e1A
ϕ→ A→ C1 → Σ−e1+1A

If there exists some e2 ∈ N with He2 C1 6= 0, then we could continue the mapping-cone
construction starting with C1 and so on, i.e.

A // C1
//

+��~~
~~

~~
C2

//

+��~~
~~

~~
· · · // Cn−1

// Cn

+~~~~
~~

~~
// · · ·

Σ−e1A

^^======

Σ−e2A

__@@@@@@
· · · Σ−enA

bbEEEEEE
. . .

where we denote by Cn = Cn−1(en) an object that occurs in an n-step mapping cone
construction and by en the number of shifts of A that belong to the construction in the
n-th step.

Remark 4.2. For all n ∈ N0 we have:

(a) Cn is compact.

(b) Cn is minimal semi-free.

(c) C\n ∼= A\⊕
n⊕
i=1

Σ−ei+1A\. In particular, a morphism of differential graded A-modules

starting in Cn is uniquely determined by the images of 1A and 1Σ−ei+1A, for i =
1, . . . , n.

(d) f(Cn) = n+ 1.

Proof. (a) This is clear since the compact objects form a triangulated subcategory and
we have started with the compact objects A and Σ−e1A and in every construction step
i = 1, . . . , n we just take the mapping cone of a morphism between the compact objects
Σ−eiA and Ci−1.
(b) We have the filtration A = C0 ⊂ C1 ⊂ · · · ⊂ Cn−1 ⊂ Cn with quotients Ci/Ci−1

∼=
Σ−ei+1A, i = 1, . . . , n. Hence Cn is semi-free. By construction d(Cn) ⊆ A≥1Cn, i.e. Cn
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is minimal.
(d) We calculate

f(Cn) = dimk H∗ RHomA(Cn, k) = dimkHomA\(Cn, k)

= dimkHomA\(A\ ⊕
n⊕
i=1

Σ−ei+1A\, k\) = dimk(k ⊕
n⊕
i=1

Σei−1k) = n+ 1.

We will also need the following

Lemma 4.3. (i) Hj Cn ∼= Hj Cn−1 for all j < en.

(ii) dimk Hen Cn = dimk Hen Cn−1 − 1.

Proof. (i) We consider the long exact cohomology sequence

· · · // H−en+j A // Hj Cn−1
// Hj Cn

// H−en+j+1A // Hj+1Cn−1
// · · · .

We clearly have H−en+j A = 0. For j < en − 1 it also holds H−en+j+1A = 0, and hence
we get Hj Cn ∼= Hj Cn−1. In the case j = en− 1 the long exact sequence looks as follows.

· · · // H−1A // Hen−1Cn−1
// Hen−1Cn

// H0A
� � 6=0// Hen Cn−1

// · · ·

0 k

Since the map H0A → Hen Cn−1 is non-zero it has to be injective, and so we also get
Hen−1Cn ∼= Hen−1Cn−1.

(ii) Again we consider the long exact cohomology sequence

· · · //

��?
??

??
? H0A

� � 6=0// Hen Cn−1
// Hen Cn // H1A // · · ·

0

==zzzzzz
k 0

.

Hence we get dimk Hen Cn = dimk Hen Cn−1 − 1.

4.1.2. Indecomposability

To get indecomposable objects we have to do the constructions more carefully:
From now on we assume that the differential graded algebra has been replaced by a

finite dimensional model that we also denote by A. The isomorphism ΣdA → DA in
D(A) gives Hd−1A = 0 and HdA ∼= k, where d = supA. We will choose the ei such that
supCi−1− d+ 2 ≤ ei ≤ supCi−1. Since supCi−1 = ei−1 + d− 1 this implies ei−1 < ei for
all i.

Remark 4.4. For all n ∈ N0 we have:
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(i) C≥supCn−1+1
n = Σ−en+1(A≥supCn−1−en+2)

(ii) HsupCn Cn ∼= k

We will call the construction of Cn = Cn−1(en) with en = supCn−1 a construction step
of the first kind. If dimk H∗A ≥ 3, then there exists 2 ≤ e ≤ d − 2 having the property
HeA 6= 0. For the first construction step we want to consider the two possibilities

e1 = supC0 = d and e1 = e.

In the n-th construction step we always want to consider the possibility that en =
supCn−1, and in case that the (n − 1)-th construction step has been a construction
step of the first kind (i.e. en−1 = supCn−2) also the possibility en = supCn−1 − d + e.
Here we call the construction Cn = Cn−1(en) with en = supCn−1 − d+ e a construction
step of the second kind. So we allow construction steps of the first and second kind, but
after a construction step of the second kind, in the next step we will just allow a con-
struction step of the first kind. This ensures that en > supCn−2 and with Remark 4.4(i)
it follows CsupCn−1−d+e

n−1 = Ae and HsupCn−1−d+eCn−1 = HeA 6= 0. So we will always be
able to proceed with our construction. If we define

eAn := en − (supCn−1 − d) = en − en−1 + 1,

then we have Cen
n−1 = Ae

A
n , and further eAn = d if the n-th construction step is a step of

the first kind and eAn = e if the n-th construction step is a step of the second kind.
Before we can prove the indecomposability of the objects Cn that are constructed in

the described manner, we make the following preliminary observations:

(1) Cei
n = Cei

i+1 = ((Σ−ei+1+1A)⊕ (Σ−ei+1A)⊕ (Σ−ei−1+1A))ei

= Aei−ei+1+1 ⊕A1 ⊕Aei−ei−1+1 = A−e
A
i+1+2 ⊕Ae

A
i

(2) Cei−1
n = Cei−1

i = ((Σ−ei+1A)⊕ (Σ−ei−1+1A)⊕ (Σ−ei−2+1A))ei−1

= A0 ⊕Aei−ei−1 ⊕Aei−ei−2 = k ⊕Ae
A
i −1 ⊕Ae

A
i +eA

i−1−2 = k ⊕Ae
A
i −1 ⊕Ad+e−2

(3) Cei−2
n = Cei−2

i = ((Σ−ei−1+1A)⊕ (Σ−ei−2+1A)⊕ (Σ−ei−3+1A))ei−2

= Aei−ei−1−1 ⊕Aei−ei−2−1 ⊕Aei−ei−3−1 = Ae
A
i −2 ⊕Ae

A
i +eA

i−1−3 ⊕Ae
A
i +eA

i−1+eA
i−2−4

= Ae
A
i −2 ⊕Ad+e−3 ⊕Ad+e+e

A
i −4

(4) Cen−1
n−1 = (Σ−en−1+1A)en−1 = Aen−en−1 = Ae

A
n−1

Let m ≤ n. As already mentioned before, a morphism of differential graded modules
a : Cm → Cn is determined by the images of 1A and 1Σ−ei+1A, i = 1, . . . ,m. These
images lie in A0 = k and Cei−1

n = k ⊕ Ae
A
i −1 ⊕ Ad+e−2 respectively. Say 1A 7→ α0 and

1Σ−ei+1A 7→ αi + xi + yi for i = 1, . . . ,m. Since the differential dei−1
Cn

: Cei−1
n → Cei

n is of

the form [ϕ, (−1)ei−1−1d
eA
i −1
A , 0] : k ⊕Ae

A
i −1 ⊕Ad+e−2 → Ae

A
i , we have

(d ◦ a)(1Σ−en+1A) = d(αi+xi+ yi) = ϕ(αi)+ (−1)ei−1−1dA(xi) = ζαi+(−1)ei−1−1dA(xi),
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(a ◦ d)(1Σ−en+1A) = a(ζ) = a(1Σ−ei−1+1A) · ζ = αi−1ζ = ζαi−1,

and we get ζ(αi−αi−1) = (−1)ei−1−1dA(xi) for i = 1, . . . ,m. Since ζ is a not a boundary,
it follows αi = αi−1 and d(xi) = dA(xi) = 0 for i = 1, . . . ,m.

Before we formulate our result on the indecomposability of the objects Cn, we recall
the notion of a trivial extension. Let R be a ring and M an (Rop, R)-bimodule. The
trivial extension of R by M is the ring R n M that has as underlying set the cartesian
product R×M , addition given componentwise, and multiplication defined by the formula

(r,m)(r′,m′) := (rr′,mr′ + rm′) for all r, r′ ∈ R and m,m′ ∈M.

Equivalently, a trivial extension of R by M is characterised by a short exact sequence

0 →M → E → R→ 0

of k-modules such that E → R is an algebra homomorphism that splits and the kernel
M is an ideal in E of square zero.

Lemma 4.5. A trivial extension of a local ring is again local.

Proof. An element (r,m) is a unit in R n M if and only if r is a unit in R. Hence the
non-units in R nM are the elements {(r,m) | r ∈ R non-unit, m ∈ M}. They form an
ideal in RnM if and only if the non-units in R form an ideal.

Proposition 4.6. For all objects Cn, n ∈ N that have been constructed via the construc-
tion steps of the first and second kind as described before there is a k-algebra isomorphism

EndD(A)(Cn) ∼= EndD(A)(Cn−1) n HeA
n−1A.

In particular, EndD(A)(Cn) is local, hence Cn is indecomposable.

Proof. We consider the triangle

Σ−enA
ϕ→ Cn−1 → Cn → Σ−en+1A

and the corresponding long exact Hom-sequence (instead of HomD(A)(−,−) we write
(−,−) for short)

· · · → (ΣCn−1, Cn) → (Σ−en+1A,Cn) → (Cn, Cn) → (Cn−1, Cn) → (Σ−enA,Cn) → · · · .

