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Chapter 1

Introduction

1.1 General framework

This thesis “Deformation Quantization and Cohomologies of Poisson, Graded, and
Homotopy algebras” is located at the interface of Deformation Quantization and
Poisson Geometry.

1.1.1 Deformation Quantization

When switching from the Hamiltonian model of Classical Mechanics to the usual
model of Quantum Mechanics, we completely change the nature of the observ-
ables. From functions on the phase space, we pass to operators on some Hilbert
space. The commutator bracket [−,−] of these operators substitutes for the classi-
cal Poisson bracket {−,−} of functions.

The transition from Classical Mechanics to Quantum Mechanics is provided
by Heisenberg’s rules. These rules entail the uncertainty principle and Dirac’s
equation [ f̂ , ĝ] = ih{ f ,g}̂, where f ,g are functions of the phase space,ˆdenotes the
quantization map, and h is Planck’s constant. However, Van Hove’s theorem (1952)
states that this quantization cannot be extended to all phase space functions—and
even not to all polynomials—, in such a way that Heisenberg’s rules and Dirac’s
equation be still valid. The way out is to look for a quantization that verifies the
weakened Dirac equation

[ f̂ , ĝ] = ih{ f ,g}̂+hε(h), (1.1)

where ε(h) tends to 0 with h. Weyl’s quantization W meets both requirements,
Heisenberg’s rules and Dirac’s weak equation. Indeed, it quantizes any monomial
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8 CHAPTER 1. INTRODUCTION

in positions qα and momenta pα by the symmetrized product of the corresponding
operators q̂α and p̂α , which are of course given by Heisenberg’s rules. The map
W is not a homomorphism from classical to quantum observables, i.e. in general
W ( f .g) 6=W ( f )◦W (g), where . is the pointwise product. One observes that W ( f )◦
W (g) = W ( f ?g). Here f ?g denotes the Moyal-Vey product

f ?g = f .g+ν{ f ,g}+ ∑
k≥2

νkck( f ,g), (1.2)

where ν = ih/2 and where the ck are bidifferential operators on the function space,
say N, which vanish on constants and verify ck( f ,g) = (−1)kck(g, f ). It is now
easily seen that

[W ( f ),W (g)] = W ( f ?g−g? f ) = ihW ({ f ,g})− ih3

4
W (c3( f ,g))+ . . . , (1.3)

so that condition (1.1) is actually satisfied. Moreover, the Moyal ? product is a for-
mal deformation of the associative algebra (N, .) and leads via antisymmetrization
to a formal deformation of the Poisson algebra (N,{−,−}).

A seminal idea of Flato is that our description of Physics, should evolve, when
facing a paradox, to a higher level by means of an appropriate deformation. In
this perspective, Bayen, Flato, Fronsdal, Lichnerowicz, and Sternheimer suggest
around 1975, in a founding article that appeared in “Annals of Physics”, to abandon
the representation of classical observables by linear operators, and to construct a
model of Quantum Mechanics via deformation of the algebraic structure of the ob-
servable space N. Roughly speaking, the task is the construction, on any symplec-
tic or Poisson manifold, of a ?-product similar to Moyal’s product. This ?-product
then allows endowing the space N[[ν ]] of all formal series in ν with coefficients
in N, with an associative noncommutative algebra structure, as well as with a Lie
algebra structure; these algebras are formal deformations of (N, .) and (N,{−,−})
respectively. Hence, in Deformation Quantization, Quantum Mechanics appears
as a deformation of Classical Mechanics, as a deformation from commutativity to
noncommutativity, such that the trace of noncommutativity on the classical level is
the Poisson bracket.

1.1.2 Poisson Geometry

Poisson Geometry is the geometry of Poisson manifolds, i.e. smooth manifolds
endowed with a bivector field that squares to zero under the Schouten-Nijenhuis
bracket. This field allows defining Hamiltonian vector fields and thus leads to a
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general distribution, which turns out to be completely integrable. The Poisson
structure induces on each maximal integral submanifold a symplectic structure, so
that a Poisson manifold can be viewed as a smooth concatenation of symplectic
manifolds. Of course, a Poisson manifold can also be thought of as a smooth
manifold whose function space carries a Poisson bracket. Poisson structures were
studied by Poisson, Jacobi and Lie, then by Kirillov and Lichnerowicz.

As from the 1970’s, Poisson Geometry developed rapidly with connections
with many fields of Mathematics and Theoretical Physics, such as variational cal-
culus, geometric mechanics, noncommutative algebra, representation theory.

1.1.3 Investigated topics

There exist tight connections between Poisson Geometry and Deformation Quan-
tization. First, Poisson Geometry is inter alia the natural frame of Deformation
Quantization. Moreover, investigations on existence and uniqueness of star
products on symplectic or Poisson manifolds are related with associative, Lie,
Poisson, and strongly homotopy algebras, as well as with the corresponding
Hochschild, Chevalley-Eilenberg, and Poisson-Lichnerowicz cohomologies.

This thesis is motivated by those connections. We study:
-graded and strongly homotopy algebraic structures (defining a Tensor Coal-

gebra for Graded Loday and Lod∞ Structures which gives a unification for Graded
and Infinity Cohomologies),

-Poisson and Koszul cohomologies (Formal Poisson cohomology of twisted r-
matrix induced structures; Strongly r-matrix induced tensors, Koszul cohomology,
and arbitrary-dimensional quadratic Poisson cohomology),

- universal star products on Poisson manifolds.

1.2 Developments, questions, results

1.2.1 Graded and strongly homotopy algebraic structures

In 1993, Stasheff, [Sta93], identified the Hochschild (resp. Chevalley-Eilenberg)
cochain space with coderivations of the tensor (resp. symmetric tensor) coalge-
bra of the shifted underlying vector space, and observed that the Gerstenhaber
(resp. Nijenhuis-Richardson) graded Lie bracket can be built from the commutator
bracket of coderivations. Further, associative (resp. Lie) structures correspond to
odd quadratic codifferentials. When replacing quadratic codifferentials with arbi-
trary odd codifferentials, we recover the concept of strongly homotopy associative
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or A∞ (resp. strongly homotopy Lie or L∞) algebra, see [Sta63] (resp. [SS85]).
These algebras had originally been defined noncoalgebraically by means of a se-
quence of multilinear (resp. skew-symmetric multilinear) maps, which satisfy a
sequence of relations that encode the fact that A∞ (resp. L∞) algebras are asso-
ciative (resp. Lie) algebras up to homotopy. Kontsevich, [Kon03], described L∞
algebras in terms of formal Q-manifolds, a view that allows proving proprieties of
L∞ algebras via geometric arguments.

The operadic theory, as developed in [MSS02], shows that the Stasheff’s
approach works on any quadratic operad P . One associates a cofree (nilpotent)
coalgebra over the dual operad whose quadratic codifferentials correspond to
the P−algebra structures on a graded vector space V . This result produces the
homology or cohomology theories of P−algebras on V and allows to define
strongly homotopy P−algebra structures on V as arbitrary codifferentials.

In this thesis we give an explicit coalgebraic approach to graded Loday and
Loday infinity algebras, as well as to the corresponding cohomology theories.

Chapter 2 is devoted to these and related questions. We define a graded non-
coassociative coproduct on the tensor space TW of any Zn–graded vector space W .
If W is the desuspension space ↓ V of a graded vector space V , the coderivations
(resp. codifferentials, quadratic codifferentials) of this coalgebra are 1-to-1 with
sequences πs, s ≥ 1, of s-linear maps (resp. Loday infinity structures, Zn–graded
Loday structures) on V . We prove a minimal model theorem for Loday infinity al-
gebras, investigate Loday infinity morphisms, and observe that the Lod∞ category
contains the L∞ category as a subcategory. Moreover, the graded Lie bracket of
coderivations gives rise to a graded Lie “stem” bracket on the cochain spaces of
graded Loday and Loday infinity algebras. These algebraic structures have square
zero with respect to the stem bracket, so that we obtain natural cohomological the-
ories that have good properties with respect to deformations. The stem bracket
restricts to the graded Nijenhuis-Richardson and Grabowski-Marmo brackets (the
last bracket extends the Schouten-Nijenhuis bracket to the space of graded first
order differential operators), and it encodes the cohomologies of graded Loday,
graded Lie, graded Poisson, graded Jacobi, Loday infinity, Lie infinity, as well as
that of p-ary graded Lie algebras in the sense of Michor and Vinogradov.

1.2.2 Universal star product

In [Kon03], Kontsevich proved his formality theorem onRd by explicitly determin-
ing an L∞ morphism from the differential graded Lie algebra (DGLA) Tpoly(Rd)
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of polyvector fields on Rd to the DGLA Dpoly(Rd) of polydifferential operators
on Rd . The corestriction maps of this morphism, which are multilinear graded
skew-symmetric maps from Tpoly(Rd) to Dpoly(Rd), associate to each collection
of polyvector (resp. bivector) fields, a sequence of polydifferential (resp. bidif-
ferential) operators. If in this collection each bivector field coincides with a same
Poisson bivector, the resulting bidifferential operators are the coefficients of a star
product on Rd . Kontsevich then proved the existence of star products on a general
Poisson manifold M by abstract gluing arguments that originate from the Gelfand-
Kazhdan [GK71] formal geometry.

In [CFT02], Cattaneo, Felder and Tomassini proposed another globalization
procedure for M. They observed that the so-called Grothendieck connection DG

on the jet bundle E →M can be used to build, in a spirit similar to Fedosov’s con-
struction, a flat connection D on E that allows transferring Kontsevich’s fiberwize
quantization to the base M.

Later on, in [Dol05], Dolgushev globalizes Kontsevich’s L∞ morphism to an
arbitrary smooth manifold M. He constructs “à la Fedosov" a flat connection DF

on the jet bundle E → M, which gives rise to a resolution of the function alge-
bra C∞(M) by differential forms on M valued in the sections of E. This resolution
induces a resolution of the space of polyvectors fields (resp. polydifferential opera-
tors) on M by differential forms on M with values in the bundle of formal fiberwize
polyvector fields (resp. polydifferential operators). The fiberwize Kontsevich L∞
morphism is then twisted and contracted to yield an L∞ morphism from Tpoly(M)
to Dpoly(M).

In this thesis, we took an interest in the comparison of the star products imple-
mented by the globalization procedures of [CFT02] and [Dol05], motivated by the
quest of an intrinsic way to characterize and parameterize (at least in lower orders)
some star products on a Poisson manifold.

Chapter 3 contains the needed preliminaries. We analyze the role of L∞ al-
gebras in deformation theory and review Kontsevich’s formality theorem together
with his star product formula. Further, we detail some algebraic proofs concerning
L∞ algebras that cannot easily be found in the literature.

In Chapter 4, we define the concept of universal formality L∞ morphism: For
any manifold M and any torsion-free linear connection on M, a universal formal-
ity L∞ morphism is an L∞ morphism from the DGLA Tpoly(M) to the DGLA
Dpoly(M), such that the corestriction maps associate to each collection of polyvec-
tor fields a collection of polydifferential operators, whose coefficients are tensors
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given by universal polynomial expressions in the considered fields, the curvature
tensor R and the covariant iterated derivatives. Existence of such a morphism is
deduced from Dolgushev’s formality globalization. It implies in particular the
existence of a universal deformation quantization. Similarly, we stress that the
globalization procedure of [CFT02] also induces a universal deformation quanti-
zation. We compare these procedures and prove that the Grothendieck connection
DG and the Fedosov-Dolgushev connection DF , coincide. We show that universal
quantizations essentially are unique up to order 3 in the deformation parameter, by
computing the appropriate universal Poisson cohomology.

The results are published in [ACG08].

1.2.3 Poisson and Koszul cohomologies

Since Poisson cohomology computations are known to be quite difficult, many pa-
pers study the Euclidean plane or specific cases. In [MP06], the authors provide a
general approach to Poisson cohomology of a broad set of isomorphism classes of
the Dufour-Haraki classification for quadratic Poisson tensors of Euclidean three-
space, [DH91]. More precisely, this quite powerful cohomological technique ap-
plies to all r-matrix induced Poisson tensors and allowed discovering main aspects
of the structure of Poisson cohomology.

Hence, the questions whether it might be possible to construct a cohomologi-
cal modus operandi for the more demanding remaining isomorphism classes and
to understand the impact of the deviation from r-matrix implementation on the
cohomological structure.

The answers to these questions are detailed in Chapter 5. More precisely,
quadratic Poisson tensors of the Dufour-Haraki classification read as a sum of an
r-matrix induced structure twisted by a (small) compatible exact quadratic tensor.
This splitting is a remote variant of Liu and Xu’s decomposition theorem. An
algebraic bidegree of the space of formal Poisson cochains, that differs with the
geometric bigrading used by Vaisman in the regular case, then leads to a verti-
cally positive double complex. The associated spectral sequence allows to com-
pute the Poisson-Lichnerowicz cohomology of the considered tensors. We depict
this modus operandi, apply our technique to concrete examples of twisted Poisson
structures, and obtain a complete description of their cohomology. Since richness
of Poisson cohomology entails computation through the whole spectral sequence,
we detail an entire model of this sequence. Finally, the chapter corroborates that
largeness of Poisson cohomology can be viewed as a measure for deficiency of the
considered Poisson tensor to be Koszul-exact.
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The results are published in [AP07].

The methods presented in [MP06] and [AP07] allow computing the cohomol-
ogy of any three-dimensional quadratic Poisson tensor. Hence, it seems natural
to examine to which extent these techniques may be generalized to higher dimen-
sional spaces.

In Chapter 6, we introduce the concept of strongly r-matrix induced (SRMI)
Poisson structure, report on the relation of this property with the stabilizer dimen-
sion of the considered quadratic Poisson tensor, and classify the Poisson structures
of the Dufour-Haraki classification (DHC) according to their membership of the
family of SRMI tensors. One of the main results of this work is a generic co-
homological procedure for SRMI Poisson structures in arbitrary dimension. This
approach allows decomposing Poisson cohomology into, basically, a Koszul co-
homology and a relative cohomology. Moreover, we investigate this associated
Koszul cohomology, highlight its tight connections with Spectral Theory, and re-
duce the computation of this main building block of Poisson cohomology to a
problem of linear algebra. We apply this to two structures of the DHC and pro-
vide an exhaustive description of their cohomology. We thus complete the list of
data obtained in previous works, see [MP06] and [AP07]. This deepens our insight
into the structure of Poisson cohomology, in particular as concerns Casimirs and
the cohomological impact of the singularities and the stabilizer of the considered
Poisson tensor.
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Chapter 2

Coalgebraic Approach to the
Loday Infinity Category,
Stem Differential for 2p-ary
Graded and Homotopy Algebras

2.1 Introduction

Our initial investigations on deformation quantization of Poisson manifolds in-
spired us to explore two notions: the concept of strongly homotopy Lie algebras
or L∞ algebras, which plays a crucial role in Kontsevich’s work [Kon03] on the
existence of star products on a Poisson manifold and on the classification of these
products; the second notion is that of Poisson cohomology, which appears in the
problem of uniqueness of star products.

When realizing that an L∞ [SS85] structure is a codifferential of a certain coal-
gebra, and that Poisson cohomology can be derived as a particular case of more
general cohomologies of algebras, we first concentrated on studying the concepts
of coalgebras and of cohomologies.

As our comprehension progressed, we understood that coalgebras provide a
framework that allows constructing the appropriate cohomology theory of a given
algebraic structure. To sum it up briefly, the technique consists in the identification
of the cochain space of the investigated algebra with certain coderivations, in such
a way that the algebraic structure can be identified to a homogenous odd quadratic
codifferential. These identifications enable constructing a graded Lie bracket on

15
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the space of cochains by transfer of the commutator bracket of coderivations.
The considered algebraic structures are then canonical elements of the transferred
bracket, i.e. they square to zero with respect to this bracket. This propriety
allows defining a natural cohomology operator for the algebraic structure, namely
the adjoint action of this structure with respect to the transferred graded Lie
bracket. These canonical coboundary operators have excellent properties as far
as deformation theory is concerned. The procedure was first applied by Stasheff
[Sta93] in the case of associative and Lie algebras.

In [MSS02], the authors generalize the Stasheff approach to any arbitrary
quadratic operad P . The chain complex for the homology or cohomology of
P−algebras on a graded vector space V is defined by means of constructing of a
cofree (nilpotent) coalgebra over the dual operad, whereby quadratic codifferen-
tials correspond to the P−algebra structures on V . This naturally leads to define
strongly homotopy P−algebra structures on V as arbitrary codifferentials.

In the present work we provide explicitly a tensor coalgebra that induces the
proper concepts of Loday infinity algebras and morphisms, and use Stasheff’s
modus operandi to define the cohomologies of Zn-graded Loday, Loday infinity,
and 2p-ary graded Loday algebras. This leads to a graded Lie “stem” bracket, in
which are encrypted, in addition to the preceding cohomologies, the coboundary
operators of graded Lie, graded Poisson, graded Jacobi, Lie infinity, and 2p-ary
graded Lie algebras [MV97].

This chapter is organized as follows.

In Section 2, we study the link between the cohomology induced by a canonical
element in a graded Lie algebra with formal deformations of this element. Our in-
vestigations extend similar properties for the adjoint Hochschild (resp. Chevalley-
Eilenberg, Leibniz) cohomology and deformations of associative (resp. Lie, Lo-
day) structures, which were proved in [Ger64] (resp. [NR67], [Bal96]), and recov-
ered in [Bal97].

Section 3 contains the definition of a graded dual Leibniz coalgebra structure
∆ on the tensor algebra T (W ) of a Zn-graded vector space W . We provide explicit
formulæ for the reconstruction of coderivations and cohomomorphisms from their
corestriction maps.

In Section 4, we transfer the Zn-graded Lie bracket of coderivations of the
mentioned tensor coalgebra T (W ) of the desuspension space W :=↓ V of an un-
derlying Zn-graded vector space V , and get a Zn+1-graded (resp. Zn-graded)
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Lie bracket on the Zn+1-graded vector space of weighted multilinear maps on V
(resp. on the Zn-graded vector space of sequences of shifted weighted multilinear
maps on V ). We determine the explicit form of this pullback “stem” bracket and
show that its Zn+1-graded version coincides in the case of a nongraded underly-
ing space V (resp. of graded skew-symmetric multilinear mappings on V ) with
Rotkiewicz’s bracket [Rot05] pertaining to left Loday structures [and corresponds
to Balavoine’s bracket [Bal97] concerning right Loday structures] (resp. with the
graded Nijenhuis-Richardson bracket [LMS91]).

Codifferentials of our dual Leibniz coalgebra T (W ) are characterized in Sec-
tion 5. We prove that Zn-graded Loday structures on V can be viewed as (resp. we
define strongly homotopy Loday structures on V as) degree e1 := (1,0, . . . ,0) ∈
Zn quadratic (resp. odd degree) codifferentials of (T (↓ V ),∆). Loday infinity
structures and Loday infinity morphisms are described in terms of sequences of
weighted multilinear maps that satisfy explicitly depicted sequences of constraints:
our Lod∞ algebras are really differential graded Loday algebras up to homotopy
and the Lod∞ category contains the L∞ category as a subcategory.

Loday infinity (quasi)-isomorphisms are investigated. In Section 6, we prove
a minimal model theorem for strongly homotopy Loday algebras, and deduce that
any Loday infinity quasi-isomorphism has a quasi-inverse – a theorem whose Lie
infinity counterpart plays a key-role in Deformation Quantization.

In Section 7 we deal with graded and strongly homotopy cohomologies. Zn-
graded Loday [resp. strongly homotopy Loday] structures are canonical for the
Zn+1-graded [resp. Zn-graded] stem bracket, so that we obtain a natural coho-
mology theory and an explicit coboundary operator. In the nongraded (resp. the
antisymmetric) [resp. the Lie infinity] case, our Zn-graded Loday [resp. Loday
infinity] cohomology operator coincides with the Loday (resp. graded Chevalley-
Eilenberg) [resp. Lie infinity] differential given in [DT97] and [Bal97] (resp. in
[LMS91]) [resp. in [Pen01] and [FP02]].

Further, graded Poisson and Jacobi cohomologies were defined purely alge-
braically by Grabowski and Marmo in [GM03]. The authors prove existence and
uniqueness of a Zn+1-graded Jacobi (resp. Poisson) bracket on the algebra of anti-
symmetric graded first order polydifferential operators (resp. of graded polyderiva-
tions). We compute this “Grabowski-Marmo” bracket explicitly and explain how
the corresponding cohomologies are induced by our stem bracket.

Finally, essentially two p-ary extensions of the Jacobi identity were investi-
gated during the last decades. The first, see e.g. [Fil85], leads to the Nambu-Lie
structure, see [Nam73], the second, see [MV97], [VV98], [VV01], will in this
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text be referred to as p-ary Lie structure. We define analogously p-ary (p even)
Zn-graded Loday structures and their cohomology. These graded p-ary Loday al-
gebras are special strongly homotopy Loday algebras, so that we have to prove that
the two stem bracket induced cohomologies coincide.

2.2 Canonical elements of graded Lie algebras

2.2.1 Definitions, cohomology and formal deformations

At the beginning of this thesis, we briefly analyze the well-known fact that in a
graded Lie algebra (GLA) (g,{−,−}), any element π ∈ g1, such that {π,π} = 0,
generates a differential graded Lie algebra (DGLA) (g,{−,−},∂π), ∂π = {π,−},
and a GLA in cohomology that allows controlling the formal deformations of π .

Unless otherwise stated, all vector spaces that we consider in this text are
spaces over a fieldK of characteristic 0, and all graded vector spaces areZn-graded,
n ∈ N∗. The Zn–degree deg(v) of a vector v or the Zn–weight deg( f ) of a graded
linear map f are often denoted by the same symbol v or f . If v, f ∈Zn are two such
degrees, we set 〈v, f 〉 = ∑i vi fi. A homogeneous vector or graded linear map w is
termed odd, if 〈w,w〉 ∈ Z is an odd number.

Definition 1. A graded Lie algebra (g,{−,−}) (GLA) is a Zn−graded vector
space g = ⊕α∈Zngα together with a bilinear bracket {−,−} : g× g −→ g that
satisfies the following conditions:

1. {−,−} is compatible with the grading of g, i.e.

{gα ,gβ} ⊂ gα+β , ∀α,β ∈ Zn (2.1)

2. {−,−} is anticommutative, i.e.

{a,b}=−(−1)〈a,b〉{b,a}, (2.2)

for all homogeneous a,b ∈ g

3. Any homogeneous a,b,c ∈ g verify the Jacobi identity

{a,{b,c}}= {{a,b},c}+(−1)〈a,b〉{b,{a,c}} (2.3)

Definition 2. We call canonical element of a graded Lie algebra (GLA)
(V,{−,−}), any odd element π ∈V that verifies {π,π}= 0.
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Definition 3. A differential graded Lie algebra (g,d,{−,−}) (DGLA) is a GLA
together with a graded linear map d : g−→ g that is a differential (i.e. d2 = 0) and
a graded derivation of the graded Lie bracket,

d{a,b}= {da,b}+(−1)〈deg(d),a〉{a,d b}. (2.4)

Proposition 1. Every GLA (g,{−,−}) equipped with a canonical element π is a
DGLA (g,∂π ,{−,−}), where ∂π := {π,−}.

Proof. When applying the Jacobi identity (2.3) with a = b = π , we obtain
2{π,{π,c}} = 0 and, as field K is of characteristic zero, {π,{π,c}} = 0, so that
∂π is a differential. It is also a derivation of the Lie bracket:

∂π{a,b} = {π,{a,b}}= {{π,a},b}+(−1)〈π,a〉{a,{π,b}}
= {∂πa,b}+(−1)〈π,a〉{a,∂πb}. (2.5)

Since coboundary operator ∂π has the form of a Hamiltonian vector field, we
sometimes refer to it as a Hamiltonian differential.

Proposition 2. The cohomology space H(g,d,{−,−}) (or H(g) for short) of
any DGLA (g,d,{−,−}) is a GLA for the bracket that is canonically induced by
{−,−}.

Proof. Obvious.

If the considered DGLA is implemented by a GLA (g,{−,−}) endowed with
a canonical element π , we denote the corresponding cohomology GLA by Hπ(g).

Next, we investigate the links between deformations of a canonical element π
of a GLA (g,{−,−}) and the cohomology algebra Hπ(g).

Definition 4. Let π be a canonical element of a GLA (g,{−,−}) and set

g[[ν ]] =
⊕

α∈Zn

gα [[ν ]],

where gα [[ν]] is the space of formal power series in the formal parameter ν with
coefficients in gα . A formal power series

πν :=
∞

∑
i=0

ν iπi ∈ gdeg(π)[[ν ]] (2.6)
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with first term π0 = π is a formal deformation of the canonical element π , if it
squares to zero w.r.t. the natural extension of the bracket {−,−} to a bilinear map
of the space g[[ν ]], i.e. if

{πν ,πν}=
∞

∑
p=0

ν p ∑
i+ j=p

{πi,π j}= 0. (2.7)

A formal deformation of order q of π is a formal series (2.6) that is truncated at
order q in ν and satisfies the condition

∑
i+ j=p

{πi,π j}= 0, (2.8)

for each 1 ≤ p ≤ q. We refer to formal deformations of order 1 as infinitesimal
deformations.

Let us first focus on existence and construction of formal deformations.

Proposition 3. The degree 2deg(π) cohomology space H2deg(π)
π (g) of the DGLA

implemented by a canonical element π of a GLA (g,{−,−}), contains the ob-
structions to extension of formal deformations of order at least 1 to higher order
deformations. In particular, if H2deg(π)

π (g) = 0, any formal deformation of order
q≥ 1 can be extended to a formal deformation of order q+1.

Proof. Assume that π admits a formal deformation πν of order q, q ≥ 1, and
set

Ep := ∑
i+ j=p
i, j 6=0

{πi,π j} ∈ g2deg(π), 1≤ p≤ q+1. (2.9)

Note first that Condition (2.8) is equivalent to

Ep =−2∂π(πp), 1≤ p≤ q, (2.10)

since πp is of odd degree deg(πp) = deg(π).
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As for Eq+1, it is quite easy to see that it is a cocycle for ∂π . Indeed, we have

∂π(Eq+1) = ∑
i+ j=q+1

i, j 6=0

∂π({πi,π j})

= ∑
i+ j=q+1

i, j 6=0

{∂ππi,π j}+(−1)〈πi,π〉{πi,∂ππ j}

= 2 ∑
i+ j=q+1

i, j 6=0

{∂ππi,π j} (∗)
= − ∑

k+l+ j=q+1
k,l, j 6=0

{{πk,πl},π j}

=
1
3 ∑

k+l+ j=q+1
k,l, j 6=0

(−{{πk,πl},π j}−{{πl,π j},πk}−{{π j,πk},πl})

= 0,

where, at (∗), we used Equations (2.9) and (2.10).
In order to extend deformation πν to order q + 1, we must find an element

πq+1 ∈ gdeg(π) that satisfies the condition Eq+1 = ∂π(−2πq+1), see Equation (2.10).
Hence, cocycle Eq+1 has to be a coboundary. Consequently, the obstruction to the
extension of the formal deformation πν of π to the order q+1 is a (nonvanishing)
cohomology class Eq+1 in H2deg(π)

π (g).

In order to define the equivalence of two formal deformations of a same canon-
ical element of a GLA, we need the following

Lemma 1. Let π be a canonical element of a GLA (g,{−,−}). Consider a formal
series

χν =
∞

∑
i=1

ν iχi (2.11)

with coefficients in g0. If πν is a formal deformation of π , then

exp(ad χν) πν

is a formal deformation of π as well.

Proof. Let us first remark that here exp denotes the exponential series and that

(ad χν)kπν = {χν{χν . . .{χν ,πν } . . .}}︸ ︷︷ ︸
k

= ∑∞
p=0 ν p ∑i1+...+ik+ j=p{χi1{χi2 . . .{χik ,π j} . . .}}.

(2.12)
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It follows that the coefficient of ν p in the exponential series over k is made up by
a finite number of terms in gdeg(π); indeed, if k ≥ p + 1, at least one of the χi`
vanishes. Moreover, the coefficient of ν0 contains only the term k = 0, and thus
(exp(ad χν) πν)0 = π . Eventually, as ad χν is a derivation of the bracket {−,−},
we have

(ad χν)k{πν ,πν}= ∑
r+s=k
r,s≥0

Cr
k{(ad χν)rπν ,(ad χν)sπν},

where Cr
k = k!

(k−r)!r! . Hence,

exp(ad χν){πν ,πν}= {exp(ad χν)πν , exp(ad χν)πν},

which completes the proof of the lemma.

Definition 5. Let π be a canonical element of a GLA (g,{−,−}). Two formal
deformations πν and π ′ν of π are said to be equivalent (resp. equivalent up to order
q, q≥ 1), if there is a formal series χν of type (2.11), such that

exp(ad χν) πν = π ′ν (resp. exp(ad χν) πν = π ′ν +O(νq+1)). (2.13)

A deformation πν of π is called trivial (resp. trivial up to order q, q ≥ 1), if πν is
equivalent to π (resp. equivalent to π up to order q).

Proposition 4. Let π be a canonical element of a GLA (g,{−,−}). If the coho-
mology space Hdeg(π)

π (g) vanishes, any formal deformation of π is trivial.

Proof. Let πν := π +∑∞
i=1 ν iπi be a formal deformation of π . We first prove that

πν is trivial up to order 1, then we proceed by induction. Condition (2.8) implies
that 2∂π(π1) = 0, i.e. that π1 is a cocycle; as Hdeg(π)

π (g) = 0, there exists a χ1 ∈ g0,
such that π1 = ∂π(χ1). When setting χ(1)

ν = νχ1, we get

exp(ad χ(1)
ν )πν = π +O(ν2).

Suppose now that πν is trivial up to order q (q≥ 1), or, equivalently, that there
exists a formal series

χ(q)
ν =

∞

∑
i=1

ν iχi

with coefficients in g0, such that

π ′ν := exp(ad χ(q)
ν )πν = π +νq+1π ′q+1 +O(νq+2). (2.14)
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As above, since π ′ν is a deformation of π , 2∂π(π ′q+1) = 0, so that there is χ ′q+1 ∈ g0

that verifies π ′q+1 = ∂π(χ ′q+1). Set now

χ(q+1)
ν := χ(q)

ν +νq+1χ ′q+1 and π ′′ν := exp(ad χ(q+1)
ν )πν .

It follows from Equation (2.12) that

π ′′ν −π ′ν =−νq+1∂π(χ ′q+1)+O(νq+2).

Hence, π ′′ν = π +O(νq+2), which completes the proof.

Concerning infinitesimal deformations, i.e. first order formal deformations, it
is easily seen from the above explanations that

Proposition 5. Infinitesimal deformations of a canonical element π of a GLA
(g,{−,−}) are classified up to first order equivalence by H deg(π)

π (g).

2.2.2 Examples

Below, we give two basic examples of canonical elements of graded Lie algebras.

Associative graded algebras, graded Gerstenhaber algebra

Let us recall the

Definition 6. Let V = ⊕A∈ZnV A be a Zn-graded vector space. An associative
graded algebra structure on V is an associative bilinear map π : V ×V → V that
respects the gradation, i.e. that verifies π(V A,V B)⊂V A+B.

We now define a Zn+1-graded Lie algebra, for which any associative graded
algebra structure on the Zn-graded vector space V is a canonical element.

Set

M(V ) =
⊕

(A,a)∈Zn×Z
M(A,a)(V ),

where M(A,a)(V ) = 0 for all a≤−2, M(A,−1)(V ) = V A, and where for each a≥ 0,
M(A,a)(V ) is the space of all (a + 1)-multilinear maps A : V×(a+1) → V that have
weight A. For notational ease multilinear maps and their weights are denoted, here
and below, by the same symbol.

It is known, see [LMS91], that the Zn+1-graded vector space M(V ) admits a
Zn+1-graded Lie algebra structure.
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Theorem 1. For any A ∈ M(A,a)(V ), B ∈ M(B,b)(V ), and vi ∈ V vi = M(vi,−1)(V ),
i ∈ {1, . . . ,a+b+1}, we set

jG
B A(v1, . . . ,va+b+1) =

a+1

∑
i=1

(−1)〈A,B〉+〈B,v1+...+vi−1〉+b(i−1) (2.15)

A(v1, . . . ,vi−1,B(vi, . . . ,vi+b),vi+b+1, . . . ,va+b+1).

Then,

1. The pair (M(V ), [−,−]G), where

[A,B]G = jG
A B− (−1)〈(A,a),(B,b)〉 jG

B A,

is a Zn+1-graded Lie algebra.

2. A bilinear map π : V ×V → V of weight 0 ∈ Zn, i.e. a map π ∈ M(0,1)(V ),
satisfies the condition [π,π]G = 0 if and only if π is an associative graded
algebra structure on V .

Observe that for a non-graded vector space V , i.e. a vector space endowed with
the trivial gradation, the GLA (M(V ), [−,−]G) coincides with the Gerstenhaber
(graded Lie) algebra of V . In the graded case, we refer to (M(V ), [−,−]G) as the
graded Gerstenhaber algebra of V .

Remark also that the associative graded algebra structures on V are exactly
the canonical elements of degree (0,1) of the graded Gerstenhaber algebra of V .
If π is an associative graded multiplication on V , the cohomology Hπ(M(V )) of
the DGLA induced by the canonical element π will be denoted in the sequel by
H Ass

π (V ). In the non-graded case, it coincides with the adjoint Hochschild coho-
mology of the associative algebra (V,π).

Graded Lie algebras, graded Nijenhuis-Richardson algebra

For any integer p ∈ N∗, let N(p) be the p–tuple (1, . . . , p). An unshuffle
I = (i1, . . . , ik) (1 ≤ k ≤ p) is a naturally ordered subset of N(p), i.e. a subset,
such that 1 ≤ i1 < .. . < ik ≤ p. The length of I will be denoted by |I|. If I and J
are two unshuffles, such that I ∩ J = /0, we set (I;J) = (i1, . . . , i|I|; j1, . . . , j|J|) and
we denote by I ∪ J the unique unshuffle that coincides with (I;J) as a set. Let
(−1)(I;J) be the signature of the permutation (I;J) → I ∪ J. If V is a Zn-graded
vector space, we also set V(I;J) = (vi1 , . . . ,vi|I| ;v j1 , . . . ,v j|J|), v` ∈ V , and denote by
εV (I;J) the Koszul sign (which is for any transposition V(`+1,`) →V(`,`+1) given by
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(−1)〈v`,v`+1〉) implemented by the permutation V(I;J) →VI∪J.

Consider now the Zn+1-graded vector subspace A(V ) of M(V ) made up by the
Zn-graded skew-symmetric multilinear maps

A(. . . ,vi,vi+1, . . .) =−(−1)〈vi,vi+1〉A(. . . ,vi+1,vi, . . .). (2.16)

As M(V ), theZn+1-graded vector space A(V ) admits aZn+1-graded Lie algebra
structure, see [LMS91].

Theorem 2. For any A ∈ A(A,a)(V ) and B ∈ A(B,b)(V ), we set

(iBA)(VN(a+b+1)) =

(−1)〈A,B〉 ∑
I∪ J = N(a+b+1)

|I|= b+1, |J|= a

(−1)(I;J)εV (I;J)A(B(VI),VJ),

where notations such as VN(a+b+1) mean of course

VN(a+b+1) = (v1, . . . ,va+b+1), v` ∈V.

Then,

1. The pair (A(V ), [−,−]NR), where

[A,B]NR = iAB− (−1)〈(A,a),(B,b)〉iBA, (2.17)

is a Zn+1-graded Lie algebra.

2. A bilinear Zn-graded antisymmetric map π : V ×V → V of weight 0 ∈ Zn,
i.e. π ∈ A(0,1)(V ), satisfies the condition [π,π]NR = 0 if and only if π defines
a Zn-graded Lie bracket on V .

We refer to the Zn+1-graded Lie algebra (A(V ), [−,−]NR) as the graded
Nijenhuis-Richardson algebra of V . The preceding theorem points out that the
Zn-graded Lie algebra structures on V are exactly the canonical elements of degree
(0,1) of this graded Nijenhuis-Richardson algebra of V . If π is such a Zn-graded
Lie structure on V , the cohomology Lie algebra Hπ(A(V )) of the DGLA induced
by the canonical element π will be denoted by H Lie

π (V ). In the non-graded case, it
coincides with the adjoint Chevalley-Eilenberg cohomology of (V,π).
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2.3 Noncoassociative Tensor coalgebra

Let us briefly recall some well-known facts. A graded coalgebra (C,∆) is a
graded vector space C =

⊕
α∈Zn Cα together with a coproduct ∆, i.e. a linear map

∆ : C →C⊗C that verifies ∆(Cα) ⊂⊕
β+γ=α Cβ ⊗Cγ . A cohomomorphism from

(C,∆) to a graded coalgebra (C′,∆′) is a weight 0 linear map F : C → C′, such
that ∆′F = (F ⊗F )∆. In this text, the tensor product of linear maps is defined
by ( f ⊗g)(v1⊗ v2) = (−1)〈g,v1〉 f (v1)⊗g(v2), with self-explaining notations. Fur-
ther, a homogeneous coderivation of (C,∆) is a linear map Q : C → C of weight
deg(Q) that satisfies the co-Leibniz identity ∆Q = (Q⊗ id+ id⊗Q)∆, where id is
the identity map of C. Weight α coderivations form a vector space CoDerα(C),
and the space CoDer(C) =

⊕
α∈Zn CoDerα(C) of all coderivations carries a natural

Zn-graded Lie algebra structure provided by the graded commutator bracket.