Since we are dealing just with homotopically projective objects, we can think of the
morphism spaces to be in H(A) and do not have to consider fractions. First we notice
that

(ΣCn−1, Cn) → (Σ−en+1A,Cn),
(Cn−1, Cn) → (Σ−enA,Cn)

are the zero maps. This can be seen as follows. Let a be a morphism ΣCn−1 → Cn. We

want to show that the composition a ◦ (Σϕ) : Σ−en+1A
Σϕ→ ΣCn−1

a→ Cn is zero. We have
that

(a ◦ (Σϕ))(1Σ−en+1A) = a(ζ) ∈ Cen−1
n
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and that a(ζ) = ζ · a(1Σ−en−1+2A) with ζ ∈ Aen−1, a(1) ∈ Cen−1−2
n . Since

Cen−1
n = ((Σ−en+1A)⊕ (Σ−en−1+1A)⊕ (Σ−en−2+1A))en−1

and
Cen−1−2
n = ((Σ−en−2+1A)⊕ (Σ−en−3+1A)⊕ (Σ−en−4+1A))en−1−2,

we know that a(ζ) = ζ · a(1Σ−en−1+2A) ∈ (Σ−en−2+1A)en−1 = Ad+e−2. If e 6= 2, then
d + e − 2 > d, hence Ad+e−2 = 0 and a(ζ) = 0. If e = 2, then d ≤ 2e = 4 and hence
d = 4. We claim that all elements in Ad+e−2 = A4 are boundaries in Cn. In particular,
a(ζ) is a boundary, and hence the composition is clearly zero. This is clear if eAn−1 = d.
If eAn−1 = e, then the Poincaré duality gives that multiplication with ζ̄ gives a non-zero
map HeA → H4A. This map is then surjective because H4A is one dimensional. Since
the differential on A4 is multiplication with ζ the assertion follows.

Now, let a be a morphism Cn−1 → Cn. We want to show that the composition

a ◦ ϕ : Σ−enA
ϕ→ Cn−1

a→ Cn

is zero. We have that
(a ◦ ϕ)(1Σ−enA) = a(ζ) ∈ Cen

n

and that a(ζ) = ζ · a(1Σ−en−1+1A) with ζ ∈ Aen−1, a(1) ∈ Cen−1−1
n . Since

Cen
n = ((Σ−en+1+1A)⊕ (Σ−en+1A)⊕ (Σ−en−1+1A))en

and
Cen−1−1
n = ((Σ−en−1+1A)⊕ (Σ−en−2+1A)⊕ (Σ−en−3+1A))en−1−1,

we know that a(ζ) = ζ · a(1Σ−en−1+1A) ∈ (Σ−en−1+1A)en = Ae
A
n . Since a(1Σ−en−1+1A) is

just a scalar, a(ζ) is a boundary in Cn.
So far we have a short exact sequence

0 → (Σ−en+1A,Cn) → (Cn, Cn) → (Cn−1, Cn) → 0

We further claim that

(1) (Cn−1, Cn) ∼= (Cn−1, Cn−1),

(2) (Σ−en+1A,Cn) ∼= (Σ−en+1A,Cn−1) ∼= (Σ−eA
n +1A,A).

The isomorphism in (1) follows from the long exact Hom-sequence

· · · // (Cn−1,Σ−enA) // (Cn−1, Cn−1) // (Cn−1, Cn) // (Cn−1,Σ−en+1A) // · · ·

0 0

.

The first isomorphism in (2) is by Lemma 4.3(i), and the second one holds since

Cen−1
n−1 = ((Σ−en−1+1A)⊕ (Σ−en−2+1A))en−1 = Ae

A
n−1 ⊕Ad+e−2
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and all elements of Ad+e−2 are boundaries as already shown and used above. Hence we
get a short exact sequence of k-modules

0 → (Σ−eA
n +1A,A) → (Cn, Cn) → (Cn−1, Cn−1) → 0.

The morphism (Cn, Cn) → (Cn−1, Cn−1) is a k-algebra homomorphism that splits. The
multiplicativity can be seen from the following commutative diagram.

Cn−1� _
ι
� ∃1

  

Cn
α
��
Cn
β
��

Cn−1
∃1

$$

? _ιo

Cn Cn−1
? _ιo

.

The splitting is given by assigning to a : Cn−1 → Cn−1 the extended map that is determind
by

1Σ−en+1A 7→ α · 1Σ−en+1A ∈ Σ−en+1A ⊆ Cen−1
n ,

where α = a(1A) ∈ k = A0 = C0
n−1. One checks that this gives a chain map by looking at

the two cases eAn = d, and eAn = e, eAn−1 = d. The image of (Σ−eA
n +1A,A) → (Cn, Cn) is

an ideal in (Cn, Cn) of square zero, as one sees from the following commutative diagrams:
The first diagram shows that the square is zero.

Cn

��
Σ−en+1A

��
∃1

&&
Cn

��

Cn−1
? _ιo

0xxqqqqqq

Σ−en+1A

��
Cn

It is clear that it is a left ideal. To show that it is a right ideal, we show that the
composition of a given morphism Cn → Σ−en+1A → Cn with some a : Cn → Cn from
the right Cn

a→ Cn → Σ−en+1A→ Cn is in the kernel of (Cn, Cn) → (Cn−1, Cn−1). This
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follows from the following diagram.

Cn−1� _

� ∃1

��

Cn
a
��
Cn

��

Cn−1
? _ιo

0xxqqqqqq

Σ−en+1A

��
Cn

Hence (Σ−eA
n +1A,A) has a (Cn−1, Cn−1)-module structure. Therefore, (Cn, Cn) is the

trivial extension of Λ := (Cn−1, Cn−1) via the (Λop,Λ)-bimodule (Σ−eA
n +1A,A). Since a

trivial extension of a local ring is again local (see Lemma 4.5) and we start with the local
ring (A,A) ∼= k, also (Cn, Cn) is local and so Cn indecomposable.

Remark 4.7. We could alternatively use [20, Lemma 6.5] to get the indecomposability of
the objects Cn. For applying this Lemma it is necessary to have (Cn−1,Σ−n+1A) = 0.
This has been used in our proof, too. But here in our more special situation, we do more
and give a formula for the endomorphism ring of the objects Cn ∈ D(A).

4.2. The proof

Now we are ready to finish the proof of Theorem 4.1 by giving objects that lie in different
components:

ad (1): We denote by Cα, α ∈ {0, 1}n, n ∈ N0 the object that is constructed by
the described n-step mapping cone construction with construction steps of the first and
second kind encoded in the n-tuple α. By the considerations above α should not contain
two neighbour entries 1. Denote by Mn ⊆ {0, 1}n the subset of all such n-tuples with no
neighbour entries 1. An example is C(1,0,1) that corresponds to some object C3 that has
been constructed using e1 = e, e2 = e+ d− 1, e3 = 2e+ d− 2. The collection of objects
can be visualised in the following way, where the arms going up mean a construction step
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of the first kind and the arms going down a construction step of the second kind.

C(0,0,0)

C(0,0)

gggggggg

WWWWWWWW

C(0,0,1)

C(0)

qqqqqqqqq

NNNNNNNNN
C(0,1,0)

C(0,1)

gggggggg

YYYYYYYYYYY

·
C

�������������

99
99

99
99

99
99

99
· · ·

C(1,0,0)

C(1,0)

gggggggg

WWWWWWWW

C(1,0,1)

C(1)

qqqqqqqqq

SSSSSSSSSSS
·

·
ddddddddddddd
ZZZZZZZZZZZZZ
·

Given n ∈ N0, the Cα, α ∈ Mn are pairwise non isomorphic indecomposable and not
shifts of each other as we see for example by looking at their cohomology (Lemma 4.3(ii)).
They are compact and have the same value under the additive function f . Since objects
in the same component with the same value under f are just iterated (d−1)-shifts of each
other the constructed modules have to lie in different Auslander-Reiten components. If
n increases, then also the number of elements of Mn increases. Hence, if dimk H∗A ≥ 3,
then there are at least countably infinitely many components.

ad (2): We have the additional assumption that dimk HeA ≥ 2 for some 2 ≤ e ≤ d− 2.
Let ζ1, ζ2 ∈ Ae such that 0 6= ζ̄1, ζ̄2 ∈ HeA and ζ̄1, ζ̄2 linearly independent. Let λ :=
(λ1, λ2) ∈ k2 \ {0} and define ϕλ : Σ−eA → A, 1 7→ λ1ζ1 + λ2ζ2. Let C = C(λ) = C1 be
by definition the mapping-cone of ϕλ.

Σ−eA
ϕλ→ A→ C(λ) → Σ−e+1A

As in (1) the C(λ), λ ∈ k2 \ {0} are compact, indecomposable, and have the same value
under the additive function f . Let λ′ ∈ k2 \ {0} and C ′ := C(λ′). We claim that C ∼= C ′

if and only if λ = µλ′ for some µ ∈ k \ {0}, i.e. λ = λ′ ∈ P1(k). If λ = λ′ ∈ P1(k), then
an isomorphism between C and C ′ could easily been written down. For the case that
λ 6= λ′ ∈ P1(k), we consider the long exact Hom-sequence (instead of HomD(A)(−,−) we
write (−,−) for short)

· · · → (C,C ′) → (A,C ′)
ϕ∗λ→ (Σ−eA,C ′) → · · · .

We first show that

ϕ∗λ := HomD(A)(ϕλ, C
′) : HomD(A)(A,C

′) → HomD(A)(Σ
−eA,C ′)



Auslander-Reiten theory for simply connected differential graded algebras 26

is injective. Note that HomD(A)(A,C ′) ∼= H0C ′ and HomD(A)(Σ−eA,C ′) ∼= HeC ′. Since
H0C ′ ∼= k, a morphism a : A → C ′ is given by a scalar which we also denote by a. Let
a be non-zero. If 0 = ϕ∗λ(a) = a ◦ ϕλ in D(A), then H∗(a ◦ ϕλ) = 0 and therefore
H∗(a ◦ ϕλ)(1̄) = a(λ1ζ1 + λ2ζ2) = 0 ∈ HeC ′, i.e. a(λ1ζ1 + λ2ζ2) ∈ Im de−1

C′ . It holds that
de−1
C′ = [ϕλ′ , de−1

A ] : k⊕Ae−1 → Ae. So there exists b ∈ k such that a(λ1ζ1+λ2ζ2)−ϕλ′(b) ∈
Im de−1

A , i.e. (aλ1 − bλ′1)ζ1 + (aλ2 − bλ′2)ζ2 = 0 ∈ HeA. It follows aλ1 − bλ′1 = 0 and
aλ2 − bλ′2 = 0. Hence λ1 = b

aλ
′
1 and λ2 = b

aλ
′
2, i.e. λ = b

aλ
′. So (A,C ′) → (Σ−eA,C ′)

is injective for λ 6= λ′ ∈ P1(k). Hence (C,C ′) → (A,C ′) is the zero map. But if there
would be an isomorphism C

∼=→ C ′, then the composition A → C → C ′ is non-zero
giving a contradiction. Since in addition the C(λ), λ ∈ P1(k) are not shifts of each other,
as in (1) they all have to lie in different components and we get a 1-parameter family
of components. The described construction corresponds to the construction step of the
second kind. After a construction step of the first kind we can continue with a step of
the second kind as before and get a 2-parameter family and so on.

4.3. An example

We illustrate the mapping cone constructions in the proof of Theorem 4.1 by the following
example.

Example 4.8. Let the characteristic of k be zero. Since Se×Sd is as the product of two
formal spaces again a formal space we have that C∗(Se×Sd; k) is weakly equivalent by a
series of quasi-isomorphisms to its cohomology differential graded algebra H∗(Se×Sd; k).
By the Künneth formula this is isomorphic to the tensor product of differential graded
algebras

H∗(Se; k)⊗k H∗(Sd; k) ∼= k[x]/(x2)⊗k k[y]/(y2) ∼=

{
k[x, y]/(x2, y2) if e or d even
E(x, y) if e and d odd

,

where deg x = e,deg y = d, and E(x, y) is the exterior algebra in the two generators
x and y. Note that in both cases the appearing differential graded algebra is a finite
dimensional model for C∗(Sd × Sd; k) in the sense of Remark 3.1 that we denote by A.
For e 6= d the underlying complex of the differential graded algebra A is

A : k // 0 // · · · // 0 // k // 0 // · · · // 0 // k // 0 // · · · // 0 // k

1 x y xy

,

and for e = d

A : k // 0 // · · · // 0 // k2 // 0 // · · · // 0 // k

1 x, y xy

In the following we take e = d = 2. The described mapping cone constructions of the
objects C1 = C(λ) and C2 = C1(3d− 1) in the proof of Theorem 4.1(2) may be visualised
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as follows. The morphism of differential graded A-modules

Σ−dA

ϕλ

��

k //

[λ1λ2]
��

0 //

��

k2 //

[λ2
λ1

]
��

0 // k

A k // 0 // k2 // 0 // k

gives as mapping cone the differential graded A-module

k //

[λ1λ2]
��8

88
88

88
88

0 //

��:
::

::
::

::
k2 //

[λ2
λ1

]

��8
88

88
88

88
0 // k

C1

k // 0 // k2 // 0 // k

The morphism

Σ−3dA

ϕ

��

k //

ϕ

��

0 // k2 // 0 // k

k //

��8
88

88
88

88
0 //

��:
::

::
::

::
k2 //

��8
88

88
88

88
0 // k

C1

k // 0 // k2 // 0 // k

gives as mapping cone

k //

ϕ

��<
<<

<<
<<

0 // k2 // 0 // k

C2 k //

��>
>>

>>
>>

0 //

  @
@@

@@
@@

@ k2 //

��>
>>

>>
>>

0 // k

k // 0 // k2 // 0 // k

In Theorem 4.1(2) we have proven that the C(λ), λ ∈ P1(k) give a 1-parameter family of
components for the Auslander-Reiten quiver of Sd×Sd. If one continues the construction
on C2 with a construction step as the first one, then we get a 2-parameter family and so
on.

Unfortunately, we were not able to distinguish the case were dimk HnA ≤ 1 for all n
from the case were dimk HeA ≥ 2 for some e. See Section 6 ‘Some open questions’ for
further discussion.
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5. Another interpretation of the number of components

We give an interpretation of the number of components of the Auslander-Reiten quiver of
a triangulated Krull-Remak-Schmidt category having Auslander-Reiten triangles in terms
of equivalence classes of simple objects in the abelianisation of the given triangulated
category. This is based on the functorial approach to Auslander-Reiten triangles given in
Auslander’s Philadelphia notes [2] (see also Appendix B).

Let T be a triangulated Krull-Remak-Schmidt category having Auslander-Reiten tri-
angles, e.g. T = Dc(A) for A a simply connected Gorenstein differential graded algebra
of finite type. Further let T̂ := Fp(T op,Ab) be the functor category of finitely presented
additive functors T op → Ab, where a functor F is finitely presented (or coherent) if there
exists an exact sequence (−, Y ) → (−, X) → F → 0. We define for simple objects
S, T ∈ T̂ the relation

S ∼ T ⇐⇒ Ext1bT (S, T ) 6= 0 ∨ Ext1bT (T, S) 6= 0

and take the induced equivalence relation.

Proposition 5.1. Let T be a triangulated Krull-Remak-Schmidt category having
Auslander-Reiten triangles. Then there is a natural one-to-one correspondence between
the Auslander-Reiten components of T and the equivalence classes of simple objects in T̂ .

The proposition is a consequence of the fact that there is a one-to-one correspondence
between the isomorphism classes of indecomposable objects in T and the isomorphism
classes of simple objects in T̂ given by the assignment

X 7→ SX := HomT (−, X)/radHomT (−, X)

(see Proposition B.5) and the following lemma.

Lemma 5.2. Let X,X ′ be non-isomorphic indecomposable objects in T . Then it holds
Ext1bT (SX , SX′) 6= 0 if and only if there exists an irreducible map X ′ → X.

Proof. Let τX
f→ Y

g→ X → ΣτX be an Auslander-Reiten triangle. Then

(−, τX)
f∗→ (−, Y )

g∗→ (−, X) π→ SX → 0

is a minimal projective presentation of SX . Denote the complex

(−, τX)
f∗→ (−, Y )

g∗→ (−, X)

by P∗ and apply (−, SX′) to it. Then Ext1bT (SX , SX′) = H1(P∗, SX′) and Ext1bT (SX , SX′) 6=
0 means that there is a non-zero natural transformation φ : (−, Y ) → SX′ such that the
composition φ ◦ f∗ is zero and φ does not factor through g∗.

Let φ : (−, Y ) → SX′ represent a non-zero element in Ext1bT (SX , SX′). Since (−, Y ) and
(−, X ′) are projective, and π′ : (−, X ′) → SX′ and φ : (−, Y ) → SX′ are epimorphisms
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there exist factorisations (−, α) : (−, Y ) → (−, X ′) and (−, β) : (−, X ′) → (−, Y ).

(−, Y )

φ

��

(−,α)

zzt t
t

t
t

(−, X ′)

π′zztttttttttt

(−,β)oo_ _ _

(−, X ′) π′ // SX′

Since π′ : (−, X ′) → SX′ is a projective cover it is right minimal hence the composition
(−, α)◦(−, β) is an isomorphism. Therefore (−, β), and hence β are split monomorphisms.
So X ′ is a direct summand of Y and there exists an irreducible map X ′ → X.

If on the other hand there is an irreducible map a : X ′ → X, then there exists a split
epimorphism p : Y → X ′. We claim that the composition φ := π′ ◦ p∗ gives a non-zero
element in Ext1bT (SX , SX′). Since the composition p ◦ f : τX → X ′ is also an irreducible
map, there exists a split monomorphism j : τX → Y ′ such that p ◦ f = g′ ◦ j. Hence we
have the following commutative diagram

(−, τX)
f∗ //

j∗
��

(−, Y )
g∗ //

p∗
��

(−, X) π // SX // 0

(−, τX ′)
f ′∗ // (−, Y ′)

g′∗ // (−, X ′) π′ // SX′ // 0

and we get
φ ◦ f∗ = π′ ◦ p∗ ◦ f∗ = π′ ◦ g′∗ ◦ j∗ = 0.

If there would be a factorisation

(−, Y )
g∗ //

φ

��

(−, X)

ψyyt t
t

t
t

SX′

then with the same arguments as used before we get factorisations

(−, X)

φ

��

(−,α)

yyt t
t

t
t

(−, X ′)

π′yytttttttttt

(−,β)oo_ _ _

(−, X ′) π′ // SX′

and conclude that X ′ is a direct summand of X. Since X is indecomposable, we have
X ′ ∼= X in contradiction to the existence of an irreducible map X ′ → X.
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6. Some open questions

In this section we discuss some questions related to the material in the previous sections
that might be interesting to find answers for.

6.1. Discrete/wild dichotomy

The following schema and the comments on it below give an overview on the connections
between the Auslander-Reiten quiver and cohomology dimensions of a simply connected
Gorenstein differential graded algebra A of finite type that we would expect.

(i) dimk HeA ≤ 1 for all e ∈ Z

a) dimk H∗A = 1 : discrete family of trivial components

b) dimk H∗A = 2 : finite family of ZA∞ components

c) dimk H∗A = 3 : discrete family of ZA∞ components

d) dimk H∗A > 3 : n-parameter families of ZA∞ components for all n

(ii) dimk HeA > 1 for some e ∈ Z n-parameter families of ZA∞ components for all n

The case (i.a) is the trivial simply connected case where the Auslander-Reiten quiver
has countably many components each of them consisting of just a single vertex.

The case (i.b) is the case of the spheres that has been calculated by Jørgensen in [24].
The case (i.c): We have constructed a discrete family of ZA∞-components in Theo-

rem 4.1. It is not clear to us whether this is really a discrete phenomenon or whether
parameter families do exist? That it is a discrete phenomenon would be true if the
following holds.

Conjecture 6.1. If dimk HeA ≤ 1 for all e ∈ Z and dimk H∗A = 3, then for each n ∈ N
there are only a finite number of non-isomorphic indecomposable objects in Dc(A) that
have the value n under the additive function f . In particular, the Auslander-Reiten quiver
of Dc(A) consists only of countably many components.

But even for the simplest differential graded algebra of this class A = k[x]/(x3) with
deg x = 2 this conjecture is not clear to us. One somehow would have to classify the
indecomposable compact objects over this differential graded algebra.

The case (i.d): We give some examples where we have constructed n-parameter families
for all n. But we do not have a uniform way to construct such parameter families.