To any Zn-graded vector space V , we associate the (reduced) associative
tensor algebra T (V ) =

⊕∞
p=1V⊗p (the full tensor algebra includes the term

V⊗0 = K as well), which carries two natural gradings, the Z-gradation T (V ) =⊕∞
p=1 T pV , T pV := V⊗p, and the Zn-gradation T (V ) =

⊕
α∈Zn T (V )α , T (V )α :=⊕∞

p=1(T
pV )α , (T pV )α =

⊕
β1+...+βp=α V β1 ⊗ . . .⊗V βp . In the following, unless

differently stated, we view T (V ) as Zn-graded vector space.

Proposition 6. Let V be a Zn−graded vector space. The coproduct

∆ : T (V )−→ T (V )
⊗

T (V ),

defined by

∆(v1⊗ . . .⊗ vp) = ∑
I∪J=N(p−1)

I 6= /0

εV (I;J) VI
⊗

VJ⊗ vp (v` ∈V, p≥ 1), (2.18)

provides a graded (noncoassociative) coalgebra structure on T (V ) and verifies

(id
⊗

∆)∆ = (∆
⊗

id)∆+(T
⊗

id)(∆
⊗

id)∆, (2.19)

where we used above-detailed notations and where T : T (V )
⊗

T (V ) →
T (V )

⊗
T (V ) is the twisting map, which exchanges two elements of the Zn-graded

space T (V ) modulo the corresponding Koszul sign.
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Proof. It suffices to develop the three terms of (2.19). The first one reads

(id
⊗

∆)∆(v1⊗ . . .⊗ vp) = ∑
I∪J=N(p−1)

I 6= /0

εV (I;J)VI
⊗

∆(VJ⊗ vp)

= ∑
I∪J=N(p−1)

I 6= /0

εV (I;J) ∑
K∪L=J

K 6= /0

εV (K;L)VI
⊗

VK
⊗

VL⊗ vp

= ∑
I∪K∪L=N(p−1)

I,K 6= /0

εV (I;K;L)VI
⊗

VK
⊗

VL⊗ vp ,

the second is equal to

(∆
⊗

id)∆(v1⊗ . . .⊗ vp) = ∑
J∪L=N(p−1)

J 6= /0

εV (J;L)∆(VJ)
⊗

VL⊗ vp

= ∑
J∪L=N(p−1)

J 6= /0

εV (J;L) ∑
I∪K̃=J\ j|J|

I 6= /0

εV (I; K̃)VI
⊗

VK̃ ⊗ v j|J|

⊗
VL⊗ vp

= ∑
I∪K∪L=N(p−1)

i|I|<k|K|, I,K 6= /0

εV (I;K;L)VI
⊗

VK
⊗

VL⊗ vp

(J \ j|J| denotes J with j|J| omitted and K = (K̃, j|J|)), and for the third we get

(T
⊗

id)(∆
⊗

id)∆(v1⊗ . . .⊗ vp)

= ∑
I∪K∪L=N(p−1)

i|I|<k|K|, I,K 6= /0

εV (I;K;L)(−1)〈VI ,VK〉VK
⊗

VI
⊗

VL⊗ vp

= ∑
I∪K∪L=N(p−1)

k|K|<i|I|, I,K 6= /0

εV (K; I;L)(−1)〈VI ,VK〉VI
⊗

VK
⊗

VL⊗ vp

= ∑
I∪K∪L=N(p−1)

k|K|<i|I|, I,K 6= /0

εV (I;K;L)VI
⊗

VK
⊗

VL⊗ vp .

Hence, the result.

The following theorem provides a characterization of the coderivations of the
graded coalgebra (T (V ),∆).
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Theorem 3. The mapping

ψV
Q : CoDerQ(T (V )) 3 Q→ (Q1,Q2, . . .) =: ∑

p
Qp ∈ ∏

p≥1
M(Q,p−1)(V ), (2.20)

which assigns to any (weight Q) coderivation Q its (weight Q) corestriction maps

Qp : T pV ↪→ T (V )
Q−→ T (V )

pr−→ V, where pr denotes the canonical projection,
is a vector space isomorphism, the inverse of which associates to any sequence
(Q1,Q2, . . .) the coderivation Q that is defined by

Q(v1⊗ . . .⊗ vp) = (2.21)

∑
I∪J∪K=N(p)

I,J<K

εV (I;J)(−1)〈Q,VI〉VI ⊗Q|J|+1(VJ⊗ vk1)⊗VK\k1 ,

where I < K means that i|I| < k1 and where v` ∈V v` .

Remark 1. The isomorphisms ψV
Q , Q ∈ Zn, (for inverses, see Equation (2.21)),

induce an isomorphism ψV between CoDer(T (V )) and the corresponding direct
sum of direct products. Further, if we denote by CoDerQ

p (T (V )), Q ∈ Zn, p ∈ N∗,
the image by (ψV

Q)−1 of M(Q,p−1)(V ), isomorphism ψV
Q restricts to an isomorphism

ψV
(Q,p) between these spaces. If no confusion arises, we write ψ instead of ψV , ψV

Q ,
or ψV

(Q,p).

Proof. It suffices to show that Equation (2.21) defines a coderivation of degree
Q of the graded coalgebra (T (V ),∆), and that the thus defined map Ψ is the inverse
of ψ , i.e. that its compositions with ψ coincide with the corresponding identity
maps.

Let us momentarily assume that Q verifies coderivation condition (2.3), so that
map Ψ is actually valued in CoDerQ(T(V)). It is then easily seen that ψ ◦Ψ = id.
The second condition Ψ ◦ψ = id then means that ψ is injective. So let us prove
that if the corestriction maps of a coderivation Q vanish, then Q vanishes as well.

As ∆ vanishes if and only if its argument belongs to V , and as for any v ∈ V ,
we have

∆Q(v) = (Q
⊗

id)∆(v)+(id
⊗

Q)∆(v) = 0,

it follows that Q(v) ∈ V . However, as Q1 = 0, we get Q(v) = 0, for any v ∈ V .
Assume now that Q(v1⊗ . . .⊗ vk) = 0, v` ∈V , for any 1≤ k ≤ p−1 and proceed
by induction. Since

∆(v1⊗ . . .⊗ vp) = ∑
I∪J=N(p−1)

I 6= /0

εV (I;J) VI
⊗

VJ⊗ vp,
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we have

∆Q(v1⊗ . . .⊗ vp) = (Q
⊗

id)∆(v1⊗ . . .⊗ vp)+(id
⊗

Q)∆(v1⊗ . . .⊗ vp) = 0.

Consequently, Q(v1⊗ . . .⊗ vp) ∈ V and Q(v1⊗ . . .⊗ vp) = Qp(v1⊗ . . .⊗ vp) = 0.
Eventually, Q actually vanishes, if its corestrictions vanish.

Let us now come to the core of the proof and show that the map Q defined by
Equation (2.21) verifies the coderivation condition

∆Q(v1⊗ . . .⊗ vp) = (Q
⊗

id+ id
⊗

Q)∆(v1⊗ . . .⊗ vp), (2.22)

for any p≥ 1.
Although this result is quite easily checked for p≤ 3, the general proof is rather

technical. It is better understood, if we are aware of the special role played by vp

in the definition of ∆. Thus, in the subsequent proof, we examine the terms of type

. . .Q(. . .⊗ vp) and . . .
⊗

vp (2.23)

separately. Below, we refer to this idea as Remark (?).

The next lemma allows placing in the definition of ∆(v1⊗ . . .⊗ vt ⊗ . . .⊗ vp)
any factor vt , t ∈ {1, . . . , p−1}, on the left of

⊗
and thus simplifies the comparison

the LHS and RHS of Equation (2.22).

Lemma 2. Set T = id+T ⊗ id, where T is the twisting map. For any fixed integer
t ∈ {1, . . . , p−1},

∆(v1⊗ . . .⊗ vt ⊗ . . .⊗ vp) = VN(p−1)

⊗
vp + (2.24)

T ( ∑
K∪R∪J=N(p−1)\t

K⊂{1,...,t−1},R⊂{t+1,...,p−1},J 6= /0

c VK ⊗ vt ⊗VR
⊗

VJ⊗ vp),

with c = (−1)〈vt ,VN(t−1)−VK〉εV (K;J)εV (R;J).

Proof. We have

∆(v1⊗ . . .⊗ vt ⊗ . . .⊗ vp) = VN(p−1)

⊗
vp +

∑
I∪J=N(p−1)

t∈I, J 6= /0

εV (I;J)VI
⊗

VJ⊗ vp + ∑
I∪J=N(p−1)

t∈J, I 6= /0

εV (I;J)VI
⊗

VJ⊗ vp

= VN(p−1)

⊗
vp +T ( ∑

I∪J=N(p−1)

t∈I, J 6= /0

εV (I;J)VI
⊗

VJ⊗ vp). (2.25)
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Since the unshuffles I can be written as the unshuffles (K, t,R), where K ⊂
{1, . . . , t−1} and R⊂ {t +1, . . . , p−1}, the sign εV (I;J) reads

εV (I;J) = εV (t;J)εV (K;J)εV (R;J).

When observing that the elements of J that are implicated in εV (t;J) are exactly
those that belong to the unshuffle N(t−1) \K, we see that

εV (t;J) = (−1)〈vt ,VN(t−1)−VK〉,

which completes the proof of the lemma.

We are now prepared to finish the proof of Theorem 3.
Set VN(p) = v1⊗ . . .⊗ vp, v` ∈V , and develop the RHS of Equation (2.22). We

have

(Q
⊗

id)∆(VN(p)) = ∑
I∪J=N(p−1)

I 6= /0

εV (I;J)Q(VI)
⊗

VJ⊗ vp

(?)
= ∑

I∪J=N(p−1)

I,J 6= /0

εV (I;J)Q(VI)
⊗

VJ⊗ vp +Q(VN(p−1))
⊗

vp

=: A1 +A2 (2.26)

and

(id
⊗

Q)∆(VN(p)) = ∑
I∪J=N(p−1)

I 6= /0

εV (I;J)(−1)〈VI ,Q〉VI
⊗

Q(VJ⊗ vp)

(?)
= ∑

I∪J=N(p−1)

I,J 6= /0

εV (I;J)(−1)〈VI ,Q〉VI
⊗

Q(VJ)⊗ vp +

∑
I∪J=N(p−1)

I 6= /0

∑
K∪L=J

εV (I;J)εV (K;L)(−1)〈VK+VI ,Q〉

VI
⊗

VK ⊗Q|L|+1(VL⊗ vp)

=: B1 +B2, (2.27)

where the terms B1 and B2 correspond to k1 6= p and k1 = p in the definition (2.21)
of Q. As (T ⊗ id)A1 = B1, we get

(Q
⊗

id+ id
⊗

Q)∆(VN(p)) = T A1 +A2 +B2, (2.28)
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where

B2 = (2.29)

∑
I∪K∪L=N(p−1)

I 6= /0

εV (I;K;L)(−1)〈VI+VK ,Q〉VI
⊗

VK ⊗Q|L|+1(VL⊗ vp).

Let us now examine the LHS

∆Q(VN(p)) = (2.30)

∑
M∪L∪S=N(p)

M,L<S

εV (M;L)(−1)〈VM ,Q〉∆(VM⊗Q|L|+1(VL⊗ vs1)⊗VS\s1)

of Equation (2.22).
In this sum, the term C1 that corresponds to s1 = p, see Remark (?), reads

C1 = ∑
M∪L=N(p−1)

M 6= /0

εV (M;L)(−1)〈VM ,Q〉∆(VM⊗Q|L|+1(VL⊗ vp)),

where unshuffle M is not empty, since term M = /0 vanishes, due to the fact that
∆(v) = 0, for any v ∈V . The definition of ∆ yields

C1 =

∑M∪L=N(p−1)

M 6= /0
εV (M;L)(−1)〈VM ,Q〉

∑I∪K=M
I 6= /0

εV (I;K)VI
⊗

VK ⊗Q|L|+1(VL⊗ vp) =

∑I∪K∪L=N(p−1)

I 6= /0
εV (I;K;L)(−1)〈VI+VK ,Q〉VI

⊗
VK ⊗Q|L|+1(VL⊗ vp),

which is exactly B2, see Equation (2.29).
In view of Equation (2.28), it thus suffices to show that the remaining term C2

in Equation (2.30), which corresponds to s1 6= p, i.e.

C2 = ∑
M∪L∪S=N(p−1)

M,L<S

εV (M;L)(−1)〈VM ,Q〉∆(VM⊗Q|L|+1(VL⊗ vs1)⊗VS\s1 ⊗ vp),

verifies

C2 = T A1 +A2. (2.31)
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When applying Lemma 2 with vt = Q|L|+1(VL⊗ vs1), we obtain

C2 =

∑M∪L∪S=N(p−1)

M,L<S
εV (M;L)(−1)〈VM ,Q〉

VM⊗Q|L|+1(VL⊗ vs1)⊗VS\s1

⊗
vp

+T (∑M∪L∪S=N(p−1)

M,L<S
∑ K∪R∪J=M∪S\s1

K⊂M,R⊂S\s1, J 6= /0
C VK ⊗Q|L|+1(VL⊗ vs1)⊗VR

⊗
VJ⊗ vp),

where

C = (−1)〈VM ,Q〉(−1)〈VL+vs1+Q,VM−VK〉εV (M;L)εV (K;J)εV (R;J).

Equation (2.21) entails that the first term in C2 is nothing but A2. If D denotes the
second term in C2, it suffices to prove that D = T A1.

Let us simplify D. The double sum in D is computed over unshuffles
M,L,S,K,R,J, such that

(a)M∪L∪S = N(p−1), (b)K∪R∪ J = M∪S\s1,

(c)M < S, (d)L < S, (e)K ⊂M, ( f )R⊂ S\s1.

We now examine the impact of these conditions on C.

• Condition (b) implies that

εV (M;L) = εV (K;L)εV (R;L)εV (J;L)εV (S\s1;L).

• Conditions (d) and (f) imply that

εV (R;L)εV (S\s1;L) = (−1)〈VL,VS\s1
+VR〉εV (L;R)εV (L;S\s1)

= (−1)〈VL,VS\s1
−VR〉, (2.32)

since for any unshuffles I,J, where I < J, we have εV (I;J) = 1.

• Condition (f) implies that R̃ = {s1,R} is an unshuffle. Then, in view of
(2.32),

εV (M;L) = (−1)〈VL,VS\R̃〉εV (K;L)εV (J;L).
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• Conditions (b), (e) and (f) imply that

J = (M\K)∪ (S\R̃) (2.33)

and so that
VJ = VM\K +VS\R̃.

Thus,
εV (M;L) = (−1)〈VL,VJ−VM\K〉εV (K;L)εV (J;L).

When replacing in C, we get

C = (−1)〈VK ,Q〉(−1)〈vs1 ,VM\K〉(−1)〈VL,VJ〉εV (K;J;L)εV (R;J)
= (−1)〈VK ,Q〉(−1)〈vs1 ,VM\K〉εV (K;L;J)εV (R;J).

Finally, when using (2.33) and (c), we obtain

εV (s1;J) = (−1)〈vs1 ,VM\K〉,

εV (R̃;J) = εV (s1;J)εV (R;J) = (−1)〈vs1 ,VM\K〉εV (R;J),

and
C = (−1)〈VK ,Q〉εV (K;L;J)εV (R̃;J).

Hence,

D = T ( ∑
K∪L∪R̃∪J=N(p−1)

K,L<R̃, J 6= /0

C VK ⊗Q|L|+1(VL⊗ vs1)⊗VR̃\s1

⊗
VJ⊗ vp).

If we set now I = K∪L∪ R̃, we deduce that

C = (−1)〈VK ,Q〉εV (K;L)εV (I;J)

and, if we use again (2.21), we see that

D = T ( ∑
I∪J=N(p−1)

I,J 6= /0

εV (I;J)Q(VI)
⊗

VJ⊗ vp) = T A1.

Like coderivations, cohomomorphisms from (T (V ),∆) to (T (V ′),∆) are char-
acterized by their corestriction maps.
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Theorem 4. Let V and V ′ be two Zn-graded vector spaces. A coalgebra coho-
momorphism F : (T (V ),∆) −→ (T (V ′),∆) is uniquely defined by its (weight 0)
corestriction maps Fp : T pV →V ′, p≥ 1, via the equation

F (v1⊗ . . .⊗ vp) =
p

∑
s=1

∑
I1∪...∪Is=N(p)

I1,...,Is 6= /0
i1|I1 |<...<is|Is|

εV (I1; . . . ; Is)F|I1|(VI1)⊗ . . .⊗F|Is|(VIs),

(2.34)
where v` ∈V v` .

Proof. The proof of this theorem is similar to that of Theorem 3 and will not
be detailed here.

Set now e1 = (1,0, . . . ,0) ∈ Zn and consider the desuspension operator ↓ : V →
↓V, where ↓V is the same space as V up to the shift (↓V )α = V α+e1 of gradation.
The inverse map of ↓ is denoted by ↑. The mapping ↓⊗p:=↓ ⊗ . . .⊗ ↓, p factors,
i.e. the mapping

↓⊗p: V⊗p 3 v1⊗ . . .⊗vp → (−1)∑p
s=1〈(p−s)e1,vs〉 ↓ v1⊗ . . .⊗ ↓ vp ∈ (↓V )⊗p, (2.35)

is an isomorphism of weight −pe1, whose inverse is (−1)
p(p−1)

2 ↑⊗p .

Remark 2. The isomorphisms

σ↓V
(Q,p) : M(Q,p−1)(↓V ) 3 Qp → πp :=↑ ◦Qp◦ ↓⊗p∈M(Q+(1−p)e1,p−1)(V ), (2.36)

Q ∈ Zn, p ∈ N∗, (their inverses are defined by (−1)
p(p−1)

2 ↓ ◦πp◦ ↑⊗p) generate
isomorphisms σ↓V

Q and σ↓V between the corresponding direct products and direct
sums of direct products. If no confusion is possible, we omit super- and subscripts
and denote these isomorphisms simply by σ . Isomorphisms (2.36) extend of course
to multilinear maps on ↓V valued in ↓V ′.