Example 6.2. Consider the differential graded algebra A = k[x, y]/(x2, y2) with deg x =
2 and deg y = 4. The underlying complex of A is

A : k // 0 // k // 0 // k // 0 // k

1 x y xy

.
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In characteristic zero this is a finite dimensional model for the singular cochain differential
graded algebra of the product space of spheres S2×S4 (see Example 3.10). Now consider
the following differential graded A-module.
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The last mapping cone construction ‘on top’ gives the possibility to get a P1(k)-parameter
family of Auslander-Reiten components. An iteration of this construction gives a 2-
parameter family and so on. Hence for the Auslander-Reiten quiver of this algebra there
exist n-parameter families of components.

Example 6.3. Consider the differential graded algebra A = k[x]/(x4) with deg x = 2.
The underlying complex of A is

A : k // 0 // k // 0 // k // 0 // k

1 x x2 x3

.

In characteristic zero this is a finite dimensional model for the singular cochain differential
graded algebra of the complex projective space CP 3. This is true since CP 3 is a formal
space and hence C∗(CP 3; k) is weakly equivalent to its cohomology algebra H∗(CP 3; k).
Now consider the following differential graded A-module.
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or the following minimal semi-free resolution of it.

k //
λ1��=

==
=

λ2��.
..

..
..

..
0 // k //

λ1��=
==

= 0 // k // 0 // k

k //

��)
))

))
))

))
))

))
0 // k // 0 // k // 0 // k

k //

1��=
==

=

2��.
..

..
..

..
0 // k //

��=
==

=

��.
..

..
..

..
0 // k //

��=
==

= 0 // k

k // 0 // k // 0 // k // 0 // k

k //

��=
==

= 0 // k //

��=
==

= 0 // k // 0 // k

k // 0 // k // 0 // k // 0 // k

The last mapping cone construction ‘on top’ gives the possibility to get a P1(k)-parameter
family of Auslander-Reiten components. An iteration of this construction gives a 2-
parameter family and so on. Hence for the Auslander-Reiten quiver of this algebra there
exist n-parameter families of components for all n.

The case (ii): We have constructed n-parameter families of ZA∞-components for all n
in Theorem 4.1.

6.2. Topological interpretation

The connections of the structure of the Auslander-Reiten quiver to the cohomology di-
mensions that we expect have been discussed before. But we also ask if there are any
further topological interpretations for the results on the structure of the Auslander-Reiten
quiver? Does it makes sense to talk about ‘finite’, ‘discrete’/‘tame’, ‘wild’ spaces?

6.3. More general differential graded algebras

Let A be a differential graded algebra that is not necessarily simply connected. What
can one say about the existence of Auslander-Reiten triangles and the structure of the
Auslander-Reiten quiver in that case?

6.3.1. The Gorenstein property

As already mentioned in Remark 2.5(1) for an ordinary k-algebra A seen as differential
graded algebra concentrated in degree zero the third condition in Proposition 2.3 says
that A and Aop have finite injective dimension. This is the definition of a Gorenstein
algebra given by Auslander in [4]. Furthermore, for an augmented simply connected
differential graded algebra A of finite type one equivalent condition in Theorem 3.5 for
the existence of Auslander-Reiten triangles in Dc(A) was the Gorenstein condition given
by Avramov-Foxby in [7]. In Remark 3.6 we mentioned another Gorenstein definition
given by Frankild-Jørgensen in [16], namely that the functor

RHomA(−, A) : Df,b(A) → Df,b(Aop)
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is a duality. The question arises if some Gorenstein definition is related to the existence
of Auslander-Reiten triangles also in a more general setup. Looking at the definition of
Frankild-Jørgensen we only see that the equivalent conditions in Proposition 2.3 imply
that the functor RHom(−, A) : D(A) → D(Aop) restricts to Df (A) and hence also to
Df,b(A):

Lemma 6.4. Let A be a differential graded k-algebra and DA ∈ Dc(Aop), then the
functor RHomA(−, A) : D(A) → D(Aop) restricts to a functor Df (A) → Df (Aop).

Proof. Let M ∈ Df (A). From RHomAop(A,DM) ∼= DM ∈ Df (Aop) it follows that the
functor RHomAop(−, DM) sends compact objects to objects in Df (Aop). Since

RHomA(M,A) ∼= RHomA(DDM,DDA) ∼= RHomAop(DA,DM)

we get the assertion.

6.3.2. The structure of the Auslander-Reiten quiver

What can we say about the structure of the Auslander-Reiten quiver of differential graded
algebra A such that Dc(A) has Auslander-Reiten triangles but A is not necessary simply
connected? For example let A be a differential graded algebra as in Remark 2.6, i.e.
HnA is finite dimensional over k for all n ∈ N and Dc(A) is a Calabi-Yau category. In
this situation one does not have the additive function f = dimk H∗ RHomA(−, k) (see
Section 3) that was used by Jørgensen to analyse the structure of the Auslander-Reiten
components in the simply connected case. One possible approach to replace it might
be to consider the assignment M 7→ level(M) = levelAD(A)(M) taken from [6]. Here
level(M) counts the number of steps that are necessary to build M from A via triangles.
More precisely, denote by thick0

D(A)(A) = {0} and by thick1
D(A)(A) the smallest strict

full subcategory of D(A) which contains A and is closed under taking finite coproducts,
retracts, and all shifts. Inductively let thicknD(A)(A) be the smallest strict full subcategory
of D(A) which is closed under retracts and contains objects X which admit an exact
triangle

X1 → X → X2 → ΣX1

in D(A) with X1 ∈ thickn−1
D(A)(A) and X2 ∈ thick1

D(A)(A). Note that thicknD(A)(A) is also
closed under shifts and finite coproducts. Define

level : D(A) → N0 ∪ {∞}, M 7→ level(M) := inf{n ∈ N0 |M ∈ thicknD(A)(A)}.

This function has the following properties.

(1) An object M ∈ D(A) is compact if and only if level(M) <∞. This suggests to call
an object M ∈ Dc(A) finitely built from A.

(2) The function level is subadditive on triangles. It is not clear to us whether it is
additive on Auslander-Reiten triangles or not.
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(3) The function level is bounded on the class of all (indecomposable) compact objects
if and only if the dimension dimDc(A) of the triangulated category Dc(A) is finite.
Here the dimension of a triangulated category T as defined by Rouquier in [36] is

dim T := inf{n | ∃X ∈ T s.t. levelXT (M) ≤ n for all M ∈ T }.

Proof. (1) Dc(A) = 〈A〉thick =
⋃
n∈N0

thicknD(A)(A)
(2) One uses the octahedral axiom.
(3) If dimDc(A) = n <∞, then there exists some X ∈ Dc(A) such that all M ∈ Dc(A)
can be built from X in less or equal n steps. Since we have levelAD(A)(X) <∞ and

levelAD(A)(M) ≤ levelXD(A)(M) levelAD(A)(X) ≤ n levelAD(A)(X)

for all M ∈ Dc(A) we have n·levelAD(A)(X) as a bound for levelAD(A) restricted to Dc(A). If
on the other hand levelAD(A) is bounded on the set of all indecomposable compact objects
by some positive integer n, then by definition it is also bounded by n on the class of all
compact objects. Then dimDc(A) ≤ n is finite.

In the simply connected situation where we have the function f it holds

Lemma 6.5. Let A be an augmented simply connected differential graded algebra of finite
type, and M ∈ Df (A) with inf H∗M > −∞, then f(M) ≥ levelAD(A)(M).

Proof. If f(M) is finite, then there exists a minimal semi-free resolution F → M as in
Lemma 3.3 with semi-free filtration of F that terminates after finitely many steps. Then
M can be built from A in less or equal than f(M) steps.

Even in the simply connected situation we do not know whether the function level
could equally be considered instead of f or not. We would like to know whether level is
additive on Auslander-Reiten triangles or unbounded on Auslander-Reiten components.
For the singular cochain differential graded algebra of a sphere we are able to show this:
Recall the notations A = k[x]/(x2) with deg x = d, B = k[y] with deg y = −d + 1,
and the equivalence Dc(A) ' 〈k〉thick ⊆ D(B) from Example 3.10. Further recall from
[24] that ΣjB/(ym), j ∈ Z, m ∈ N0 are representatives of the isomorphism classes
of indecomposable objects in 〈k〉thick ⊆ D(B). Note that under the equivalence these
objects are mapped to the objects Cn in Dc(A) that are built via the n-times iterated
mapping cone constructions of the first kind as described in Section 4. For example C2

is the object that may be visualised as follows.

k //

��=
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= 0 // · · · // 0 // k
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��=
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= 0 // · · · // 0 // k

k // 0 // · · · // 0 // k
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Proposition 6.6. Let A = k[x]/(x2) with deg x = d and the Cn be the representatives of
the isomorphism classes of indecomposable objects in Dc(A) described above. Then

level(Cn) = n+ 1 for all n ∈ N0.

In particular, the functions level and f coincide on indecomposable compact objects in
D(k[x]/(x2)), and level is an additive unbounded function on each Auslander-Reiten com-
ponent of Dc(k[x]/(x2)).

Before we give the proof we first have a look at some results from [6]. I thank Srikanth
Iyengar for advising me some of the methods in this article. Let M and C be differential
graded A-modules. A C-filtration of M is a filtration of submodules

0 = M0 ⊂M1 ⊂ · · · ⊂M l = M

with consecutive quotients isomorphic to a direct sum of shifts of copies of C. The C-
filtration is called finite if in the quotients just finite direct sums are involved. If the
module C is homotopically projective, then with the same proof as [6, Theorem 4.2]
we have that levelCD(A)(M) ≤ l if and only if M is retract of some differential graded
A-module with finite C-filtration of length less or equal than l.

proof of Proposition 6.6. Using the equivalence and remarks above we calculate

levelAD(A)(Cn) = levelkD(B)(Cn ⊗
L
A k) = levelkD(B)(B/(y

n+1)) = n+ 1.

Here the last equation holds since we know how the submodules of the uniserial differential
graded B-module B/(yn) look like.

As I learned from Steffen Oppermann, another possibility for proving the previous
lemma is to use the following version of [36, Lemma 4.11] (see also [34, Lemma 3.1]).