Remark 3. Theorem 3-4 and Remarks1-2 show that weight Q coderivations Q :
(T (↓V ),∆)→ (T (↓V ),∆) can be viewed as sequences π = (π1,π2, . . .) = ∑p πp of
weight Q+(1− p)e1 multilinear maps πp : V×p →V , and that cohomomorphisms
F : (T (↓ V ),∆) → (T (↓ V ′),∆) (which by definition have weight 0) can be seen
as sequences f = ( f1, f2, . . .) = ∑p fp of weight (1− p)e1 multilinear maps fp :
V×p →V ′.
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2.4 Stem bracket

When combining the isomorphisms σ−1 and ψ−1, we get, for A ∈ Zn,a ∈ N, a
vector space isomorphism

φ(A,a) : M(A,a)(V ) 3 A→ QA = (0, . . . ,0,QA
a+1,0, . . .) ∈ CoDerA+ae1

a+1 (T (↓V )),
(2.37)

where QA
a+1 = (−1)

a(a+1)
2 ↓ ◦A◦ ↑⊗(a+1) and where QA is the coderivation that is

obtained from QA
a+1 via extension equation (2.21).

Theorem 5. The Zn+1-graded vector space of multilinear maps Mr(V ) = M(V )ª
V is a Zn+1-graded Lie algebra, when endowed with the bracket

[A,B]⊗ := (−1)1+〈ae1,be1+B〉φ−1
(A+B,a+b)([φ(A,a)(A),φ(B,b)(B)]), (2.38)

A ∈M(A,a)(V ), B ∈M(B,b)(V ), where [−,−] denotes the Zn-graded Lie bracket of
the space of coderivations of (T (↓V ),∆).

Proof. It follows from Equation (2.21) that the p-th corestriction
map [φ(A,a)(A),φ(B,b)(B)]p vanishes if p 6= a + b + 1, so that the bracket

[φ(A,a)(A),φ(B,b)(B)] is really a coderivation in CoDerA+B+(a+b)e1
a+b+1 (T (↓ V )). The

sign (−1)1+〈ae1,be1+B〉 ensures that the Zn-graded Lie bracket of coderivations
induces a Zn+1-graded Lie bracket [−,−]⊗.

As the map φ = ψ−1 ◦σ−1 is also a (weight 0) Zn-graded vector space isomor-
phism

φ :C(V ) :=
⊕

Q∈Zn
∏
p≥1

M(Q+(1−p)e1,p−1)(V )→CoDer(T (↓V ))=
⊕

Q∈Zn

CoDerQ(T (↓V )),

(2.39)
the next proposition is obvious.

Proposition 7. The Zn-graded vector space C(V ) of sequences of multilinear maps
is a Zn-graded Lie algebra for the bracket

[π,ρ]⊗̄ = φ−1[φπ,φρ ] = ∑
q≥1

∑
s+t=q+1

(−1)1+(s−1)〈e1,ρ〉[πs,ρt ]⊗, (2.40)

where π = ∑s πs ∈ Cπ(V ) and ρ = ∑t ρt ∈ Cρ(V ) are two homogeneous C(V )-
elements of Zn-degree π and ρ respectively.
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Remark 4. In the following, we refer to [−,−]⊗̄ (resp. [−,−]⊗) as the Zn-graded
(resp. Zn+1-graded) stem bracket.

Theorem 6. The Zn+1-graded stem bracket on Mr(V ) explicitly reads

[A,B]⊗ = jAB− (−1)〈(A,a),(B,b)〉 jBA, (2.41)

where

( jBA)(v1⊗ . . .⊗ va+b+1) = (−1)〈A,B〉 ∑
I∪J∪K=N(a+b+1)

I,J<K, |J|=b

(−1)〈B,VI〉+b|I|

(−1)(I;J)εV (I;J)A(VI ⊗B(VJ⊗ vk1)⊗VK\k1), (2.42)

for any A ∈M(A,a)(V ), B ∈M(B,b)(V ), a,b≥ 0, and v` ∈V v` .

Proof. It follows from Equation (2.21) that the (a + b + 1)-th corestriction of
[φ(A,a)(A),φ(B,b)(B)] = [QA,QB] is obtained by just restricting the involved compos-
ite maps to (↓ V )⊗(a+b+1). The description of the isomorphisms φ−1

(A,a) then shows
that

[A,B]⊗ = −(−1)〈ae1,be1+B〉
(
↑ ◦QA ◦QB◦ ↓⊗(a+b+1)

−(−1)〈A+ae1,B+be1〉 ↑ ◦QB ◦QA◦ ↓⊗(a+b+1)
)

. (2.43)

If VN(a+b+1) = v1⊗ . . .⊗ va+b+1, with v` ∈V v` , we get
(
↑ ◦QA ◦QB◦ ↓⊗(a+b+1)

)
(VN(a+b+1)) = (−1)β1

(↑ ◦QA ◦QB)
(↓VN(a+b+1)),

β1 = 〈e1, ∑
s≥1

(a+b+1− s)vs〉,

where ↓VN(a+b+1) =↓ v1⊗ . . .⊗ ↓ va+b+1. Formula (2.21) yields

QB(↓VN(a+b+1)) = ∑
I∪J∪K=N(a+b+1)

I,J<K,|J|=b

(−1)β2ε↓V (I;J) ↓VI ⊗QB
b+1(↓VJ⊗ ↓ vk1)⊗ ↓VK\k1 ,

β2 = 〈B+be1,VI + |I|e1〉. (2.44)

Moreover,

QB
b+1(↓VJ⊗ ↓ vk1) = (−1)β3 ↓ B(VJ⊗ vk1),β3 = 〈e1, ∑

s≥1
(b+1− s)v js〉,
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as the sign (−1)
b(b+1)

2 inside QB
b+1 and the sign due to the shift of the Zn-gradation

cancel each other out. When noticing that QA evaluated on an element of (↓
V )⊗(a+1) is nothing but QA

a+1, we obtain

(
↑ ◦QA ◦QB◦ ↓⊗(a+b+1)

)
(VN(a+b+1)) = (2.45)

∑
I∪J∪K=N(a+b+1)

I,J<K, |J|=b

(−1)`ε↓V (I;J)A(VI ⊗B(VJ⊗ vk1)⊗VK\k1),

with ` = β1 +β2 +β3 +β4 +β5 +β6, where

β4 = 〈e1, ∑
s≥1

(a+1−s)vis〉, β5 =(a−|I|)〈e1,B+VJ +vk1〉, and β6 = 〈e1, ∑
s≥2

(a−|I|−s+1)vks〉

are generated by ↑⊗(a+1) and where, again, the sign inside QA
a+1 and the sign due

to the shift neutralize.
We will prove that

(−1)`ε↓V (I;J) = (−1)〈B,ae1〉+〈B,VI〉+b|I|(−1)(I;J)εV (I;J). (2.46)

Observe first that an appropriate regrouping of terms yields

` = `1 + `2 := (〈B,ae1〉+ 〈B,VI〉+b|I|)+

(
〈e1,

a+b+1

∑
s=1

(a+b+1− s)vs〉

+〈e1,
|I|
∑
s=1

(a+b+1− s)vis〉+ 〈e1,
|I|+|J|
∑

s=|I|+1
(a+b+1− s)v js−|I|〉

+〈e1,
a+b+1

∑
s=|I|+|J|+1

(a+b+1− s)vks−|I|−|J|〉
)

,

where, since in view of the conditions I,J < K the concatenation (I;J) is a permu-
tation of 1, . . . , |I|+ |J|, the term `2 reads (modulo even terms)

`2 = 〈e1,
|I|
∑
s=1

(s+ is)vis〉+ 〈e1,
|I|+|J|
∑

s=|I|+1
(s+ js−|I|)v js−|I|〉.

If permutation (I;J) is a transposition (I;J) = (1, . . . ,q−1,q+1,q,q+2, . . . , |I|+
|J|), then `2 = 〈e1,vq + vq+1〉. It is now easily checked that for a transposition

(−1)`2ε↓V (I;J) = (−1)(I;J)εV (I;J) (2.47)
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and that for a composition of transpositions all the factors of this last equation are
the products of the corresponding factors induced by the involved transpositions.
It follows that Equations (2.47) and (2.46) hold true for any permutation (I;J).

Eventually Equation (2.45) may be written
(
↑ ◦QA ◦QB◦ ↓⊗(a+b+1)

)
(VN(a+b+1)) =

∑
I∪J∪K=N(a+b+1)

I,J<K, |J|=b

(−1)m(−1)(I;J)εV (I;J)A(VI ⊗B(VJ⊗ vk1)⊗VK\k1),

where m = 〈B,ae1〉+ 〈B,VI〉+b|I|.
If we define the insertion operator

jBA = (−1)〈ae1+A,B〉 ↑ ◦QA ◦QB◦ ↓⊗(a+b+1),

A ∈M(A,a)(V ), B ∈M(B,b)(V ), a,b≥ 0, we finally get the announced result.

Remark 5. It is easily checked that the restriction of the stem bracket [−,−]⊗

to the subspace Ar(V ) of Mr(V ), made up by graded skew-symmetric multilinear
maps on V , coincides with the graded Nijenhuis-Richardson bracket [−,−]NR.

2.5 Graded and strongly homotopy Loday structures

Let us recall that a codifferential of a coalgebra is a coderivation that squares to 0.

Proposition 8. A homogenous odd weight coderivation Q of the coalgebra
(T (V ),∆) is a codifferential if and only if, for any p ≥ 1, the following equation
holds identically:

∑
I∪J∪K=N(p)

I,J<K

εV (I;J)(−1)〈Q,VI〉Q|I|+|K|(VI ⊗Q|J|+1(VJ⊗ vk1)⊗VK\k1) = 0. (2.48)

Proof. As Q is an odd weight coderivation, 2Q2 = [Q,Q] and so Q2 is also a
coderivation. Thus, according to Theorem 3, the condition Q2 = 0 is satisfied if
and only if the corestriction maps Q2

p, p ≥ 1, of Q2 vanish. It is easily seen that
Q2

p(VN(p)) is exactly the LHS of (2.48).

Definition 7. A graded Loday algebra (g,{−,−}) (GLodA for short) is made up
by a Zn-graded vector space g and a weight 0 bilinear bracket {−,−} that satisfies
the graded Jacobi identity (2.3).
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Non-graded Loday algebras were introduced by Loday in [Lod93] and are also
known as Leibniz algebras.

Theorem 7. Let Lod(V ) be the set of Zn-graded Loday structures on a Zn-graded
vector space V , and denote by CoDiffQ

p (T (↓V )), Q ∈ Zn, p ∈ N∗, the set of codif-
ferentials Q of (T (↓V ),∆), which have weight Q and whose corestriction maps all
vanish except Qp. Then,

1. The restriction of φ(0,1) to Lod(V ) is a bijection and

Lod(V )' CoDiffe1
2 (T (↓V )), (2.49)

2. The graded Loday structures on V are exactly the canonical elements of
weight (0,1) of the graded Lie algebra (Mr(V ), [−,−]⊗).

Proof. Since φ(0,1) is a bijection between M(0,1)(V ) and CoDere1
2 (T (↓ V )),

it suffices, in order to account for Point 1, to prove that φ(0,1)(Lod(V )) =
CoDiffe1

2 (T (↓V )).
If π ∈ Lod(V ), its image φ(0,1)(π) = Qπ = (0,Qπ

2 ,0, . . .) ∈ CoDere1
2 (T (↓V )) is

a codifferential, if

Qπ
2 (Qπ

2 (↓ v1⊗ ↓ v2)⊗ ↓ v3)+(−1)〈e1,↓v1〉Qπ
2 (↓ v1⊗Qπ

2 (↓ v2⊗ ↓ v3))
+(−1)〈e1+↓v1,↓v2〉Qπ

2 (↓ v2⊗Qπ
2 (↓ v1⊗ ↓ v3)) = 0, (2.50)

see Proposition 8 and note that Condition (2.48) is trivial for p 6= 3. When remem-
bering that Qπ

2 =− ↓ ◦π ◦ (↑ ⊗ ↑), we easily check that Condition (2.50) reads

(−1)〈v2,e1〉 ↓ [π(π(v1⊗ v2)⊗ v3)
−π(v1⊗π(v2⊗ v3))+(−1)〈v1,v2〉π(v2⊗π(v1⊗ v3))] = 0.

As π verifies the graded Jacobi identity, the last requirement is fulfilled.
Conversely, if Q = (0,Q2,0, . . .) ∈ CoDiffe1

2 (T (↓ V )), then π := φ−1
(0,1)(Q) is a

graded Loday structure.
As regards Point 2, note that any graded Loday structure π is odd. Furthermore,

[π,π]⊗ =−(−1)〈e1,e1〉φ−1
(0,2)([φ(0,1)(π),φ(0,1)(π)]) = 2φ−1

(0,2)(φ
2
(0,1)(π)),

so that the graded Loday structures are exactly the canonical elements of weight
(0,1).

In the sequel, we extend graded Loday structures, see Equation (2.49), by in-
troducing the homotopy version of Loday algebras.
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Definition 8. A strongly homotopy Loday algebra or a Loday infinity algebra is
a Zn-graded vector space V endowed with a codifferential of odd weight of the
tensor coalgebra (T (↓V ),∆).

We denote by LodQ
∞(V ), Q ∈ Zn, 〈Q,Q〉 odd, the set

LodQ
∞(V )' CoDiffQ(T (↓V ))

of weight Q Loday infinity (LodQ
∞ for short) structures on V , whereas Lod∞(V )

denotes the set Lode1
∞ (V ) – as most infinity structures considered below have

weight e1. Since Q is odd, Q ∈ LodQ
∞(V ) if and only if Q ∈ CoDerQ(T (↓ V )) and

[Q,Q] = 2Q2 = 0. Hence, in view of Remark 3 and Proposition 7, the sequence
maps “definition” of Loday infinity algebras:

Proposition 9. A Loday infinity algebra is a Zn-graded vector space V together
with a sequence of structure maps

π = (π1,π2, . . .) = ∑
p

πp ∈CQ(V ) = ∏
p≥1

M(Q+(1−p)e1,p−1)(V )

of odd degree Q, such that

∑
s+t=p

(−1)1+(s−1)〈e1,Q〉[πs,πt ]⊗ = 0,∀p≥ 2. (2.51)

In the usual case of Lod∞ structures π on V , the first three conditions (2.51)
mean that (V,π1) is a chain complex, that π1 is a Zn-graded derivation of the bilin-
ear map π2, and that π2 is a Zn-graded Loday structure modulo homotopy π3.

Example 1. If the structure maps of a Lod∞ algebra (V,π) all vanish, except π1
(resp. except π2, except π1 and π2), (V,π) is a chain complex (resp. a Zn-graded
Loday algebra (GLodA), a differential graded Loday algebra(DGLodA)).

Example 2. Let (V,π) and (V ′,π ′) be two Lod∞ algebras. Their direct sum (V ⊕
V ′,π⊕π ′) is a Lod∞ algebra, where the structure maps are defined by

(π⊕π ′)p(v1 + v′1, . . . ,vp + v′p) := πp(v1, . . . ,vp)+π ′p(v′1, . . . ,v′p),

for any p≥ 1.

It is obvious from the structure of the explicit form of the stem bracket [−,−]⊗,
see Theorem 6, that if π and π ′ verify the Lod∞ conditions (2.51) in V and V ′

respectively, then π⊕π ′ verifies the same conditions in V ⊕V ′.

As a Lod∞ structure on V is a weight e1 codifferential Q of the coalgebra (T (↓
V ),∆), it is natural to give the following coalgebraic
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Definition 9. Let (V,Q) and (V ′,Q′) be two Lod∞ algebras. A Lod∞ morphism
from (V,Q) to (V ′,Q′) is a coalgebra cohomomorphism F : (T (↓V ),∆)−→ (T (↓
V ′),∆), such that Q′F = FQ.

Since the composition of Lod∞ morphisms is again a Lod∞ morphism, and as,
for any Lod∞ algebra, the identity map is a morphism (say I , with corestriction
maps I1 = id and Ip = 0, for p≥ 2), Lod∞ algebras and their morphisms form a
category, which we denote by Lod∞.

Next we give the sequence maps “definition” of Lod∞ morphisms, see Remark
3.

Proposition 10. Let (V,π) and (V ′,π ′) be two Lod∞ algebras. A Lod∞ morphism
f : (V,π)→ (V ′,π ′) is a sequence of weight (1− p)e1 multilinear maps fp : V×p →
V ′, p≥ 1, which satisfy the condition

p

∑
s=1

∑
I1∪...∪Is=N(p)

I1,...,Is 6= /0
i1|I1|<...<is|Is|

(−1)ω(−1)(I1;...;Is)εV (I1; . . . ; Is)π ′s( f|I1|(VI1), . . . , f|Is|(VIs))

= ∑
I∪J∪K=N(p)

I,J<K

(−1)λ (−1)(J;I)εV (I;J) f|I|+|K|(VI,π|J|+1(VJ,vk1),VK\k1), (2.52)

where

ω = s(s−1)
2 +∑1≤r≤s(s− r)|Ir|+∑2≤r≤s〈(|Ir|+1)e1,V|I1|+ . . .+V|Ir−1|〉

(2.53)
and

λ = 〈(1+ |J|)e1,VI +(p+1)e1〉, (2.54)

for all p≥ 1.

Proof. When using (2.21) and (2.34), we see that Q′F and FQ are sim-
ilarly composed of the respective corestriction maps, so that they coincide, if
their corestrictions do. This leads to a reformulation of the intertwining condition
Q′F = FQ in terms of Q′

p,Fp,Qp, p ≥ 1. The translation of this reformulation
by means of the sequences π ′, f ,π , and in particular the above signs, are obtained
by a direct computation that is based upon similar arguments than those used in the
proof of Theorem 6.

Remark 6. The first constraint (2.52) states that f1 is a chain map between (V,π1)
and (V ′,π ′1), whereas the second means that f2 measures the deviation from f1
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being a (V,π2)− (V ′,π ′2) homomorphism. If (V,π) and (V ′,π ′) are DGLodAs,
map f1 is a DGLodA morphism. In Chapter 3, we shall recall the category L∞ of
L∞ algebras and morphisms and show that the category L∞ is a subcategory of

Lod∞.

Definition 10. A Lod∞ quasi-isomorphism from a Lod∞ algebra (V,π) to a Lod∞
algebra (V ′,π ′) is a Lod∞ morphism f : (V,π) → (V ′,π ′), such that the chain
map f1 : (V,π1)→ (V ′,π ′1) induces an isomorphism f1 ] : H(V,π1)→ H(V ′,π ′1) in
cohomology. In particular, f is called a Lod∞ isomorphism, if f1 : V → V ′ is an
isomorphism.

If F ' f and G ' g are two composable Lod∞ morphisms, we denote by
g ◦ f the sequence of multilinear maps that corresponds to the Lod∞ morphism
G F . Similarly, π ′ ◦ f and f ◦π are the sequences that represent Q′F and FQ.
The Lod∞ morphism condition (2.52) then reads π ′ ◦ f = f ◦π. We use these and
analogous notations below.

The next proposition will be needed in the following.