Lemma 6.7. Let A be a differential graded algebra and

M → N0
f1→ N1

f2→ · · · fd→ Nd

be a sequence of morphisms in D(A) such that the composition fd ◦ fd−a ◦ · · · ◦ f1 is
non-zero, and H∗ fi = 0 for all i = 1, · · · , d. Then level(M) > d.

Given the object Cn ∈ Dc(k[x]/(x2)) from above we consider the canonical morphism

ψ : A⊕ Σ− supCnA→ Cn,

and take the mapping cone C(ψ).

A⊕ Σ− supCnA
ψ→ Cn

π→ C(ψ) → Σ(A⊕ Σ− supCnA)

Note that for all i ∈ Z any non-zero morphism ΣiA → Cn factors through ψ, hence
H∗ π = 0. The object C(ψ) is quasi-isomorphic to Σ−d+1Cn. We take f1 to be the
composition

f1 : Cn
π→ C(ψ)

∼=→ Σ−d+1Cn.

Then we continue in the same way with the shifted object Σ−d+1Cn and construct

f2 : Σ−d+1Cn → Σ−2d+2Cn

and so on. One calculates fn ◦ fd−1 ◦ · · · ◦ f1 6= 0 and gets level(Cn) > n from Lemma 6.7.



Auslander-Reiten theory for simply connected differential graded algebras 36

A. The derived category of a differential graded algebra

In this appendix we give some background material about differential graded algebras
and their derived categories. For the convenience of the reader a few proofs are included.
For further details we refer to [27], [8] and [31].

A.1. Definition of a differential graded algebra and its derived category

Let k be a field. Let gAlgk be the category of Z-graded algebras over k. Let A ∈ gAlgk.
For a homogeneous element a ∈ An we denote |a| for its degree n.

A differential graded algebra over k is a Z-graded algebra A =
∐
i∈ZA

i together with a
homogeneous k-linear differential d : A→ A (i.e. d is of degree +1 and d2 = 0) satisfying
the Leibniz rule

d(ab) = d(a)b+ (−1)nad(b), for all elements a ∈ An, b ∈ A.

Example A.1. (1) Let R be a ring. The endomorphism differential graded algebra
EndR(X) of a complex of R-modules X is the complex that consists in degree i of the
set of R-linear homomorphisms of graded modules Σ−iX → X, and differential given
by df := d ◦ f − (−1)if ◦ d. Together with multiplication by composition this gives a
differential graded algebra.
(2) Let V be a graded k-vectorspace. The (graded) tensor algebra TV of V is defined as

TV =
∐
n∈N0

V ⊗n

where V ⊗n is the n-times tensor product of V over k. The degree of some element
x1 ⊗ x2 ⊗ · · · ⊗ xn ∈ V ⊗n where the xi are homogeneous elements in V is the sum of the
degrees of the elements xi ∈ V , and the multiplication in TV is given by x · y := x ⊗ y
for x, y ∈ TV . Any differential d : V → TV extends uniquely to a differential on TV by
defining on homogeneous elements

d(x1 ⊗ · · · ⊗ xn) :=
n∑
i=1

(−1)|x1⊗···⊗xi−1|x1 ⊗ · · · ⊗ d(xi)⊗ · · · ⊗ xn.

Hence any complex V of k-vectorspaces gives rise to a differential graded tensor algebra
TV .
(3) Consider the differential graded tensor algebra TV from (2). The elements

x⊗ y − (−1)|x||y|y ⊗ x, with x, y ∈ V homogeneous

generate a differential graded ideal I of TV , i.e. a subspace that is closed under multipli-
cation with elements from TV from the left and the right, and closed under applying the
differential. The quotient differential graded algebra FV := TV/I is the free commutative
graded algebra.
(4) Let V be a k-vectorspace viewed as graded vectorspace concentrated in degree −1
and d : V → k a k-linear map. Consider the differential graded tensor algebra TV from
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(2). The elements x ⊗ x, x ∈ V generate a differential graded ideal J of TV and the
quotient differential graded chain algebra EV = TV/J is the exterior algebra. If k is
more generally a commutative ring, then for example the Koszul complex of some given
elements in k can be interpreted as exterior algebra. Alternatively one could take a
graded vectorspace V without differential and gets the exterior algebra EV with trivial
differential.
(5) The singular cochain differential graded algebra of a topological space (see Ap-
pendix C).

The opposite differential graded algebra Aop of a differential graded algebra A is the
differential graded algebra with the same structure as A but the multiplication is given
by

a ·op a
′ = (−1)nma′a, for all elements a ∈ An, a′ ∈ Am.

We call a differential graded algebra A (graded) commutative if A = Aop, i.e.

aa′ = (−1)nma′a, for all elements a ∈ An, a′ ∈ Am.

A morphism of differential graded algebras is a morphism of the underlying graded
algebras of degree zero that commutes with the differential. We denote the category
of differential graded algebras by dgAlgk and the category of commutative differential
graded algebras by cdgAlgk. A morphism of differential graded algebras is a quasi-
isomorphism if it is an isomorphism in cohomology. We say that two differential graded
algebras A,A′ are weakly equivalent in dgAlgk (respectively cdgAlgk) if there is a zig-zag
of quasi-isomorphisms in dgAlgk (respectively cdgAlgk) between them.
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A differential graded (right) module over a differential graded algebra A is a graded
right module M =

∐
i∈ZM

i over the underlying graded algebra of A together with a
homogeneous k-linear differential d : M →M satisfying the Leibniz rule

d(xa) = d(x)a+ (−1)nxd(a), for all elements x ∈Mn, a ∈ A.

A differential graded left module over a differential graded algebra A is a graded left
module M =

∐
i∈ZM

i over the underlying graded algebra of A together with a homoge-
neous k-linear differential d : M →M satisfying the Leibniz rule

d(ax) = d(a)x+ (−1)nad(x), for all elements x ∈M,a ∈ An.

Equivalently, a differential graded left A-moduleM corresponds to a morphism of differen-
tial graded algebras A→ Endk(M), where M is a complex of k-vectorspaces. Differential
graded left A-modules can be identified with differential graded Aop-modules via the sign
convention

ax = (−1)mnxa, for all elements x ∈Mm, a ∈ An.
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A morphism M → N of differential graded A-modules is a morphism of degree 0 of the
underlying graded modules over the underlying graded algebra of A that commutes with
the differential. We denote the category of all differential graded A-modules by C(A).

Let
(−)\ : dgAlgk → gAlgk

be the forgetful functor that assigns to a differential graded algebra its underlying graded
algebra and denote in the same way the forgetful functor that assigns to a differential
graded module over a differential graded algebra its underlying graded module over the
underlying graded algebra

(−)\ : C(A) → Cgr(A\).

By a morphism f : M → N of degree m of graded modules M,N over a graded algebra
A we mean a k-linear homogeneous map of degree m satisfying

f(xa) = f(x)a for all elements a ∈ A, x ∈M.

For left modules this becomes

f(ax) = (−1)mnaf(x) for all elements a ∈ An, x ∈M.

A morphism f : M → N between differential graded modules is null-homotopic if there
is a morphism of the underlying graded modules h : M \ → N \ of degree −1 such that

f = d ◦ h+ h ◦ d.

The homotopy category of differential graded A-modules denoted by H(A) is the quo-
tient of C(A) with respect to the ideal of all null-homotopic morphisms. The homotopy
category has the structure of a triangulated category (see [39] or [33] for the definition
and properties of a triangulated category). Given a morphism f : M → N of differential
graded modules the usual mapping cone construction gives a differential graded module
C(f) that may be visualised as follows.

· · ·
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N // N i
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N // N i+1
di+1

N // · · ·

The mapping cone C(f) fits into an exact triangle

M
f→ N → C(f) → ΣM

in the homotopy category, and the class of triangles isomorphic to these give all exact
triangles of H(A). Following [18] and [27] one could also view H(A) as the stable category
of the Frobenius category C(A), where the exact structure on C(A) is given by semi-
split exact sequences, i.e. exact sequences of differential graded A-modules that split as
sequences of the underlying graded modules.
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A morphism f : M → N between differential graded modules is a quasi-isomorphism if
it induces an isomorphism in cohomology.

The derived category D(A) is the localisation of H(A) with respect to the class of all
quasi-isomorphisms. The derived category has a triangulated structure that is induced
by the triangulated structure of H(A). The canonical localisation functor H(A) can→ D(A)
is an exact functor that sends all quasi-isomorphisms to isomorphism and is universal
with with property.

We will denote the full subcategories of acyclic objects by superscript ac, the full
subcategories of objects with degreewise finite dimensional cohomology by superscript f ,
the full subcategories of objects with bounded cohomology by superscript b, and the full
subcategory of compact objects by superscript c, e.g. Dc(A) for the full subcategory of
compact objects in the derived category.

Let A,B be differential graded k-algebras. The tensor product differential graded alge-
bra A⊗k B is the complex that consists in degree i of the k-vectorspace∐

p+q=i

Ap ⊗k Bq,

and differential that is in degree i given by

di(a⊗ b) := d(a)⊗ b+ (−1)ia⊗ d(b) for all elements a ∈ Ap, b ∈ Bq, p+ q = i.

Together with the multiplication

(a⊗ b)(a′ ⊗ b′) := (−1)mnaa′ ⊗ bb′ for all elements a ∈ A, a′ ∈ Am, b ∈ Bn, b′ ∈ B

this gives a differential graded algebra.
An (A,B)-bimodule M is by definition a differential graded A ⊗k B-module. Equiva-

lently, this is simultaneously a differential graded A and B-module M such that

(xb)a = (−1)mn(xa)b for all elements a ∈ Am, b ∈ Bn, x ∈M.

If we write for an (Aop, B)-bimodule the Aop-module structure as A-module structure
from the left, then the formula becomes

a(xb) = (ax)b for all elements a ∈ A, b ∈ B, x ∈M.

Note that an A-module is always an (A,Ac)-bimodule, where Ac is the graded centre of
A, i.e. the homogeneous elements a ∈ Ac are those satisfying ab− (−1)|a||b|ba = 0 for all
homogeneous elements b ∈ A.