Proposition 11. 1. Any coalgebra cohomomorphism f : (T (↓ V ),∆) → (T (↓
V ′),∆), which corresponds to a sequence f = ( f1, f2, . . .), whose first element
f1 is bijective, is invertible, i.e. there is a coalgebra cohomomorphism f−1 :
(T (↓V ′),∆)→ (T (↓V ),∆), such that f ◦ f−1 = Id and f−1 ◦ f = Id, where
Id is the unit cohomomorphism Id = (id,0,0, . . .).

2. If (V,π) denotes a Lod∞ algebra, any sequence f = ( f1, f2, . . .) of weight
(1− p)e1 multilinear maps fp : V×p →V , whose first element f1 is the iden-
tity map of V , induces a new Lod∞ structure f ◦π ◦ f−1 on V and f is a Lod∞
isomorphism between (V,π) and (V, f ◦π ◦ f−1).

3. Any Lod∞ isomorphism f : (V,π)→ (V ′,π ′) admits an inverse f−1 that is a
Lod∞ isomorphism as well.

Proof. 1. Let F : (T (↓ V ),∆) → (T (↓ V ′),∆) be a coalgebra cohomomor-
phism, whose first corestriction F1 :↓ V →↓ V ′ is bijective. If there is an inverse
cohomomorphism G : (T (↓ V ′),∆) → (T (↓ V ),∆), it follows from the condition
FG = I and from Equation (2.34) that G1 = F−1

1 and that, for any p≥ 2,

Gp(↓ v′1, . . . ,↓ v′p)

=−
p

∑
s=2

∑
I1∪...∪Is=N(p)

I1,...,Is 6= /0
i1|I1 |<...<is|Is|

ε↓V ′(I1; . . . ; Is)F−1
1 Fs

(
G|I1|(↓V ′

I1)⊗ . . .⊗G|Is|(↓V ′
Is)

)
.
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The last equation provides inductively the corestriction maps of a cohomomor-
phism G . One can check that G not only verifies FG = I , but also G F = I .

2. Take a Lod∞ structure Q on V and a cohomomorphism F : (T (↓ V ),∆)→
(T (↓V ),∆), such that F1 = id. Since ( f ⊗g)◦ (h⊗k) = (−1)〈g,h〉( f ◦h)⊗ (g◦k),
with self-explaining notations, it is easily seen that FQF−1, where F−1 is the
inverse cohomomorphism G given by Item 1, is a weight e1 codifferential of T (↓
V ), i.e. a Lod∞ structure on V . Eventually, F is obviously a Lod∞ morphism, and,
in view of the assumption F1 = id, even a Lod∞ isomorphism.

3. Consider two Lod∞ algebras (V,Q), (V ′,Q′) and a Lod∞ isomorphism F ,
i.e. a cohomomorphism, such that F1 is bijective and Q′F = FQ (?). It then
follows from Item 1 that there is an inverse cohomomorphism F−1, such that
(F−1)1 = (F1)−1, and from Equation (?) that QF−1 = F−1Q′.

The following key-theorem generalizes the last item of Proposition 11.

Theorem 8. If f : (V,π)→ (V ′,π ′) is a Lod∞ quasi-isomorphism, it admits a quasi-
inverse, i.e. there exists a Lod∞ quasi-isomorphism g : (V ′,π ′) → (V,π), which
induces the inverse isomorphism in cohomology, i.e. g1] = ( f1])−1.

We prove this theorem, which does not hold true in the category of DGLodAs,
in the next section.

2.6 Minimal model theorem for Loday infinity algebras

Definition 11. A Lod∞ algebra (V,π) is minimal, if π1 = 0. It is contractible, if
πp = 0, for p≥ 2, and if in addition H(V,π1) = 0.

Theorem 9. Each Lod∞ algebra is Lod∞ isomorphic to the direct sum of a minimal
Lod∞ algebra and a contractible Lod∞ algebra.

Theorem 9 was proved for L∞ algebras in [Kon03] and e.g. [AMM02]. In the
sequel, we provide a proof in the Lod∞ case.

Proof. Let (V,π) be a Lod∞ algebra. For any α ∈ Zn, denote by Zα and Bα the
trace on V α of the kernel and the image of π1. Consider a supplementary vector
subspace V α

m of Bα in Zα and a supplementary subspace W α of Zα in V α . Let
Z,B,Vm, and W be the corresponding graded spaces. Then, the complex (V,π1)
decomposes into the direct sum of the complex (Vm,0), with vanishing differential,
and the complex (Vc := B⊕W,π1), with trivial cohomology. It follows that the



44 CHAPTER 2. LODAY INFINITY CATEGORY

sequence f (1) := (id,0, . . .) is a Lod∞ isomorphism from (V,π) to the Lod∞ algebra
L1 := (Vm⊕Vc,0⊕π1,π2,π3, . . .). We will transform inductively the maps πp, p≥
2, via Lod∞ isomorphisms, into mappings of the form πm

p ⊕ 0, such that πm :=
(0,πm

2 ,πm
3 , . . .) be a minimal Lod∞ structure on Vm.

Lemma 3. Consider the operator δ : V → V that is defined, for any v ∈ Vm⊕W,
by δ (v) = 0, and, for any v ∈ B, by δ (v) = w, where w is the unique element
w ∈W, such that π1(w) = v. Let P be the projection onto Vm with respect to the
decomposition V = Vm⊕Vc. Then, δ is a homotopy operator between the complex
endomorphisms P and id of (V,π1), i.e. π1δ +δπ1 = id−P.

Proof. Obvious.

Let us construct πm
2 . Consider a sequence f (2) := (id, f2,0,0, . . .), where f2 is a

weight −e1 bilinear map on V . According to Item 2 of Proposition 11, f (2) defines
a Lod∞ isomorphism

L1 → (Vm⊕Vc,π
(2)
1 ,π(2)

2 ,π(2)
3 , . . .) =: (Vm⊕Vc,π(2)),

and π(2) is a Lod∞ structure on Vm⊕Vc, if and only if π(2) ◦ f (2) = f (2) ◦π. In view
of Equation (2.52), this condition implies that (take p = 1) π(2)

1 = π1 = 0⊕π1, that
(take p = 2), for v1 ∈V v1 ,v2 ∈V ,

π(2)
2 (v1,v2) =−π1 f2(v1,v2)+π2(v1,v2)− f2(π1v1,v2)− (−1)〈e1,v1〉 f2(v1,π1v2),

(2.55)
and (take p≥ 3) it provides the π(2)

p , p≥ 3, in terms of f2.

It suffices to find a weight−e1 bilinear map f2, such that the resulting π(2)
2 maps

Vm×Vm to Vm and vanishes elsewhere. Indeed, the restriction πm
2 of π(2)

2 to Vm×Vm

is then a weight 0 bilinear map on Vm and π(2)
2 = πm

2 ⊕0. If we choose the π(2)
p , p≥

3, given by f2, intertwining condition π(2) ◦ f (2) = f (2) ◦π is satisfied and f (2) is a
Lod∞ isomorphism between L1 and (Vm⊕Vc,0⊕π1,πm

2 ⊕0,π(2)
3 ,π(2)

4 , . . .). When
continuing step by step, we finally get a Lod∞ isomorphism . . . f (3) ◦ f (2) ◦ f (1) be-
tween (V,π) and (Vm⊕Vc,0⊕π1,πm

2 ⊕0,πm
3 ⊕0, . . .) =: L2. It eventually follows

from the explicit form of the stem bracket, see Example 2 and subsequent explana-
tion, that, since (0⊕π1,πm

2 ⊕ 0,πm
3 ⊕ 0, . . .) verifies the Lod∞ structure condition

on Vm⊕Vc, the two terms of this direct sum verify the same condition on Vm and
Vc respectively.
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Let us define f2 as follows:

f2(v1,v2) =





δπ2(v1,v2)+Pπ2(w,v2), if (v1,v2) ∈ Bα ×Zβ , v1 = π1(w),
δπ2(v1,v2)+ 1

2 Pπ2(w,v2), if (v1,v2) ∈ Bα ×W β , v1 = π1(w),
δπ2(v1,v2)+(−1)〈e1,α〉Pπ2(v1,w′), if (v1,v2) ∈ Zα ×Bβ ,

v2 = π1(w′),
δπ2(v1,v2)+(−1)〈e1,α〉 1

2 Pπ2(v1,w′), if (v1,v2) ∈W α ×Bβ ,
v2 = π1(w′),

δπ2(v1,v2), otherwise.
(2.56)

Map f2 is well-defined, i.e. the two definitions on Bα ×Bβ ⊂ (Bα ×Zβ )∩ (Zα ×
Bβ ) coincide, as the Lod∞ structure condition (2.51) implies

0 = Pπ1π2(v1,v2) = Pπ2(π1v1,v2)+(−1)〈e1,α〉Pπ2(v1,π1v2),

for any v1 ∈ V α ,v2 ∈ V . Indeed, when writing this upshot for w ∈W α−e1 and w′,
see Equation (2.56), we get the announced result.

It remains to show that π(2)
2 sends Vm×Vm to Vm and vanishes elsewhere.

If (v1,v2) ∈ Z × Z, Equation (2.55) and Lemma 3 yield π(2)
2 (v1,v2) =

δπ1π2(v1,v2) + Pπ2(v1,v2). But, since the Lod∞ condition entails that
π1π2(v1,v2) = 0, we get π(2)

2 (v1,v2) = Pπ2(v1,v2). Furthermore, for any (w,v2) ∈
W ×Z, Condition (2.51) implies that Pπ2(π1w,v2) = 0, whereas for any (v1,w′) ∈
Z×W , we obtain Pπ2(v1,π1w′) = 0. Therefore,

π(2)
2 (v1,v2) =

{
Pπ2(v1,v2) =: πm

2 (v1,v2) ∈Vm, if(v1,v2) ∈Vm×Vm,
0, if (v1,v2) ∈ B×Vm or (v1,v2) ∈Vm×B or (v1,v2) ∈ B×B.

If (v1,v2) ∈ (W × Z)∪ (Z×W )∪ (W ×W ), Equation (2.55), Lemma 3, and
Condition (2.51) allow checking that π(2)

2 (v1,v2) = 0.

Hence,

π(2)
2 (v1,v2) =

{
πm

2 (v1,v2) = Pπ2(v1,v2) ∈Vm, if(v1,v2) ∈Vm×Vm,
0, otherwise.

More generally, it can be shown that any Lod∞ algebra Lk−1, k ≥ 2, of the form

(Vm⊕Vc,0⊕π1,πm
2 ⊕0, . . . ,πm

k−1⊕0,π(k−1)
k ,π(k−1)

k+1 , . . .)

is Lod∞ isomorphic to a Lod∞ algebra

Lk := (Vm⊕Vc,0⊕π1,πm
2 ⊕0, . . . ,πm

k ⊕0,π(k)
k+1, . . .),
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where πm
k = Pπ(k−1)

k (of course π(1)
2 := π2). Indeed, let fk be the weight (1− k)e1

k-linear map on V defined by:

1. For any (k−1)-tuple (v1, . . . ,vi−1,vi+1, . . . ,vk) of V×(k−1), 1≤ i≤ k, which has
j elements v` in W , 0≤ j ≤ k−1, and all other elements in Z, and for any w ∈W ,
set

fk(v1, . . . ,vi−1,π1w,vi+1, . . . ,vk) = δπ(k−1)
k (v1, . . . ,vi−1,π1w,vi+1, . . . ,vk)

+
1

j +1
(−1)〈e1,v1+...+vi−1〉Pπ(k−1)

k (v1, . . . ,vi−1,w,vi+1, . . . ,vk).

2. Otherwise, set fk = δπ(k−1)
k .

When combining Lemma 3 and the Lod∞ condition as previously, we can check
that the sequence f (k) := (id,0, . . . ,0, fk,0, . . .) is a Lod∞ isomorphism from Lk−1
to Lk.

Finally, we get, as announced, a Lod∞ isomorphism from the Lod∞ algebra
(V,π) to the Lod∞ algebra

(Vm⊕Vc,0⊕π1,πm
2 ⊕0,πm

3 ⊕0, . . .).

We are now prepared to prove Theorem 8.

Proof. Let f : (V,π)→ (V ′,π ′) be a Lod∞ quasi-isomorphism. According to
the minimal model theorem, there is a Lod∞ isomorphism h (resp. h′) that identifies
the Lod∞ algebra (V,π) (resp. (V ′,π ′)) to a direct sum (Vm⊕Vc,πm⊕πc) (resp.
(V ′

m⊕V ′
c ,π ′m⊕π ′c)). Furthermore, since the inclusion i := (i,0,0, . . .) : (Vm,πm)→

(Vm⊕Vc,πm⊕πc) (resp. the projection p := (P′,0,0, . . .) : (V ′
m⊕V ′

c ,π ′m⊕π ′c)→
(V ′

m,π ′m)) is a Lod∞ quasi-isomorphism, the sequence hi := h−1 ◦ i (resp. h′p :=
p◦h′) is a Lod∞ quasi-isomorphism from (Vm,πm) (resp. (V ′,π ′)) to (V,π) (resp.
(V ′

m,π ′m)). Therefore, the map f m := h′p ◦ f ◦ hi is a Lod∞ quasi-isomorphism
between (Vm,πm) and (V ′

m,π ′m). But, as H(Vm,πm
1 ) = Vm and H(V ′

m,π ′m1 ) = V ′
m, the

map ( f m
1 )] = f m

1 : Vm →V ′
m is an isomorphism, and so f m has a Lod∞ isomorphism

inverse ( f m)−1, with ( f m)−1
1 = ( f m

1 )−1, see Proposition 11. Consequently, the
sequence g := hi◦( f m)−1◦h′p is a Lod∞ quasi-isomorphism from (V ′,π ′) to (V,π).
Moreover, g1] = ( f1])−1. Indeed, observe first that g1 = i ◦ ( f m

1 )−1 ◦P′ and f m
1 =

P′ ◦ f1 ◦ i. For any [v′] ∈ H(V ′,π ′1), we thus get g1][v′] = [( f m
1 )−1P′v′] ∈ H(V,π1).

On the other hand, ( f1])−1[v′] =: [v] ∈ H(V,π1), hence f1v = v′+ π ′1v′, v′ ∈ V ′. It
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now suffices to show that there is v ∈V , such that ( f m
1 )−1P′v′ = v+π1v, i.e.

P′v′ = f m
1 (v+π1v) = P′ f1v+P′ f1π1v = P′(v′+π ′1v′)+P′π ′1 f1v.

This condition is satisfied for any v ∈V , since P′π ′1 = 0.

In view of the preceding proof, we have the following

Corollary 1. Each Lod∞ algebra is Lod∞ quasi-isomorphic to a minimal one.

2.7 Graded and strongly homotopy algebra cohomologies

2.7.1 Graded Loday and Chevalley-Eilenberg cohomologies

Let π ∈ Lod(V ) be a Zn-graded Loday structure on V . As π is canonical for the
Zn+1–GLA (Mr(V ), [−,−]⊗), see Theorem 7, it is clear that the cohomology of the
induced DGLA, with differential ∂π = [π,−]⊗, should roughly be the cohomology
of the considered Loday algebra.

Proposition 12. The graded Loday cohomology operator ∂π of a Loday structure
π = {−,−} on a vector space V , reads, for any B ∈ M(B,b)(V ), b ≥ −1, and any
homogeneous v1, . . . ,vb+2 ∈V ,

(∂πB)(v1, . . . ,vb+2) = (−1)b+1{B(v1, . . . ,vb+1),vb+2}−
b+1

∑
i=1

(−1)i−1(−1)〈B+v1+...+vi−1,vi〉{vi,B(v1, . . . , v̂i, . . . ,vb+1,vb+2)}

+
b+1

∑
i=1

i

∑
j=1

(−1) j+1(−1)〈v j,v j+1+...+vi〉 (2.57)

B(v1, . . . , v̂ j, . . . ,vi,{v j,vi+1},vi+2, . . . ,vb+2).

Proof. For b ≥ 0, the explicit form of ∂π is a consequence of Theorem 6.
Equation (2.57) suggests extending ∂π to M−1(V ) = V by (∂πv)(w) := π(v,w) =
{v,w}, for any v,w ∈ V . The extended operator ∂π is a cohomology operator on
M(V ), since

∂π(∂πv)(v1,v2) = −π(π(v,v1),v2)
−(−1)〈v,v1〉π(v1,π(v,v2))+π(v,π(v1,v2)) = 0,

in view of the Jacobi identity.
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Definition 12. The graded Loday cohomology of a Zn-graded Loday algebra
(V,π) is the cohomology of the complex (M(V ),∂π), where ∂π is given by Equation
(2.57).

Remark 7. In the non-graded case, Operator (2.57) coincides with the (non-
graded) Loday coboundary operator, see [DT97], and in the antisymmetric sit-
uation, it is (the opposite of) the graded Chevalley-Eilenberg differential, see
[LMS91].

2.7.2 Graded Poisson and Jacobi cohomologies

In Sections 2.4, we showed that the bracket [−,−]⊗ is a graded Lie bracket on
the (reduced) cochain space of graded Loday and graded Lie structures, which are
canonical for [−,−]⊗, so that [−,−]⊗ defines the graded Loday and Lie cohomolo-
gies.

In the following we prove that [−,−]⊗ not only restricts to the Nijenhuis-
Richardson bracket, but also to the Grabowski-Marmo bracket, see [GM03], and in
particular to the Schouten-Jacobi and Schouten brackets. More precisely, we pro-
vide evidence that the stem bracket [−,−]⊗ is a graded Lie bracket on the cochain
spaces of graded Jacobi and graded Poisson structures, that, further, these algebraic
structures are canonical with respect to [−,−]⊗, and that the stem bracket leads to
the appropriate cohomological concepts for graded Jacobi and Poisson algebras.

The Grabowski-Marmo bracket

Let us first remind that for any commutative unital ring R and any associative
commutative R-algebra A with unit 1, the A -bimodule and associative algebra
Diff(A ) =

⊕
k∈NDiffk(A ) of all differential operators on A , filtered by the “or-

der of differentiation”, can be defined algebraically, “à la Vinogradov”, see e.g.
[Kra99]. Moreover, the splitting

Diff1(A ) = A ⊕Der(A ),

given by D = D(1)+ (D−D(1)), where Der(A ) denotes the A -module and Lie
R-algebra of derivations of A , holds true. It is then clear that, for any first order
differential operator D ∈ Diff1(A ) and any “functions” v,w ∈A , we have

D(vw) = D(v)w+ vD(w)−D(1)vw.

We now recall the definitions of graded Jacobi and Poisson algebras.
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Definition 13. A graded Jacobi algebra of weight α ∈ Zn is a pair (A ,{−,−}),
where A denotes a Zn-graded commutative associative algebra with unit 1, and
where {−,−} is a bilinear bracket

{−,−} : A ×A →A ,

which

1. has weight α , i.e. {u,v} ∈A u+v+α ,

2. is graded antisymmetric, i.e.