A.2. Functors

Let X be a complex of k-vectorspaces

X : · · · −→ Xi−1 di−1

−→ Xi di

−→ Xi+1 −→ · · · .
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The i-th cohomology HiX ofX is the factor space Ker di/Im di−1. We denote the Z-graded
object

∐
i∈Z HiX by H∗X and consider the cohomology functors

H∗ : dgAlgk → gAlgk and H∗ : C(A) → Cgr(H∗A).

Since H∗ sends null-homotopies to zero and by definition quasi-isomorphisms to iso-
morphisms, the latter cohomology functor extends to H(A) and D(A). The functors
H∗ : H(A) → Cgr(H∗A) and H∗ : D(A) → Cgr(H∗A) are cohomological, i.e. they send
exact triangles to exact sequences.

Recall that an exact functor T → U between triangulated categories T ,U with sus-
pension functors ΣT ,ΣU is a pair consisting of an additive functor F and a natural
isomorphism η : F ◦ ΣT → ΣU ◦ F such that every exact triangle X α→ Y

β→ Z
γ→ ΣX in

T gives an exact triangle in U

FX
Fα // FY

Fβ // FZ
ηX◦Fγ //_______

Fγ %%
JJJ

JJ
Σ(FX)

F (ΣX)
ηX

77ppppp

.

If we talk about functors between triangulated categories, then we mean exact functors
unless otherwise stated.

The shift autoequivalence
Σ: C(A) → C(A)

assigns to each differential graded object X its shift by 1. This means that the underlying
complex is shifted by 1, i.e.

(ΣX)i = Xi+1, dΣX = −dX ,

and the action of A on ΣM is as before on M . For left A-modules the action of A on the
shifted module ΣM gets a sign, namely

ax := (−1)nax, for all elements a ∈ An, x ∈ ΣM.

Since Σ respects homotopies and quasi-isomorphisms, Σ induces shift functors on H(A)
and D(A) and coincides on these categories with the suspension functor of the triangu-
lated structure.

Given a differential graded A-module M . Let DM = Homk(M,k) be the k-dual of M ,
i.e. the differential graded Aop-module that is given by

(DM)n = Homk(M−n, k), dnDM = (−1)n+1 Homk(d
−(n+1)
M , k),

and multiplication

(a · f)(x) = (−1)ln+lmf(xa) for all elements a ∈ Al, x ∈Mm, f ∈ (DM)n.

If we start with a left module, then we get an action from the right via

(f · a)(x) = f(ax) for all elements a ∈ A, f ∈ DM,x ∈M.
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Hence we have the k-duality functor

D : C(A)op → C(Aop)

that preserves null-homotopic morphisms and quasi-isomorphisms. Therefore, it induces
exact functors on the level of the corresponding homotopy categories and derived cat-
egories that will also be denoted by D. There are isomorphisms in on the level of the
categories of differential graded modules, homotopy categories and derived categories

Hom(X,DY ) ∼= Hom(Y,DX)

that are natural in X and Y (see Lemma A.2). The k-duality functor D restricts to a
contravariant functor Df (A) → Df (Aop). In this case D is a duality. Also note that DA
is an (Aop, A)-bimodule.

Let M,N be differential graded A-modules. The total-Hom of M and N is the Z-
graded object HomA(M,N) that consists in degree i of the set of A-linear homomorphism
Σ−iM \ → N \ of the underlying graded modules. Together with the differential that is in
degree i given by

di(f) := dN ◦ f − f ◦ dΣ−iM = dN ◦ f − (−1)if ◦ dM .

this becomes a differential graded k-module. We get a bifunctor

HomA(−,−) : C(A)op ×C(A) → C(k)

that preserves homotopies, so we get an induced bifunctor on the homotopy category

HomA(−,−) : H(A)op ×H(A) → H(k).

Observe that taking cycles and accordingly cohomology of HomA(M,N) in degree i gives

ZiHomA(M,N) = HomC(A)(M,ΣiN)

HiHomA(M,N) = HomH(A)(M,ΣiN).

Lemma A.2. Let X ∈ C(A), Y ∈ C(Aop). Then there is an isomorphism in C(k) that
is natural in X and Y

HomA(X,DY ) ∼= HomAop(Y,DX).

In particular,
HomC(A)(X,DY ) ∼= HomC(Aop)(Y,DX),

HomH(A)(X,DY ) ∼= HomH(Aop)(Y,DX).

Remark A.3. When we define the right derived Hom-functor RHom(−,−) at the end of
this section, then from the previous lemma we will also get that

RHomA(X,DY ) ∼= RHomAop(Y,DX),

HomD(A)(X,DY ) ∼= HomD(Aop)(Y,DX).

Furthermore, we will see that there is a natural isomorphism of functors

D ∼= RHomA(−, DA) : D(A)op → D(Aop).
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Let M be an A-module and N be a left A-module. The total-tensor-product M ⊗A N
of M and N is the Z-graded object that consists in degree n of the k-vectorspace

(
∐

p+q=n

Mp ⊗k N q)/X

where X is the subspace generated by elements

xa⊗ y − x⊗ ay, where x ∈Mp, y ∈ N q, a ∈ Ar, p+ q + r = n.

Together with the differential

di(x⊗ y) := dx⊗ y + (−1)mx⊗ dy for all elements x ∈Mm, y ∈ N

this gives a differential graded k-module. We get a bifunctor

−⊗A − : C(A)×C(Aop) → C(k)

that preserves homotopies, so we get an induced bifunctor on the homotopy categories

−⊗A − : H(A)×H(Aop) → H(k).

Let A,B be differential graded algebras, further let M be an (Aop, B)-bimodule, X an
A-module, and Y a B-module. Then X ⊗AM has a B-module structure via

(x⊗m)b = x⊗mb for all elements x ∈ X,m ∈M, b ∈ B,

and we get a functor

−⊗AM : C(A) → C(B) (respectively an exact functor H(A) → H(B)).

Furthermore, HomB(M,Y ) has an A-module structure via

(fa)(m) = f(am) for all elements f ∈ HomA(M,Y ), a ∈ A,m ∈M,

and we get a functor

HomB(M,−) : C(B) → C(A) (respectively an exact functor H(B) → H(A)).

Moreover, HomB(M,−) is right adjoint to −⊗AM .
To define ‘derived’ functors on the level of derived categories one needs for differential

graded modules an analogue of projective (respectively injective) resolutions. A differ-
ential graded A-module M is homotopically projective if HomA(M,−) preserves quasi-
isomorphisms. Let Cp(A) respectively Hp(A) denote the category respectively homotopy
category of all homotopically projective differential graded modules. A differential graded
A-module M is homotopically injective if HomA(−,M) preserves quasi-isomorphisms.
Let Ci(A) respectively Hi(A) denote the category respectively homotopy category of all
homotopically injective differential graded modules.
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Lemma A.4. Let M be a differential graded A-module. The following statements are
equivalent

(1) M is homotopically projective.

(1’) HomH(A)(M,−) sends quasi-isomorphisms to isomorphisms, i.o.w. M has in H(A)
the following unique lifting property

M

��
∃1

}}|
|

|

X
qi
// Y

(2) HomA(M,−) preserves acyclicity. (Spaltenstein [37] calls M K-projective)

(2’) HomH(A)(M,Hac(A)) = 0

(3) M ∈ 〈A〉loc ⊆ H(A).

(4) M is homotopy equivalent to a semi-free module, i.e. a module that has an exhaustive
ascending filtration in C(A) with subquotients isomorphic to direct sums of copies
of shifts of A.

(5) M is homotopy equivalent to a module that has an exhaustive ascending filtration
in C(A) with subquotients isomorphic to direct summands of direct sums of copies
of shifts of A and the consecutive inclusions split as inclusions of graded modules.
(Keller [27] says that such a module has property (P))

Proof. The equivalence of (1) and (1’) as well as (2) and (2’) follows from the natural
isomorphism HiHomA(M,−) ∼= HomH(A)(M,Σi−). The equivalence of (1’) and (2’)

holds since in a triangle X
f→ Y → Z → ΣX the morphism f is a quasi-isomorphism if

and only if Z is acyclic, and HomH(A)(M,−) is a homological functor.
(4) ⇒ (5): This is clear.
(5) ⇒ (3): If M is a module with filtration 0 ⊆ M(0) ⊆ M(1) ⊆ · · · ⊆ M that has the
properties from (5), then M is the homotopy colimit in H(A) of the objects M(i) that
appear in the semi-free filtration. More precisely, there is a triangle∐

i

M(i) →
∐
j

M(j) →M → Σ
∐
i

M(i)

built from the maps
[

1
−incl

]
: M(i) → M(i) qM(i + 1). The M(i) are in 〈A〉loc ⊆ H(A)

since the exact sequences

0 →M(i) →M(i+ 1) →M(i+ 1)/M(i) → 0

split as sequences of graded modules. Hence also the homotopy colimitM and all modules
that are homotopy equivalent to M belong to 〈A〉loc ⊆ H(A).
(3) ⇒ (2’): Let M be the class of objects M ∈ H(A) that have the property that
HomH(A)(M,Hac(A)) = 0. It is a triangulated subcategory that contains A and is closed
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under coproducts. Hence M contains 〈A〉loc.
(1’) ⇒ (4): Let M be an object that has the lifting property from (1’). Consider a
semi-free resolution a : L→M . The lifting property for M gives a morphism b : M → L
with ab = idM in H(A).

M
b

~~}
}

}

L a
//M

The already shown implication (4) ⇒ (1’) gives that also L has the lifting property. Since
b is a quasi-isomorphism we also get ba = idM in H(A).

L
a

~~}
}

}

M
b
// L

Hence M is homotopy equivalent to its semi-free resolution L.

Note that a dual version of this lemma holds for homotopically injective differential
graded modules.

Using the Brown representability theorem (cf. [29],[31], or [33]) one sees that the inclu-
sions Hp(A) → H(A) respectively Hi(A) → H(A) have a right adjoint p : H(A) → Hp(A)
respectively a left adjoint i : H(A) → Hi(A). The compositions

Hp(A) incl→ H(A) can→ D(A)

Hi(A) incl→ H(A) can→ D(A)

are equivalences of triangulated categories. The quasi-inverses that are induced by i and
p exist by the universal property of the localisation functor and will also be denoted by
i and p.

H(A) //

p
��

D(A)

pyys
s

s
H(A) //

i ��

D(A)

iyyt
t

t

Hp(A) Hi(A)

Given differential graded modules X,Y there are natural isomorphisms

HomD(A)(X,Y ) ∼= HomD(A)(pX, Y ) ∼= HomH(A)(pX, Y ).

For a given exact functor F : H(A) → H(B) we define the left derived functor LF
respectively right derived functor RF of F to be the composition

LF : D(A)
p→
'

Hp(A) incl→ H(A) F→ H(B) can→ D(B)

RF : D(A) i→
'

Hi(A) incl→ H(A) F→ H(B) can→ D(B)
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Remark A.5. If F : H(A) → H(B) is right adjoint to G : H(B) → H(A), then the
right derived functor RF : D(A) → D(B) is right adjoint to the left derived functor
LG : D(B) → D(A).

Remark A.6. (1) The right derived Hom-functor RHomA(−,−) := HomA(−, i−) is a
bifunctor

RHomA(−,−) : D(A)op ×D(A) → D(k)

and naturally isomorphic to the left derived one LHomA(−,−) := HomA(p−,−).

(2) It holds Hi RHomA(M,N) ∼= HomD(A)(M,ΣiN).

(3) The left derived tensor-functor −⊗LA − := (p−)⊗A − is a bifunctor

−⊗LA − : D(A)×D(Aop) → D(k).

(4) Let A,B be differential graded algebras and M be an (Aop, B)-bimodule then we
have exact functors

RHomB(M,−) : D(B) → D(A),

−⊗LAM : D(A) → D(B).

Moreover, RHomB(M,−) is right adjoint to −⊗LAM .

Lemma A.7. Let f : A → B be a quasi-isomorphism of differential graded k-algebras.
Consider the adjoint pair of functors

G := −⊗LA B : D(A) → D(B) and F := RHomB(AB,−) : D(B) → D(A).

Then

(1) The functors F and G are mutually inverse equivalences of triangulated categories.

(2) Let G′ be the functor B⊗LA− : D(Aop) → D(Bop). For all M ∈ D(A), X ∈ D(Aop)
there is an isomorphism of graded k-vectorspaces

H∗(M ⊗LA X) ∼= H∗(GM ⊗LB G′X).

In particular, for all M ∈ D(A) there is an isomorphism of graded k-vectorspaces

H∗M ∼= H∗GM.

For the functors F and F ′ := RHomB(BA,−) : D(Bop) → D(Aop) the analogous
statements hold.

Proof. (1) The functor −⊗LA B is exact and preserves coproducts. Furthermore, −⊗LA B
maps the compact generator A of D(A) to the compact generator B of D(B). The
following commutative diagram

HomD(A)(A,ΣnA) //

∼=
��

HomD(B)(A⊗LA B,ΣnA⊗LA B)
∼= // HomD(B)(B,ΣnB)

∼=
��

HnA
Hn f

∼= // HnB
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gives isomorphisms HomD(A)(A,ΣnA) → HomD(B)(A ⊗LA B,ΣnA ⊗LA B) for all n ∈ Z.
Using dévissage arguments one gets that − ⊗LA B : D(A) → D(B) is fully faithful and
dense.
(2) Note that B considered as an (Aop, A)-bimodule is quasi-isomorphic to A. We calcu-
late in D(k)

GM ⊗LB G′X ∼= M ⊗LA B ⊗LB B ⊗LAX ∼= M ⊗LA B ⊗LAX ∼= M ⊗LA A⊗LAX ∼= M ⊗LAX.

Taking cohomology gives the desired result. The analogous results for the functors F and
F ′ follow immediately from (1).

We call an object X ∈ D(A) generator for D(A) if 〈X〉loc = D(A). Further recall that
an object X is compact if HomD(A)(X,−) preserves coproducts, i.e. the natural morphism∐

α

HomD(A)(X,Xα) → HomD(A)(X,
∐
α

Xα)

is an isomorphism for all families of objects {Xα}, or equivalently every morphism from
X to

∐
αXα factors through the coproduct of some finite subfamily {Xα1 , . . . , Xαn} of

{Xα}. Neeman [32] has shown that in the derived category the compact objects are those
finitely build from A, i.e. Dc(A) = 〈A〉thick (see also [27]). This immediately gives:

Lemma A.8. An object X ∈ D(A) is compact if and only if RHomA(X,−) preserves
coproducts.

A.3. Resolutions and minimality

Minimal semi-free resolutions are used by Jørgensen in his work on simply connected
differential graded algebras. The existence of those for all differential graded modules
over simply connected differential graded algebras is shown in [9]. For an arbitrary
differential graded algebra A one has the following lemma (see [8, Theorem 7.3.2] or [13,
Proposition 6.6])

Lemma A.9. Every differential graded A-module M has a strict semi-free resolution,
i.e. there exists a semi-free module L and a surjective morphism of differential graded
modules L→M that is a quasi isomorphism.

A differential graded module L is called minimal if every morphism of differential graded
modules L → L that is a homotopy equivalence is already an isomorphism. Recall also
that a semi-free differential graded module is in particular homotopically projective (see
Lemma A.4). The uniqueness of minimal homotopically projective resolutions is given
by

Lemma A.10. A minimal homotopically projective resolution is unique up to isomor-
phism, i.e. given two such resolutions f : L → M and f ′ : L′ → M there exists an iso-
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morphism of differential graded modules a : L→ L′ such that f = f ′ ◦ a.

L

a

���
�
�
�
�
�
�

f

  B
BB

BB
BB

B

M

L′
f ′

>>}}}}}}}}

Proof. Since L and L′ have the lifting property (1’) from Lemma A.4 we get unique
morphisms a : L→ L′ and b : L′ → L in H(A) such that the following diagram commutes
in H(A).

L

a

���
�
�

f

  A
AA

AA
AA

A

L′
f ′ //

b
���
�
� M

L

f

>>}}}}}}}}

The uniqueness of the lifting morphisms gives that ba is homotopic to idL and similarly
ab homotopic to idL′ . Since L and L′ are minimal it follows that a and b are isomorphisms
in C(A).

We also note the following lemma on the indecomposability of minimal homotopically
projective differential graded modules.

Lemma A.11. Let L be a minimal homotopically projective differential graded A-module.
If L is indecomposable in D(A), then L is also indecomposable in C(A).

Proof. Consider
EndC(A)(L) π→ EndH(A)(L) ∼= EndD(A)(L)

Take an idempotent e in EndC(A)(L). The image π(e) is an idempotent in EndH(A)(L).
Since EndH(A)(L) ∼= EndD(A)(L) and L is indecomposable in D(A) we have that π(e)
is a trivial idempotent. Without loss of generality let π(e) = idL. In particular e is
a homotopy equivalence. Since L is minimal it follows that e is an isomorphism of
differential graded modules. Hence e = idL and L is indecomposable in C(A).
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B. Auslander-Reiten theory

In this appendix we summarise for the reader that is not familiar with Auslander-Reiten
theory some of the basic definitions and concepts of Auslander-Reiten theory.

B.1. The Auslander-Reiten quiver

Auslander-Reiten sequences or almost split sequences have been introduced by Auslander
and Reiten in [3]. They have shown that the category of finitely presented modules modR
over an Artin-algebra R has Auslander-Reiten sequences. The corresponding Auslander-
Reiten quiver gives a ‘nice’ visualisation of the module category, and a lot of information
about the module category is contained in this combinatorial invariant. For example, in
the case of a finite dimensional algebra of finite representation type over an algebraically
closed field of characteristic different from 2 it is possible to reconstruct the algebra from
its Auslander-Reiten quiver. Auslander-Reiten theory has been of substantial interest in
the representation theory of finite dimensional algebras for more than 20 years. Happel
has defined an analogue for triangulated categories in [17] (see also in his book [18])
and shown that the bounded derived category Db(modA) of finite dimensional modules
over a finite dimensional algebra A has Auslander-Reiten triangles if and only if A has
finite global dimension (see [17] and [19]). Here we summarise some foundations in the
triangulated situation.

Definition B.1. Let T be a triangulated category. An Auslander-Reiten triangle in T
is a triangle

X
f→ Y

g→ Z
h→ ΣX

with the following properties.

(1) every map X → Y ′ that is not a split monomorphism factors through f,

(2) every map Y ′ → Z that is not a split epimorphism factors through g,

(3) h is not the zero map.

Note that the end terms X and Z of an Auslander Reiten triangle

X → Y → Z → ΣX

are indecomposable with local endomorphism rings and each end term determines the
Auslander-Reiten triangle up to isomorphism. Therefore we can define for those Z where
an Auslander-Reiten triangle ends the Auslander-Reiten translate τ to be τ(Z) = X.

We say that the category T has left (respectively right) Auslander-Reiten triangles if
for every indecomposable object X (respectively Z) there is an Auslander-Reiten triangle

X
f→ Y

g→ Z
h→ ΣX.

Further we say that the category T has Auslander-Reiten triangles if it has left and right
Auslander-Reiten triangles.
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The Auslander-Reiten quiver Γ(C) of an additive category C is the quiver consisting of
all isomorphism classes [X] of indecomposable objects X as vertices and has an arrow
starting in a vertex [X] and ending in a vertex [Y ] if there exists an irreducible morphism

X
f→ Y , i.e. f is neither a split monomorphism nor a split epimorphism and in every

factorisation

X
f //

g
  @

@@
@@

@@
Y

Z

h

??~~~~~~~

g is a split monomorphism or h a split epimorphism.
The connection to Auslander-Reiten triangles is given by the following Lemma.

Lemma B.2. [18, Proposition 4.3] Let T be a triangulated Krull-Remak-Schmidt category

and X
f→ Y

g→ Z
h→ ΣX an Auslander-Reiten triangle in T . Then

(1) The morphisms f and g are irreducible.

(2) If f1 : Y1 → Z is an irreducible morphism, then there is a split monomorphism
α : Y1 → Y such that f1 = g ◦ α.

(3) If g1 : X → Y1 is an irreducible morphism, then there is a split epimorphism β : Y →
Y1 such that g1 = β ◦ f .