{u,v}=−(−1)〈u+α,v+α〉{v,u}, (2.58)

3. satisfies the graded Jacobi identity, i.e.

{u,{v,w}}= {{u,v},w}+(−1)〈u+α,v+α〉{v,{u,w}}, (2.59)

and

4. verifies the generalized graded Leibniz rule, i.e.

{u,vw}= {u,v}w+(−1)〈u+α,v〉v{u,w}−{u,1}vw, (2.60)

for any u ∈A u, v ∈A v, and w ∈A w.
Similarly, a graded Poisson algebra of weight α ∈ Zn is a pair (A ,{−,−})

that verifies the same conditions 1-4, except that the associative algebra A needs
not have a unit and that the last term of Equation (2.60) is omitted.

Observe that whereas a potential weight α ∈ Zn of a graded Loday or Lie
bracket on a Zn-graded vector space V disappears via an α-shift in the grading
of V , weight α reappears for a graded Jacobi or Poisson algebra on a Zn-graded
associative algebra A , after such a shift, in the Leibniz rule,

{u,vw}= {u,v}w+(−1)〈u,v−α〉v{u,w}(−{u,1}vw).

Therefore, the two just mentioned versions of graded Jacobi (resp. Poisson)
algebras can be found in literature. Further, we cannot confine ourselves to graded
Jacobi (resp. Poisson) structures of weight α = 0.

Obviously a graded Jacobi (resp. Poisson) structure π = {−,−} of weight
α ∈ Zn is an α-antisymmetric graded first order bidifferential operator (resp.
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graded biderivation) on A (by α-antisymmetric, we mean that the exchange of
v and w does not generate the sign−(−1)〈v,w〉, but−(−1)〈v+α,w+α〉; we emphasize
this difference, which will be of importance below). It follows of course that the
appropriate graded Jacobi (resp. graded Poisson) cochains are α-antisymmetric
graded first order polydifferential operators (resp. graded polyderivations) of A .

In [GM03], the authors investigated these operators using a variant of
Krasil’shchik’s calculus, see [Kra91], which is based upon a particular bidegree
of the spaces M(A ), A(A ), or Diff1(A ) (resp. Der(A )). For instance, we denote
by M(A ) the usual vector space M(A ) with the Zn+1-gradation

M(A ) =
⊕

(A,a)∈Zn×Z
M(A+αa,a)(A ),

where M(A+αa,a)(A ) vanishes for a < −1, coincides with A A for a = −1, see
below, and is, for a ≥ 0, the space of multilinear maps A : A ×(a+1) → A that
have weight A, i.e. verify A(v1, . . . ,va+1) ∈ A v1+...+va+1+A. We denote the corre-
sponding subspaces of α-antisymmetric multilinear mappings by A(A+αa,a)(A ).
The subspaces Diff(∗,a)

1 (A ) (resp. Der(∗,a)(A )) of α-antisymmetric graded first
order (a + 1)-differential operators (resp. graded (a + 1)-derivations) on A , their
A -bimodule structures, as well as the associative graded commutative dot-product
on these subspaces will be defined inductively. These definitions are obvious, if we
keep in mind that we intend of course to construct on the graded Jacobi cochain
vector space

Diff1(A ) =
⊕

(A,a)∈Zn×Z
Diff(A+αa,a)

1 (A ),

in addition to the already mentioned dot-product, a graded Lie or even a graded
Jacobi structure [−,−]GM, just along the same lines as one defines the Schouten
bracket [−,−]SN on the space of multivector fields Γ(

∧
T M) of a smooth manifold

M, endowed with the wedge product. Thus the bracket [−,−]GM will for instance
verify the conditions [v,w]GM = 0 and [A,v]GM = A(v), with self-explaining
notations. Furthermore, the dot-product (resp. the Grabowski-Marmo bracket
[−,−]GM) will be of weight (α,1) ∈ Zn×Z (resp. (0,0) ∈ Zn×Z). In order to
define Diff(∗,a)

1 (A ) (resp. Der(∗,a)(A )), the module structures, the dot-product,
and the graded Jacobi (resp. graded Poisson) bracket, it now suffices to proceed
by induction and to just write down the properties that necessarily hold true, if
all these structures do exist. Afterwards, it then remains to show that the chosen
definitions actually fit.
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More precisely, fix α ∈ Zn and let A be an associative Zn-graded com-
mutative unital algebra with unit 1. Set Diff(∗,a)

1 (A ) = 0, for a < −1, and
Diff(A−α,−1)

1 (A ) = A A. Indeed, if there is a dot-product of weight (α,1) on
Diff1(A ) that extends the associative product on A , we have

A v+w 3 vw = v ·w ∈Diff(v−α,−1)
1 (A ) ·Diff(w−α,−1)

1 (A )
⊂Diff(v+w−α,−1)

1 (A ).

The spaces Diff(∗,a)
1 (A ), a≥ 0, are then defined inductively as the spaces that are

made up by those linear maps

A : A v 3 v→ A(v) ∈Diff(A+v+α(a−1),a−1)
1 (A )

that verify

A(vw) = A(v) ·w+(−1)〈A+αa,v−α+α〉+a(−1+1)v ·A(w)−A(1) · vw
= A(v) ·w+(−1)〈A+αa,v〉v ·A(w)−A(1) · vw

and are α-antisymmetric if viewed as bilinear maps. In this definition
A(v1)(v2, . . . ,va+1) := A(v1,v2, . . . ,va+1), the left A -module structure is defined
inductively by (v ·A)(w) = v ·A(w) and extends the associative multiplication in
A , and the right A -module structure—which will be extended by the dot-product
the weight of which will be (α,1)—is of course given by

A · v = (−1)〈A+α(a+1),v〉v ·A.

Observe that the weight of the dot-product also explains the sign in the pre-
ceding first order differential operator condition. For any a ∈ Z, the subspace
Der(∗,a)(A ) ⊂ Diff(∗,a)

1 (A ) of graded (a + 1)-derivations on A is defined as
the space of those graded first order (a + 1)-differential operators A that verify
A(1) = 0.

We eventually extend as aforementioned the associative product on A and the
A -module structures on Diff1(A ) to a weight (α,1) dot-product on Diff1(A ).
In order to find, for A ∈ Diff(A+αa,a)

1 (A ) and B ∈ Diff(B+αb,b)
1 (A ), the inductive

definition of this dot-product, we provide between parentheses the upshots that are
necessarily valid if a bracket [−,−]GM with the required properties does exist:

(A ·B)(v) ( = [A ·B,v]GM

= A · [B,v]GM +(−1)〈B+α(b+1),v−α〉+b+1[A,v]GM ·B )
:= A ·B(v)+(−1)〈B+α(b+1),v−α〉+b+1A(v) ·B.
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Proposition 13. With respect to the abovedetailed bidegree, the pair (Diff1(A ), ·)
is an associative Zn+1-graded commutative unital algebra, · has weight (α,1), and
the pair (Der(A ), ·) is a Zn+1-graded subalgebra.

For the proof of this and the next propositions, we refer the reader to [GM03]
and [Kra91].

Let us now come to the construction of the Grabowski-Marmo graded Jacobi
(resp. Poisson) bracket [−,−]GM on the graded Jacobi (resp. Poisson) cochain
algebra (Diff1(A ), ·) (resp. (Der(A ), ·)). If such a bracket actually exists, we
necessarily have

[v,w]GM = 0, [A,v]GM = A(v), [v,A]GM =−(−1)〈v−α,A+αa〉+a[A,v]GM, (2.61)

and

[A,B]GM(v) = [[A,B]GM,v]GM

= [A, [B,v]GM]GM +(−1)〈B+αb,v−α〉+b[[A,v]GM,B]GM

= [A,B(v)]GM +(−1)〈B+αb,v−α〉+b[A(v),B]GM.

(2.62)

The bracket defined inductively by Equations (2.61) and (2.62) actually fits, see
[GM03] and [Kra91]:

Theorem 10. There is a unique Zn+1-graded Jacobi bracket [−,−]GM of degree
(0,0)∈Zn×Z on the associative Zn+1-graded commutative algebra (Diff1(A ), ·)
that verifies [A,v]GM = A(v). Moreover, (Der(A ), [−,−]GM, ·) is a Zn+1-graded
Poisson algebra.

Furthermore, see again [GM03] and [Kra91],

Proposition 14. The graded Jacobi (resp. Poisson) structures of degree α ∈Zn on
the associative Zn-graded commutative unital algebra A , are exactly the canon-
ical elements of degree (2α,1) of the graded Jacobi (resp. Poisson) algebra
(Diff1(A ), [−,−]GM, ·) (resp. (Der(A ), [−,−]GM, ·)).

Note that we constructed the algebras Diff1(A ) and Der(A ) for α fixed in
Zn, and did not write Diff1;α(A ) and Derα(A ) in order to avoid overcrowded
notations. Of course, the graded algebras of Proposition 14 are exactly the just
mentioned algebras.

This result immediately leads to the proper concepts of graded Jacobi and
graded Poisson cohomologies.
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Definition 14. If π denotes a graded Jacobi (resp. Poisson) structure of weight α ∈
Zn on (the usual) algebra A , then the graded Jacobi (resp. Poisson) cohomology
of (A ,π) is the cohomology H Jac

π (A ) (resp. H Poi
π (A )) of the DGLA

(Diff1(A ),∂π = [π,−]GM, [−,−]GM)

(resp.
(Der(A ),∂π = [π,−]GM, [−,−]GM)).

Let us also recall, see [GM01] and [GM03], that in the geometric (ungraded)
situation, i.e. in the case A =C∞(M), where C∞(M) is the associative commutative
unital algebra of smooth functions of a smooth manifold M, we have

(Der(A ), [−,−]GM, ·) = (Γ(
∧

T M), [−,−]SN, ∧̃)),

where [−,−]SN denotes (up to sign) the Schouten-Nijenhuis bracket, and where
∧̃ is the reversed wedge product. Therefore, the aforedefined graded Poisson co-
homology coincides in the geometric case with the usual Poisson cohomology,
see [Vai94]. Moreover, it has been shown in [GM03] that the preceding graded
Jacobi cohomology coincides for A = C∞(M) with the standard Lichnerowicz-
Jacobi cohomology, see [Lic78], i.e. with the cohomology of the subcomplex
of 1-differentiable cochains of the Chevalley-Eilenberg complex of the Jacobi-
Lie bracket on C∞(M) endowed with the natural representation by derivations of
C∞(M).

Link with the Stem bracket

Equations (2.61) and (2.62) pertaining to uniqueness of [−,−]GM allow to ex-
plicitly compute the Grabowski-Marmo bracket and to provide evidence that this
bracket is—in the general graded nongeometric situation—the restriction of the
previously depicted stem bracket, see Equations (2.41) and (2.42).

Proposition 15. For any fixed α ∈ Zn, any A ∈ Diff(A+αa,a)
1 (A ) and any B ∈

Diff(B+αb,b)
1 (A ), the Grabowski-Marmo bracket [A,B]GM of A by B is given by

[A,B]GM = A¤B− (−1)〈A+αa,B+αb〉+abB¤A, (2.63)

where A¤B is defined inductively by

v¤w := 0, A¤v := A(v), a≥ 0, v¤A := 0, a≥ 0,
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(A¤B)(v) := A¤B(v)+(−1)〈B+αb,v−α〉+bA(v)¤B, a,b≥ 0,

for any v ∈A v, w ∈A w. Further, the explicit form of the square-product ¤ is

(A¤B) (v1, . . . ,va+b+1)
= ∑ I∪ J = N(a+b+1)

|I|= b+1, |J|= a

(−1)(I;J)ε↓V (I,J)A(B(VI),VJ), (2.64)

where vi ∈A vi , ↓V =↓ v1⊗ . . .⊗ ↓ va+b+1, and ↓ vi ∈A vi−α .

Proof. The proof of Equation (2.63) is by induction on a + b. If a + b ≤ −1,
the claim is obviously true, see Equation (2.61). Assume now that it holds true for
a + b ≤ k− 1, k ≥ 0, and show that it is still valid for a + b = k. We have, see
Equation (2.62),

[A,B]GM(v) = [A,B(v)]GM +(−1)〈B+αb,v−α〉+b[A(v),B]GM

= A¤B(v)− (−1)〈A+αa,B+v+α(b−1)〉+a(b−1)B(v)¤A
+(−1)〈B+αb,v−α〉+bA(v)¤B
−(−1)〈B+αb,v−α〉+b+〈A+v+α(a−1),B+αb〉+(a−1)bB¤A(v)

= (A¤B)(v)− (−1)〈A+αa,B+αb〉+ab(B¤A)(v).

In order to determine the explicit form (2.64) of ¤, we proceed again by induc-
tion. The announced upshot is clear for a =−1 or b =−1, hence, in particular for
a+b≤−1. Let us now assume that it is valid for a+b≤ k−1, k≥ 0, and examine
the case a+b = k. As already pointed out, if a =−1 or b =−1, our conjecture is
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verified. Otherwise, a,b≥ 0, and, if we set V ′′ = v2⊗ . . .⊗ va+b+1, we obtain

(A¤B)(v1,v2, . . . ,va+b+1)
= (A¤B(v1))(v2, . . . ,va+b+1)

+(−1)〈B+αb,v1−α〉+b(A(v1)¤B)(v2, . . . ,va+b+1)
= ∑ I∪ J = {2, . . . ,a+b+1}

|I|= b, |J|= a

(−1)(I;J)ε↓V ′′(I,J)A(B(v1,V ′′
I ),V ′′

J )

+(−1)〈B+αb,v1−α〉+b

∑ I∪ J = {2, . . . ,a+b+1}
|I|= b+1, |J|= a−1

(−1)(I;J)ε↓V ′′(I,J)A(v1,B(V ′′
I ),V ′′

J )

= ∑ . . .

+(−1)〈B+αb,v1−α〉+b+1+〈B+V ′′
I −α,v1−α〉

∑ I∪ J = {2, . . . ,a+b+1}
|I|= b+1, |J|= a−1

(−1)(I;J)ε↓V ′′(I,J)A(B(V ′′
I ),v1,V ′′

J )

= ∑ . . .

+(−1)b+1+〈V ′′
I −α(b+1),v1−α〉

∑ I∪ J = {2, . . . ,a+b+1}
|I|= b+1, |J|= a−1

(−1)(I;J)ε↓V ′′(I,J)A(B(V ′′
I ),v1,V ′′

J ).

Remark now that in the final result for which we look, I and J are two unshuffles
that form a partition of N(a+b+1), so that 1 is either the first element of I or of J .
The first term ∑ . . . (resp. second term (−1)... ∑ . . .) of the RHS of the last equation,
corresponds exactly to the first (resp. second) possibility. Indeed,

(−1)(I;J)ε↓V ′′(I,J) = (−1)(I ;J )ε↓V (I ,J )

(resp.

(−1)b+1+〈V ′′
I −α(b+1),v1−α〉(−1)(I;J)ε↓V ′′(I,J) = (−1)(I ;J )ε↓V (I ,J )),

which completes the proof.

We now explain in which sense the Grabowski-Marmo bracket coincides with
the stem bracket, which thus governs not only the graded Loday and Lie coho-
mologies, but also the graded Poisson and Jacobi cohomologies.

Remark 8. The bracket [−,−]G M on Diff1(A ), which is defined for A ∈
Diff(A+αa,a)

1 (A ) and B ∈Diff(B+αb,b)
1 (A ) by

[A,B]G M =−(−1)ab[A,B]GM, (2.65)
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is clearly a Zn+1-graded Lie bracket on the graded Jacobi and Poisson cochain
spaces, which admits these graded algebraic structures as canonical elements.
Therefore, the bracket [−,−]G M may also be used to define and compute the
graded Jacobi and Poisson cohomologies.

In the following, we denote by ↓ A the vector space A endowed with the
gradation (↓A )γ = A γ+α . Set now

A(A ) =
⊕

(A,a)∈Zn×Z
A(A+αa,a)(A )


resp. A(↓A ) =

⊕

(A,a)∈Zn×Z
A(A+αa,a)(↓A )


 ,

(2.66)

where A(A+αa,a)(A ) (resp. A(A+αa,a)(↓A )) denotes as usually the space of multi-
linear maps A : A ×(a+1) → A (resp. Ã : (↓ A )×(a+1) →↓ A ) that have weight A
(resp. A+αa), i.e.

A : A β1 × . . .×A βa+1 →A A+β1+...+βa+1

(resp.
Ã : (↓A )β1 × . . .× (↓A )βa+1 → (↓A )A+αa+β1+...+βa+1),

and that are further α-antisymmetric (resp. antisymmetric in the usual sense), i.e.

A(. . .v,w . . .) =−(−1)〈v+α,w+α〉A(. . .w,v . . .)

(resp.
Ã(. . . ṽ, w̃ . . .) =−(−1)〈ṽ,w̃〉A(. . . w̃, ṽ . . .)).

Obviously, the map ∼: A→ Ã, with Ã defined from A by

Ã(ṽ1, . . . , ṽa+1) =↓ A(↑ ṽ1, . . . ,↑ ṽa+1),

is a graded vector space isomorphism, the inverse of which is v: Ã→ A,

A(v1, . . . ,va+1) =↑ Ã(↓ v1, . . . ,↓ va+1).

The graded vector space isomorphism ∼ pulls of course the Nijenhuis-Richardson
graded Lie bracket [−,−]NR on the usual space A(↓ A ), associated with the Zn-
graded vector space ↓A , back to a graded Lie bracket

[−,−]N R =v[∼−,∼−]NR =:∼∗[−,−]NR =∼∗[−,−]⊗|A(↓A )

on A(A ).
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Theorem 11. If π denotes a graded Jacobi (resp. Poisson) structure of weight
α ∈ Zn on (the usual) algebra A , the graded Jacobi (resp. Poisson) cohomology
of (A ,π) is the cohomology of the DGLA

(Diff1(A ), [−,−]G M ,∂π = [π,−]G M )

(resp.
(Der(A ), [−,−]G M ,∂π = [π,−]G M )),

where [−,−]G M is the restriction of ∼∗ [−,−]⊗|A(↓A ) to Diff1(A ) (resp.
Der(A )), i.e. of the Nijenhuis-Richardson bracket or the (restriction of the) stem

bracket read through the canonical isomorphism ∼.