If T is a triangulated Krull-Remak-Schmidt category that has Auslander-Reiten trian-
gles, then by the lemma all the information for the Auslander-Reiten quiver is contained
in the Auslander-Reiten triangles. In this case the Auslander-Reiten quiver also has some
extra structure: The Auslander-Reiten translate τ is defined on all isomorphism classes
and becomes a quiver automorphism satisfying the property that the set of predecessors
of every vertex [Z] equals the set of all successors of τ([Z]), i.e. Γ(T ) has the structure of
a stable translation quiver. Furthermore, the multiplicity aMN of M as direct summand
in the middle term of an Auslander-Reiten triangle ending in N and the multiplicity
a′MN of N as direct summand in the middle term of an Auslander-Reiten triangle start-
ing in M give a valuation (aMN , a

′
MN ) of an arrow [M ] → [N ]. This valuation satisfies

(aτNM , a′τNM ) = (a′MN , aMN ) and the Auslander-Reiten quiver has the structure of a
valued stable translation quiver.

A (sub)additive function on a valued stable translation quiver is a function f that
assigns to each vertex a natural number such that

f(Z) + f(τZ) =
(≥)

∑
Y ∈Z−

aY Zf(Y ),

where Z− denotes the set of successors of Z. Combinatorial methods give results on the
structure of valued stable translation quivers depending on the existence of (un)bounded
(sub)additive functions (see [21]).

Given an oriented tree ∆ with valuation ν let Z∆ be the valued stable translation
quiver defined as follows: The set of vertices of Z∆ is the Cartesian product of Z with
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the set of vertices of ∆. For every arrow X → Y in ∆ let

(n,X) → (n, Y ) and (n, Y ) → (n− 1, X), n ∈ Z

be arrows in Z∆. Define the translation in Z∆ by τ(n,X) = (n+1, X) and the valuation
by ν((n,X) → (n, Y )) = ν(X → Y ) and ν((n,X) → (n − 1, Y )) = σν(X → Y ) where
σ permutes the first and second coordinate. Note that up to isomorphism Z∆ does not
depend on the orientation of ∆.

Example B.3. Consider the oriented tree
−→
A3 : 1 // 2 // 3

with trivial valuation (1, 1) for all arrows. Then Z(
−→
A3) is the following stable translation

quiver

· · · (2, 3)

$$I
IIII

(1, 3)

$$I
IIII

τoo_ _ _ _ _ _ (0, 3)

&&LLLLLL
τoo_ _ _ _ _ _ _ (−1, 3)τoo_ _ _ _ _ _ _ _ · · ·

· · · (1, 2)

::uuuuu

$$I
IIII

_ _ _ (0, 2)

99ssssss

%%KK
KKK

K
τoo_ _ _ _ _ _ (−1, 2)

88rrrrrr

&&LLLLLL
τoo_ _ _ _ _ _ _ oo_ _ _ _ · · ·

· · · (1, 1)

::uuuuu
(0, 1)

::uuuuu
τoo_ _ _ _ _ _ (−1, 1)

88rrrrrr
τoo_ _ _ _ _ _ (−2, 1)τoo_ _ _ _ _ _ _ · · ·

with also trivial valuation (1, 1) for all arrows. This quiver coincides with the Auslander-
Reiten quiver of the the bounded derived category Db(mod k

−→
A3) of finitely presented

modules over the path algebra k
−→
A3.

B.2. The functorial approach

In [2] Auslander gives a functorial approach to Auslander-Reiten theory. Here we state
some basic results in the triangulated setup.

Let T be a triangulated category and let T̂ := Fp(T op,Ab) be the functor category
of finitely presented additive functors T op → Ab, where a functor F is finitely presented
(or coherent) if there exists an exact sequence (−, Y ) → (−, X) → F → 0. By Yoneda’s
lemma the natural transformations between two coherent functors form a set and T̂ is
an abelian Frobenius category called the abelianisation of T . The Yoneda embedding

T → T̂ , X 7→ HomT (−, X)

is a cohomological functor. The projective (equivalently injective) objects in T̂ are exactly
the functors in the image of the Yoneda functor, i.e. the representable functors. Each
indecomposable object X in T with local endomorphism ring gives rise to a simple functor

SX := HomT (−, X)/radHomT (−, X),

where the radical of a functor is defined as the intersection of all maximal subfunctors.

Proposition B.4. Let T be triangulated category and A → B → C → be a triangle in
T . Then the following are equivalent.
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(1) The triangle
A→ B → C → ΣA

is an Auslander-Reiten triangle.

(2) The object C in T is indecomposable with local endomorphism ring and the sequence

(−, B) → (−, C) → SC → 0

is a minimal projective presentation of SC .

Proof. The assertion follows by imitating the proof of [2, II Pop 4.4] and using [2,
II. Proposition 1.9, II. Corollary 1.11, II. Proposition 2.3 and II. Proposition 2.7].

Proposition B.5. Let T be a triangulated Krull-Remak-Schmidt category having
Auslander-Reiten triangles. Then there is a one-to-one correspondence between the iso-
morphism classes of indecomposable objects in T and the isomorphism classes of simple
objects in T̂ given by the assignment

X 7→ SX := HomT (−, X)/radHomT (−, X).

In particular, there is a one-to-one correspondence between Auslander-Reiten triangles in
T and minimal projective presentations of simple functors in T̂

Proof. Given a simple functor F : T op → Ab there exists up to isomorphism a unique
indecomposable object X in T such that F (X) 6= 0. Choosing this X gives a map
from simple functors in T̂ to indecomposable objects in T . From Yoneda’s Lemma
we get a morphism of functors HomT (−, X) → F . Since F is simple this has to be
an epimorphism. But the radical radHomT (−, X) is the unique maximal subfunctor of
HomT (−, X). Hence we get F ∼= SX . Conversely, SX is finitely presented by the previous
proposition and satisfies SX(X) 6= 0. This gives the stated one-to-one correspondence.
The second statement then follows immediately from the previous proposition.
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C. Some topological background

In this appendix we summarise a few topological definitions and facts that appear in
this thesis for the reader that is not familiar with algebraic topology. One finds further
explanations in every classical book on algebraic topology, e.g. [38],[22]. Furthermore, we
mention some results from rational homotopy theory that are related to simply connected
cochain differential graded algebras, the main objects of study in this thesis. As reference
for this results on rational homotopy theory we give [13], [5] and [23].

C.1. The singular cochain differential graded algebra

The singular chain complex C∗(X; k) of a topological space X consists in degree n of the
free k-module with basis the set of singular n-simplices, i.e. continuous maps from the
standard n-simplex ∆n = {

∑n
i=0 λiei | λi ≥ 0,

∑
λi = 1} ⊆ Rn+1 to X, and differential

given by
∑n

i=1(−1)iδi. Here δi is the i-th face map that assigns to an n-simplex σ : ∆n →
X its composition σ ◦ λi : ∆n−1 → ∆n → X, where λi : ∆n−1 → ∆n is the i-th face
inclusion that is given by the (n+ 1)× n-matrix(

Ei 0
0 0
0 En−i

)
.

The singular cochain differential graded algebra C∗(X; k) is as a complex of k-modules
the k-linear dual of the singular chain complex. In addition, the cup product defines a
multiplicative structure on C∗(X; k) that makes it into a differential graded algebra. The
cup product can be defined by the formula

(f ∪ g)(σ) = (−1)k(n−k)f(σ ◦
(
Ek+1

0

)
)g(σ ◦

(
0

En−k+1

)
)

where f ∈ Ck(X), g ∈ Cn−k(X), and σ : ∆n → X. One calculates that the cup product
satisfies the Leibniz rule

d(f ∪ g) = d(f) ∪ g + (−1)kf ∪ d(g).

As a consequence there is an induced cup product in cohomology. One can show that the
cohomology algebra is graded commutative, i.e. f ∪ g = (−1)k(n−k)g ∪ f .

Let X and Y be path connected spaces. Recall that a continuous map f : X → Y
is a weak homotopy equivalence if the induced morphism between the homotopy groups
πnf : πnX → πnY is an isomorphism for all n ∈ N. Two path connected spaces are weakly
homotopy equivalent if they are equivalent in the induced equivalence relation. Further
recall that a path connected topological space X is simply connected if the fundamen-
tal group π1(X) is trivial. In this case the Hurewicz theorem gives H0(X; k) ∼= k and
H1(X; k) = 0. Since k is a field it follows that H0(X; k) ∼= k and H1(X; k) = 0. Hence
C∗(X; k) is a simply connected cochain differential graded algebra.

C.2. Rational homotopy theory

Rational homotopy theory is the study of rational homotopy types of spaces, where a
map between two simply connected spaces φ : X → Y is a rational homotopy equivalence
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if π∗(φ) ⊗ Q is an isomorphism or equivalently H∗(φ; Q) (respectively H∗(φ; Q)) is an
isomorphism. It is one result in rational homotopy theory that there is a bijection between
the rational homotopy types of simply connected spaces of finite dimensional cohomology
and weak equivalence classes of simply connected commutative cochain differential graded
algebras of finite type over Q. The bijection is given by a contravariant functor APL that
assigns to a simply connected space X a commutative differential graded algebra APL(X)
that is weakly equivalent to the singular cochain differential graded algebra C∗(X; Q).
Moreover, taking a minimal Sullivan model of a simply connected commutative cochain
differential graded algebra of finite type gives a bijection between the weak equivalence
classes of simply connected commutative cochain differential graded algebras of finite type
and isomorphism classes of minimal Sullivan algebras over Q. Minimal Sullivan algebras
are in model theoretic terms cofibrant replacements in cdgAlgk, and they are useful for
calculations. In particular, it is possible in characteristic zero to construct a commutative
finite dimensional model for the singular cochain differential graded algebra C∗(X; k) of
a simply connected space X (see [13]).

A topological space is called formal if the commutative cochain differential graded
algebra APL(X) is weakly equivalent in cdgAlgk to its cohomology algebra H∗APL(X). In
particular, for a formal space X the singular cochain differential graded algebra C∗(X; Q)
is weakly equivalent in dgAlgk to its cohomology algebra H∗(X; Q).
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