Proof. We need only check that on Diff1(A ) the bracket [−,−]G M is the
pullback [−,−]N R by ∼ of the Nijenhuis-Richardson bracket [−,−]NR on A(↓
A ). For A ∈ Diff(A+αa,a)

1 (A ) and B ∈ Diff(B+αb,b)
1 (A ), this pullback reads, see

Equations (2.17) and (2.66),

[A,B]N R =v iÃB̃− (−1)〈A+αa,B+αb〉+ab v iB̃Ã,

where

(v iB̃Ã)(VN(a+b+1))

= (−1)〈A+αa,B+αb〉∑ I∪ J = N(a+b+1)

|I|= b+1, |J|= a

(−1)(I;J)ε↓V (I,J) ↑ Ã(↓↑ B̃(↓VI),↓VJ)

= (−1)〈A+αa,B+αb〉∑ I∪ J = N(a+b+1)

|I|= b+1, |J|= a

(−1)(I;J)ε↓V (I,J)A(B(VI),VJ)

= (−1)〈A+αa,B+αb〉(A¤B)(VN(a+b+1)).

It follows that

[A,B]N R = (−1)〈A+αa,B+αb〉B¤A− (−1)abA¤B = [A,B]G M ,

see Equations (2.65) and (2.63).

Finally:

Corollary 2. The stem bracket [−,−]⊗ is, up to reading through a canonical iso-
morphism, a graded Lie bracket on the spaces of graded Loday, graded Lie, graded
Poisson, and graded Jacobi cochains, for which the corresponding algebraic struc-
tures are canonical elements, and that thus encodes the graded cohomologies of all
these structures.
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2.7.3 Strongly homotopy and graded p-ary Loday cohomologies

Since LodQ
∞ structures on a Zn-graded vector space V , Q ∈ Zn, 〈Q,Q〉 odd, are the

degree Q canonical elements π of the Zn-graded Lie algebra (C(V ), [−,−]⊗̄), we
have the natural

Definition 15. The cohomology of a Loday infinity algebra (V,π) is the cohomol-
ogy of the DGLA (C(V ), [−,−]⊗̄, [π,−]⊗̄), where the coboundary operator is, for
any ρ ∈Cρ(V ), explicitly given by

[π,ρ]⊗̄ = ∑q≥1 ∑s+t=q+1(−1)1+(s−1)〈e1,ρ〉[πs,ρt ]⊗

(and Equations (2.41) and (2.42)).

The reader might have noticed that our definition should contain the definition
of graded Loday algebra cohomology, which is a Zn+1-GLA, see Theorem 7,
whereas the Loday infinity algebra cohomology is only a Zn-GLA. The following
remarks explain inter alia how the Zn+1-gradation appears in the special case of
p-ary (and in particular binary) brackets.

1. We first examine the case π = πp, p ∈ {2,4,6, . . .}, where all but one struc-
ture maps vanish. If the odd degree Q ∈ Zn of π is chosen to be equal to (p−1)e1,
we have

π = πp ∈M(0,p−1)(V ), [πp,πp]⊗ = 0, p even. (2.67)

Let us recall that essentially two p-ary extensions of the Jacobi identity have
been investigated during the last decades by mathematicians and physicists—
mainly in the skew-symmetric setting. If [−,−, . . . ,−] denotes an p-linear
bracket on V , the first is the generalization, which requires that the adjoint action
[v1,v2, . . . ,vp−1,−] be a derivation for the p-ary bracket [w1,w2, . . . ,wp], see e.g.
[Fil85], and leads to Nambu-Lie or, in the nonantisymmetric context, to Nambu-
Loday structures, see [Nam73]. The second has been suggested by P. Michor
and A. Vinogradov, see [MV97], and has been further studied in [VV98] and
in [VV01]. We refer to this last p-ary extension as p-ary Lie or p-ary Loday
structure. An p-ary Zn-graded Lie structure on a Zn-graded vector space V is a
map Pp ∈ A(0,p−1)(V ), such that iPpPp = 0, where i is the interior product defined
in Theorem 2, or, if p is even, equivalently, such that [Pp,Pp]NR = 0. Moreover,
the cohomology of an p-ary Lie algebra (V,Pp) is the cohomology of the DGLA
(A(V ), [−,−]NR, [Pp,−]NR), see [MV97].

Analogously, we call the above structure π = πp, see Equation (2.67), an p-ary
Zn-graded Loday structure on V . The cohomology of such a structure should
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be— and has been defined in the case p = 2 (roughly) as—the cohomology of the
DGLA (Mr(V ), [−,−]⊗, [πp,−]⊗).

In the following, we show why the cohomology space of π = πp, viewed as
degree Q = (p−1)e1 Loday infinity structure, coincides with the just guessed co-
homology space of π = πp, viewed as p-ary Zn-graded Loday structure.

Let us first mention that in the case of noninfinity algebras, it is conventional
to substitute in cochain space C(V ) a direct sum for the direct product, so that

C(V ) =
⊕

s∈N∗

⊕

Q∈Zn

M(Q−(s−1)e1,s−1)(V ) =
⊕

s∈N∗
Ms−1(V ) = Mr(V ).

Hence, C(V ) coincides with vector space Mr(V ); further C(V) gets bigraded, but
its bigrading is shifted with respect to the usual bigradation

Mr(V ) =
⊕

s∈N∗

⊕

Q∈Zn

M(Q,s−1)(V )

of Mr(V ).
It is now easy to see that the cohomology spaces of

(C(V ), [−,−]⊗, [πp,−]⊗) and (Mr(V ), [−,−]⊗, [πp,−]⊗)

coincide. Indeed, if π is a LodQ
∞ structure on V (and in particular in our case π = πp)

and if ρt ∈M(ρ−(t−1)e1,t−1)(V ), we have

[π,ρt ]⊗ = ∑
q≥1

(−1)1+(q−t)〈e1,ρ〉[πq−t+1,ρt ]⊗ ∈ ∏
q≥1

M(Q+ρ−(q−1)e1,q−1)(V ), (2.68)

so that, in the case π = πp, Q = (p− 1)e1, where necessarily q = t + p− 1, the
weight of cohomology operator [πp,−]⊗ with respect to the first mentioned bi-
grading is ((p− 1)e1, p− 1). On the other hand, since πp ∈ M(0,p−1)(V ), it is
clear that the weight of cohomology operator [πp,−]⊗ with respect to the second
bigradation is (0, p−1). It follows that the cohomology spaces of (C(V ), [πp,−]⊗)
and (Mr(V ), [πp,−]⊗), say H and H, are both Zn+1-graded. Space H(ρ+(t−1)e1,t−1)

(resp. H(ρ ,t−1)) is encoded in the cocycle equation

[πp,ρt ]⊗ = 0⇔ [πp,ρt ]⊗ = 0, where ρt ∈M(ρ ,t−1)(V )

(resp.
[πp,ρt ]⊗ = 0, ρt ∈M(ρ ,t−1)(V )),
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and in the coboundary equation, which reads, as easily understood,

ρt = [πp,τ]⊗ = [πp,±τ]⊗, τ ∈M(ρ ,t−p)(V )

(resp.
ρt = [πp,τ ]⊗, τ ∈M(ρ,t−p)(V )),

for any cocycle ρt . This observation obviously entails that

H(ρ+(t−1)e1,t−1) = H(ρ ,t−1).

Eventually, as announced, the cohomology spaces H and H coincide, and their
natural GLA structures, which are induced by [−,−]⊗ and [−,−]⊗, are Zn- and
Zn+1-graded respectively.

For p = 2, we of course recover the abovedefined cohomology space of a
graded Loday algebra.

2. If π is not a sequence of all but one vanishing elements, Equation (2.68) im-
plies that the Loday infinity coboundary operator [π,−]⊗ maps M(ρ−(t−1)e1,t−1)(V )
into ∏q≥1 M(Q+ρ−(q−1)e1,q−1)(V ), so that the Loday infinity cohomology is not Z-
graded. Nevertheless, if we consider the (decreasing) filtration

Ck(V ) =
⊕

R∈Zn
∏
s≥k

M(R−(s−1)e1,s−1)(V ), k ≥ 1,

and if ρ = ∑R ∑t≥k ρR,t ∈Ck(V ), we get

[π,ρ]⊗ = ∑R ∑q≥1 ∑s+t=q+1(−1)1+(s−1)〈e1,R〉[πs,ρR,t ]⊗

∈⊕
R∈Zn ∏q≥k M(Q+R−(q−1)e1,q−1)(V ).

Indeed, as k ≤ t, we have q ≤ k− 1 ⇒ q ≤ t− 1 ⇔ s = q− t + 1 ≤ 0, so that the
sum over s, t vanishes for these q. The observation yields

[π,Ck(V )]⊗ ⊂Ck(V ).

Eventually, differential space (C(V ), [π,−]⊗) is a differential filtered module and
the theory of spectral sequences may be applied.



Chapter 3

Lie infinity algebras and
Deformation Quantization

This Chapter intends to analyze the role of L∞ algebras in deformation theory and
to review Kontsevich’s formality Theorem together with his star product formula.

We will make use of the same notations employed previously in Chapter 2.

3.1 Lie infinity algebras and their morphisms

Let V be a Zn-graded vector space, and consider the Zn-graded vector subspace

C (V ) =
⊕

Q∈Zn

C Q(V ) =
⊕

Q∈Zn
∏
s≥1

A(Q−(s−1)e1,s−1)(V )

of C(V ), which is made up by finite sums of sequences of Zn-graded skew-
symmetric multilinear maps on V , see Equation (2.16). Let [−,−]NR be the re-
striction of the Zn-graded Lie stem bracket [−,−]⊗, introduced in Equation (2.40),
to C (V ). The bracket [−,−]NR is obviously a Zn-graded Lie bracket on C (V ) and,
for any graded antisymmetric sequences π,ρ , we have

[π,ρ]NR = ∑
q≥1

∑
s+t=q+1

(−1)1+(s−1)〈e1,ρ〉[πs,ρt ]NR,

since [−,−]⊗ coincides with [−,−]NR on A(V ).

61



62 CHAPTER 3. L∞ ALGEBRAS AND DEFORMATION QUANTIZATION

If the structure maps of a Lod∞ algebra (V,π) are Zn-graded skew-symmetric,
we recover the notion of Lie infinity (L∞ for short) algebra. One easily ascertains
that the definition of L∞ algebras given in [LS93] coincides with the following

Definition 16. A given pair (V,π), made up by a Zn-graded vector space V and a
sequence

π ∈ C e1(V ) = ∏
s≥1

A((2−s)e1,s−1)(V ),

is an L∞ algebra if and only if [π,π]NR = 0, i.e. if and only if

∑
s+t=p

(−1)s[πs,πt ]NR = 0, ∀p≥ 2. (3.1)

We denote by L∞(V ) the set of L∞ structures on V .

Example 3. An L∞ algebra (V,π) reduces to a DGLA, if all structure maps πs

vanish, except π1 and π2.

Since L∞ structures on V are the degree e1 canonical elements of the Zn-graded
Lie algebra (C (V ), [−,−]NR), the cohomology of an L∞ structure π on V is the
cohomology of the DGLA (C (V ), [−,−]NR, [π,−]NR). This cohomology has been
studied in [Pen01] and used in [FP02].

Remark 9. Replacing in (3.1) bracket [−,−]NR with bracket [−,−]G, see Equa-
tion (2.15), we recover the concept of A∞ algebra [LS93] which is the homotopy
algebra that generalizes associative algebras.

We have seen that L∞ structures on V are particular Lod∞ structures on the
nonshifted side. However, on the shifted side, L∞ structures on V may also
be viewed as odd codifferentials, but of a different coalgebra, namely of the
coassociative symmetric tensor coalgebra of ↓ V . In the following, we recall this
coalgebraic description, but skip most of the proofs.

Remember that the (reduced) symmetric associative tensor algebra S(V ) is the
quotient of the (reduced) associative tensor algebra T (V ) by the ideal generated
by the elements of the form v1⊗ v2− (−1)〈v1,v2〉v2⊗ v1. The induced product on
S(V ) will be denoted by ∨. The algebra S(V ) inherits both, the Z-gradation and
the Zn-gradation. In the sequel, we consider S(V ) as a Zn-graded vector space.

Proposition 16. The coproduct

∆S : S(V )→ S(V )
⊗

S(V ),
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defined by

∆S(v1∨ . . .∨ vp) = ∑
I∪J=N(p)

I,J 6= /0

εV (I;J) VI
⊗

VJ (v` ∈V v` , p≥ 1), (3.2)

provides a graded coassociative coalgebra structure on S(V ). Here, VI = vi1∨ . . .∨
vi|I| , for any unshuffle I.

In the following theorem, we characterize the space of coderivations
CoDer(S(V )) of the coalgebra (S(V ),∆S).

Theorem 12. A homogenous coderivation QS of weight QS ∈ Zn of the coalgebra
(S(V ),∆S) is uniquely determined by its corestriction maps

QS
p : SpV ↪→ S(V )

QS

−→ S(V )
pr−→V,

via the equation

QS(v1∨ . . .∨ vp) = ∑
I∪J=N(p)

I 6= /0

εV (I;J)QS
|I|(VI)∨VJ. (3.3)

If S (V ) denotes the Zn+1-graded vector subspace of M(V ) made up by the
Zn-graded symmetric multilinear maps

A(. . . ,vi,vi+1, . . .) = (−1)〈vi,vi+1〉A(. . . ,vi+1,vi, . . .), (3.4)

then, clearly, the sequence of corestriction maps (QS
1,Q

S
2, . . .) of a coderivation QS

of weight QS ∈ Zn, is an element of the direct product space ∏s≥1 S (QS,s−1)(V ),
and the preceding proposition implies that the mapping

ψS : CoDerQS
(S(V )) 3 QS → (QS

1,Q
S
2, . . .) ∈∏

s≥1
S (QS,s−1)(V )

is a vector space isomorphism. Furthermore, since, for any ρ ∈ Zn, the maps

A(ρ−(s−1)e1,s−1)(V ) 3 A→ (−1)
s(s−1)

2 ↓ ◦A◦ ↑∨s∈S (ρ ,s−1)(↓V ), (3.5)

where s ≥ 1 and where notations are self-explaining, are vector space isomor-
phisms, their composition with (ψS)−1 provides the isomorphisms

φ S
ρ : C ρ(V ) = ∏

s≥1
A(ρ−(s−1)e1,s−1)(V )→ CoDer ρ(S(↓V )).



64 CHAPTER 3. L∞ ALGEBRAS AND DEFORMATION QUANTIZATION

Proposition 17. Let [−,−]S be the Zn-graded Lie bracket of the space of coderiva-
tions of (S(↓V ),∆S). Then, the aforementioned Zn-graded Lie bracket [−,−]NR on
C (V ) is given by

[π,ρ]NR = (φ S
π+ρ)−1[φ S

π (π),φ S
ρ (ρ)]S, π ∈ C π(V ),ρ ∈ C ρ(V ).

Consequently,

Proposition 18. A sequence π ∈ C e1(V ) is an L∞ structure on the Zn-graded vec-
tor space V if and only if the weight e1 coderivation QS := φ S

e1
(π) of (S(↓ V ),∆S)

is a codifferential.

We now introduce the notion of L∞ morphisms.

Definition 17. Let (V,QS) and (V ′,Q′S) be two L∞ algebras. An L∞ morphism
from (V,QS) to (V ′,Q′S) is a coalgebra cohomomorphism

F S : (S(↓V ),∆S)−→ (S(↓V ′),∆S),

which intertwines the codifferentials QS and Q′S, i.e. verifies

Q′SF S = F SQS. (3.6)

Proposition 19. Let V and V ′ be two Zn-graded vector spaces. A coalgebra coho-
momorphism

F S : (S(V ),∆S)−→ (S(V ′),∆S)

is uniquely determined by its corestriction maps

F S
p : SpV ↪→ S(V ) F S−−→ S(V ′)

pr−→V ′, p≥ 1,

via the equation

F S(v1∨ . . .∨ vp) =
p

∑
s=1

1
s! ∑

I1∪...∪Is=N(p)

I1,...,Is 6= /0

εV (I1; . . . ; Is)F S
|I1|(VI1)∨ . . .∨F S

|Is|(VIs),

(3.7)
where v` ∈V v` , for all ` ∈ {1, . . . , p}.

Since a coalgebra cohomomorphism F S : (S(↓ V ),∆S) → (S(↓ V ′),∆S) “is”
of course a sequence f S = ( f S

1 , f S
2 , . . .) of weight (1− s)e1, Zn−graded skew-

symmetric multilinear maps f S
s : V×s → V ′ that are defined by f S

s =↑ ◦F S
s ◦ ↓∨s,

we obtain the following equivalent interpretation of L∞ morphisms:
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Proposition 20. Let (V,πS) and (V ′,π ′S) be two L∞ algebras. An L∞ morphism
f S : (V,πS)→ (V ′,π ′S) is a sequence of Zn−graded skew-symmetric weight (1−
s)e1 multilinear maps f S

s , s ≥ 1, which satisfy conditions (2.52) (with π ′S, f S, and
πS substituted for π ′, f , and π respectively).

It follows that the category L∞ is a subcategory of the category Lod∞. Let
us recall that a subcategory of a category C is a category whose objects and
morphisms are objects and morphisms in C and that has the same composition of
morphisms and the same unit morphisms.

In the following, any DGLA (V,d,{−,−}) we consider has a weight e1 differ-
ential d, so that hence V can be seen as an L∞ algebra.

3.2 Generalized Maurer Cartan Equation

In this Section, we recall the notion of Maurer Cartan elements of L∞ algebras and
prove that this notion is preserved under the action of L∞ morphisms.

Definition 18. Let (V,d,{−,−}) be a DGLA. A Maurer Cartan element w of V is
a degree e1 element satisfying the Maurer Cartan equation (MCE for short)

d w− 1
2
{w,w}= 0. (3.8)

The MCE can naturally be generalized to an L∞ algebra (V,QS) ∼ (V,π) by
considering the equation

∑s≥1
1
s! Q

S
s (↓ w, . . . ,↓ w) = 0, (3.9)

or, equivalently,
∑s≥1

1
s!(−1)

s(s−1)
2 πs(w, . . . ,w) = 0 (3.10)

for any w ∈ V e1 , because if the L∞ algebra (V,π) is a DGLA, i.e. π1 = d,
π2 = {−,−} and π3 = π4 = . . . = 0, one recognizes the ordinary MCE (3.8).

The reader may have noticed that in equation (3.9) we encounter a convergence
problem, because this equation yields an infinite sum in the case of infinitely many
nonzero QS

` . We apply the standard solution to this problem:
Let K be a finite dimensional local K−algebra (commutative with unit), with a
nilpotent maximal ideal m, i.e. there exists N ∈ N such that mN = 0. If (V,QS) is
an L∞ algebra, then Vm := V ⊗Km has an L∞ structure given by the codifferential
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Qm of corestriction maps QS
m`, ` ≥ 1, which are the K −multilinear natural

extensions of the corestriction maps QS
` . Hence, for an element w ∈ V e1 ⊗K m,

obviously Q`(↓ w, . . . ,↓ w) = 0 if `≥ N, and so equation (3.9) makes sense.

From now on, we shall assume that any L∞ algebra (V,QS) we consider, has
been tensored with a nilpotent maximal ideal m of a finite dimensional local ring
K , and we denote the result by the same (V,QS).

Definition 19. Let (V,QS) be a nilpotent L∞ algebra. A Maurer Cartan element
w of V is a degree e1 element satisfying the generalized Maurer Cartan equation
(GMCE)

QS∗(↓ w) = ∑s≥1
1
s! Q

S
s (↓ w, . . . ,↓ w) = 0.

Remark 10. Let us mention that a modification of the Definition 16 of L∞ algebras
via the transformation πs 7→ π̃s := (−1)

s(s−1)
2 πs allows to write all terms of the equa-

tion (3.10) with +1−signs rather than the signs (−1)
s(s−1)

2 . With this modification,
the L∞ structure conditions (3.1) become

∑s+t=p(−1)s(p+1)[π̃s, π̃t ]NR = 0, ∀p≥ 2.

Henceforth, we keep the convention of signs fixed in Definition 16.

The upcoming Proposition provides an equivalent formulation for the GMCE.
Given an element v ∈V , let us denote by ev the exponential

ev = ∑s≥1
1
s! v∨ . . .∨ v︸ ︷︷ ︸

s

.

Proposition 21. A degree e1 element w of an L∞ algebra (V,QS) is a Maurer
Cartan element if and only if

QS(e↓w) = 0.

Proof. Applying (3.3), for any v ∈V 0, we have

QS(ev) = ∑i≥1
1
i! Q

S(v∨ . . .∨ v︸ ︷︷ ︸
i

)

= ∑i≥1
1
i! ∑i

j=1C j
i QS

j(v∨ . . .∨ v︸ ︷︷ ︸
j

)∨ v . . .∨ v

= QS∗(v)∨ (ev +1)
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where 1 is defined so that V∨k ∨ 1∨V∨l = V∨k+l for any k, l ≥ 0. As ev + 1 is
invertible (of inverse 1 + e−v), then, when replacing in the previous equality v by
↓ w, we get QS(e↓w) = 0 if and only if QS∗(↓ w) = 0.

We shall denote the set of Maurer Cartan elements of an L∞ algebra (V,QS) by
MC(V ).

Our next task is to prove that the set MC(V ) of an L∞ algebra (V,QS) is pre-
served under the action of L∞ morphisms. To achieve this goal, we need the fol-
lowing preliminaries.

Definition 20. An even degree element p of the coalgebra (S(↓V ),∆S) is called a
group-like element if ∆S p = p⊗ p.

Lemma 4. The set of group-like elements of S(↓ V ) is made up by elements ev,
where v is any even degree element of ↓V .

Proof. When applying (3.2), we can clearly see that ∆Sev = ev⊗ ev. Hence,
ev is a group like element. Conversely, take p ∈ S(↓ V ) as a group-like element.
Write p as the sum ∑i≥1 pi, where each pi is an even degree element in Si(↓ V ).
The equation ∆S p = p⊗ p implies that

∆S pi = ∑ j+k=i p j⊗ pk (3.11)

for any i ≥ 1. For i = 2, we get ∆S p2 = p1⊗ p1 and so, in view of the definition
of ∆S, p2 = 1

2! p1 ∨ p1. Proceeding by induction, we easily see that pi = 1
i!(p1)i.

Therefore, we get p = ep1 .

Proposition 22. Let (V,QS) and (V ′,Q′S) be two L∞ algebras and assume that an
L∞ morphism F S : (V,QS)→ (V ′,Q′S) has been defined. If w is a Maurer Cartan

element of (V,QS), then the element

F S∗ (↓ w) := ∑∞
s=1

1
s! ↑F S

s (↓ w, . . . ,↓ w) (3.12)

is a Maurer Cartan element of (V ′,Q′S).

Proof. Set w′ = F S∗ (↓ w). Observe first that w′ is a e1 degree element of V ′

since ↓ w is of degree zero and the maps F S
s , s ≥ 1, are of weight zero. We now

show that w′ satisfies the generalized Maurer Cartan Equation, or, equivalently, that
Q′S(e↓w′) = 0 (see Proposition 21).
Since F S is an L∞ morphism, i.e. F S ◦QS = Q′S ◦F S and since QS(e↓w) = 0, we
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have Q′S(F S(e↓w)) = 0. By showing that e↓w′ = F S(e↓w), we obtain the proof.
Since F S is a coalgebra cohomomorphism and since ∆S(e↓w) = e↓w⊗ e↓w, then

∆SF S(e↓w) = (F S⊗F S)∆S(e↓w) = F S(e↓w)⊗F S(e↓w)

and so F S(e↓w) is a group-like element. According to Lemma 4, F S(e↓w) is there-
fore equal to ev′ , where v′ is the projection of F S(e↓w) on ↓V ′. Using (3.7), it can
be easily checked that

v′ = ∑∞
s=1

1
s!F

S
s (↓ w, . . . ,↓ w) =↓ w′.

3.3 Twisted L∞ algebras and Twisted L∞ quasi-
isomorphisms

Referring to the papers [Ye06] and [Dol05], we recall in this Section the twisting
procedure of L∞ algebras and L∞ quasi-isomorphisms by Maurer Cartan elements.

Given an L∞ algebra (V,QS) endowed with a Maurer Cartan element w ∈V e1 ,
a new L∞ structure on V is obtained as follows:

Proposition 23. Let (V,QS) be an L∞ algebra equipped with a Maurer Cartan
element w. Define a coderivation QSw on (S(↓V ),∆S) with corestriction maps

QSw
p (↓ v1, . . . ,↓ vp) := ∑i≥0

1
i! Q

S
p+i(↓ w, . . . ,↓ w,↓ v1, . . . ,↓ vp)

for any v1, . . . ,vp ∈ V and any p ≥ 1. The pair (V,QSw) is an L∞ algebra, called
the twisted L∞ algebra of (V,QS) by the Maurer Cartan element w.

Proof. Consider the coalgebra map

Q : S(↓V )→ S(↓V )

defined by
Q := ϕ−1

w QSϕw

where ϕw is the invertible coalgebra map

ϕw : S(↓V )→ S(↓V ), X 7→ (1+ e↓w)∨X .

It is easily seen that the map Q satisfies Q2 = 0 (because Q is a codifferential)
and that its corestriction maps coincide with QSw

p for any p ≥ 1. Hence, in view
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of Theorem 12, if we prove that Q is a coderivation then QSw = Q and we can
conclude that the pair (V,QSw) is an L∞ algebra.
Let us then show that Q is a coderivation. By application of equation (3.2), a direct
computation shows that for any X ∈ S(↓V ) and any s ∈ Z

∆Sϕsw(X) = (ϕt w⊗ϕsw)∆S(X)+ e↓tw⊗ϕsw(X)+ϕsw(X)⊗ e↓sw. (3.13)

Hence, it follows that

∆S
(
Q(X)

)
= ∆S

(
ϕ−1

w
(
QSϕw (X)

))

=
(
ϕ−1

w ⊗ϕ−1
w

)(
∆S

(
QSϕw(X)

))

+e↓−w⊗ϕ−1
w

(
QSϕw (X)

)
+ϕ−1

w
(
QSϕw (X)

)⊗ e↓−w

=
(
ϕ−1

w ⊗ϕ−1
w

)((
QS⊗ id+ id⊗QS

)(
∆S (ϕw(X))

))

+e↓−w⊗ϕ−1
w

(
QSϕw (X)

)
+ϕ−1

w
(
QSϕw (X)

)⊗ e↓−w

=
(
ϕ−1

w ⊗ϕ−1
w

)

((
QS⊗ id+ id⊗QS

)(
(ϕw⊗ϕw)∆S (X)+ e↓w⊗ϕw (X)+ϕw (X)⊗ e↓w

))

+e↓−w⊗ϕ−1
w

(
QSϕw (X)

)
+ϕ−1

w
(
QSϕw (X)

)⊗ e↓−w

=
(

QS⊗ id+ id⊗QS
)(

∆S (X)
)
,

where in the last equality we use the propriety QS(e↓w) = 0 (w is a Maurer Cartan
element) as well as the following obvious identity

ϕ−1
w (e↓w) =−e↓−w.

Example 4. Let (V,QS)∼ (V,π) be an L∞ algebra equipped with a Maurer Cartan
element w. If (V,π) is a DGLA (V,d,{−,−}), then the twisted DGLA of (V,π) by
w is the DGLA (V,d−{w,−},{−,−}).
Proposition 24. Let (V,QS) and (V ′,Q′S) be two L∞ algebras and assume that an
L∞ quasi-isomorphism F S : (V,QS)→ (V ′,Q′S) has been defined. Set an element

w ∈MC(V ) and let w′ = F S∗ (↓ w) be the element of MC(V ′) as defined in Propo-
sition 22. Let (V,QSw) and (V ′,Q′Sw′) be respectively the twisted L∞ algebra of
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(V,QS) and (V ′,Q′S) by the Maurer Cartan elements w and w′. Then the sequence
of maps

F Sw
s (↓ v1, . . . ,↓ vp) := ∑i≥0

1
i!F

S
s+i(↓ w, . . . ,↓ w,↓ v1, . . . ,↓ vs), s≥ 1 (3.14)

defines an L∞ quasi-morphism F Sw from (V,QSw) to (V ′,Q′Sw′), called the twisted
L∞ quasi-morphism of the L∞ quasi-morphism F S by w.

Proof. Set F := ϕ−1
w′ F Sϕw. As F S is an L∞ morphism, then FQSw = Q′Sw′F .

By application of equation (3.13), and by using similar reasoning developed in the
previous proof, we see that

∆SF = (F ⊗F )∆S.

Hence, F is an L∞ morphism from (V,QSw) to (V ′,Q′Sw′). Moreover, as the
corestriction maps of F are exactly F Sw

p , p ≥ 1, then F Sw = F is an L∞
morphism. By application of spectral sequence arguments it can be shown that
F Sw is an L∞ quasi-isomorphism (i.e. (F Sw

1 )] is an isomorphism between the
corresponding cohomology). We refer the reader to [Dol05].

Dolgushev [Dol05] used this twisting technique in his globalization procedure
for the local Kontsevich’s formality onRd . Chapter 4 will review this construction.
We will see next that this technique is also useful for investigating some proprieties
of the Moduli space of L∞ algebras.

3.4 Moduli space of L∞ algebras

Let K[[t]] be the space of polynomials in the parameter t with coefficients in K.

Definition 21. Given an L∞ algebra (V,QS), two elements w0 ∈MC(V ) and w1 ∈
MC(V ) are called gauge equivalent if and only if there exists an element u(t) ∈
V 0⊗K[[t]] such that

d
dt ↓ w(t) = QSw(t)

1 (↓ u(t)) = ∑i≥0
1
i! Q

S
1+i(↓ w(t), . . . ,↓ w(t)︸ ︷︷ ︸

i

,↓ u(t)) (3.15)

where w(t) lies in MC(V ⊗K[[t]]) satisfying w(0) = w0 and w(1) = w1.

Here, V ⊗K[[t]] inherits the L∞ structure of V with obvious manner.
Clearly, this gauge transformation is an equivalence relation and we can there-

fore define
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Definition 22. Given an L∞ algebra (V,QS), the set of gauge equivalence classes
of MC(V ) is the moduli space

M (V ) := MC(V )/∼,

where ∼ is the gauge equivalence in Definition 21.

A geometric meaning of the gauge equivalence was given in terms of the
language of Q−manifold, see [Kon03]; we will not discuss this point further.
However, let us explain why the moduli space M (V ) in the sense of L∞ algebras
coincides with the “ordinary” well known moduli space Def(V ) in the sense of
DGLAs.

Let us first recall the definition of the space Def(V ) of any DGLA
(V,d,{−,−}). Just as for the space M (V ), Def(V ) of a given DGLA V is com-
posed by the set of Maurer Cartan elements, but modulo the gauge group action.
The gauge group of the DGLA V is the group G(V ) = exp(V 0), where the multi-
plication is given by the Baker-Campbell-Hausdorff formula:

exp(u) exp(v) = exp(H(u,v)),

where
H(u,v) = u+ v+

1
2
{u,v}+ . . .

for any u,v ∈V 0. Note that this product is well defined since V is actually V ⊗Km
and m is nilpotent. The group G(V ) acts on V e1 by

exp(u).w = exp(adu)w+∑i≥0
(adu)i

(i+1)! du (3.16)

for any u∈V 0 and w∈V e1 . It is quite easy to show that this action preserves the set
MC(V ). Indeed, if we assume that {d,d} = 0 and {x,d} = {d,x} = (−1)〈e1,x〉dx
for any x in V 0 or in V 1, then the MCE (3.8) reads

{d +w,d +w}= 0

and the gauge group action (3.16) can be written as

exp(u).w+d = exp(adu)(w+d).

Moreover, since exp(adu) is a Lie algebra morphism (see Lemma 1), then for any
w ∈MC(V )

{d + exp(u).w,d + exp(u).w} = {exp(adu)(w+d), exp(adu)(w+d)}
= exp(adu)({w+d,w+d}) = 0.
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Thus, we define the moduli space of the DGLA V as the quotient Def(V ) =
MC(V )/G(V ).

Proposition 25. If (V,QS)∼ (V,d,{−,−}) is a DGLA, then M (V ) = Def(V ).

Proof. Let w0 and w1 be two elements of MC(V ) that are gauge equivalent by
means of the gauge group action, i.e. there is u ∈ V 0 so that w1 = exp(u).w0. We
want to show that w0 and w1 are gauge equivalent in the sense of L∞ algebras as in
Definition 21. When taking u = u(t) and w(t) = exp(tu).w0, we get

d
dt
↓ w(t) =

d
dt
↓ (exp(ad tu)(w0 +d)−d)

= ↓ {u, exp(ad tu)(w0 +d)}
= ↓ d u+ ↓ {u,w(t)}=↓ d u− ↓ {wt ,u}
= QS

1(↓ u)+QS
2(↓ w(t),↓ u)

where in the last equality we use d =↑ Q1 ↓ and {−,−} =↑ Q2 ↓∨2—see Propo-
sition 18. This proves that a gauge equivalence in the sense of DGLAs implies a
gauge equivalence in the sense of L∞ algebras.
Conversely, suppose now that w0 and w1 are equivalent in the sense of L∞ algebras,
i.e. there is u(t) ∈V 0⊗K[[t]] so that

d
dt
↓ w(t) = QS

1(↓ u(t))+QS
2(↓ w(t),↓ u(t)),

where w(t) ∈ MC(V ⊗K[[t]]) satisfies w(0) = w0 and w(1) = w1. As previously
shown,

d
dt

w(t) = d u(t)+{u(t),w(t)}= {u(t),w(t)+d}

and so

d
dt

(w(t)+d) = {u(t),w(t)+d}.

It follows that w(t) = exp(adu(t))(w0)− d = exp(u(t)).w0 is a solution for the
above differential equation. Hence w1 = exp(u(1)).w0 and so w0 and w1 are equiv-
alent by means of the gauge group action (3.16). We conclude therefore that
Def(V ) = M (V ).

Example 5. The moduli space of a contractible L∞ algebra (V,QS) is trivial. In-
deed, since the set of Maurer Cartan elements is

MC(V ) = {w ∈V e1 ; QS
1(↓ w) = 0}
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and because the cohomology space H(V,QS
1) is trivial, there exists u ∈ V 0 so that

QS
1(↓ u) =↓ w. As the element w(t) = tw lies in MC(V ⊗K[[t]]), then equation

(3.15) implies that the class of w = w(1) in M (V ) is that of w(0) = 0.

Example 6. Let (V,QS) and (V ′,Q′S) be two L∞ algebras. Consider (V ⊕V ′,QS⊕
Q′S) the direct sum L∞ algebra of (V,QS) and (V ′,Q′S), where QS ⊕Q′S is the
codifferential defined by

QS⊕Q′S |S(↓V ) = QS, QS⊕Q′S |S(↓V ′) = Q′S and QS⊕Q′S |S(↓V )∨S(↓V ′) = 0.

Then

M (V ⊕V ′)∼= M (V )×M (V ′).

Indeed, by definition of the direct sum L∞ algebra, it is clear that MC(V ⊕V ′) ∼=
MC(V )×MC(V ′). Moreover, this factorization is preserved by the gauge equiv-
alence because the twisted L∞ algebra of the L∞ algebra (V ⊕V ′,QS ⊕Q′S) by
an element w + w′ ∈ MC(V ⊕V ′) is nothing else than the direct sum L∞ algebra
(V ⊕V ′,QSw ⊕Q′Sw′) of the twisted L∞ algebras (V,QSw) and (V ′,Q′Sw′). This
proves the claim.

Subsequently, we shall show that the gauge equivalence is preserved under the
action of L∞ morphisms.

According to Proposition 22, any L∞ morphism F S : (V,QS) → (V ′,Q′S) in-
duces a well defined map F S∗ : MC(V ) → MC(V ′) which assigns the element
F S∗ (↓ w) ∈MC(V ′) given in (3.12) to any element w ∈MC(V ). Moreover

Proposition 26. The map F S∗ descends to the quotients by the gauge equivalence,
providing a well defined map MF S∗ : M (V )→M (V ′) between the corresponding
moduli spaces.

This result raises from

Lemma 5. Set w0,w1 ∈MC(V ). If w0 ∼ w1, then F S∗ (↓ w0)∼F S∗ (↓ w1).

Proof. Assume that w1 ∼ w2 and consider an element w(t) ∈ MC(V ⊗K[[t]])
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and an element u(t) ∈V 0⊗K[[t]] as in Definition 21. It is easily seen that

d
dt
↓F S

∗ (↓ w(t)) = ∑
s≥1

1
s!

d
dt

F S
s (↓ w(t), . . . ,↓ w(t))

= ∑
s≥1

1
(s−1)!

F S
s

(
d
dt
↓ w(t),↓ w(t) . . . ,↓ w(t)

)

= ∑
s≥0

1
s!

F S
1+s

(
QSw(t)

1 (↓ u(t)),↓ w(t), . . . ,↓ w(t)
)

(∗)
= F

Sw(t)
1

(
QSw(t)

1 (↓ u(t))
)

,

where at (∗) we use equation (3.14). Moreover, from Proposition 24, we know
that F Sw(t) is an L∞ morphism from the twisted L∞ algebra (V ⊗K[[t]],QSw(t)) to
the twisted L∞ algebra (V ′⊗K[[t]],Q′Sw′(t)), where w′(t) = F S∗ (↓ w(t)). Thus, it
follows that F

Sw(t)
1 QSw(t)

1 = QSw′(t)
1 F

Sw(t)
1 and so

d
dt
↓F S

∗ (↓ w(t)) = QSw′(t)
1

(
F

Sw(t)
1 (↓ u(t))

)
.

This entails that F S∗ (↓ w0)∼F S∗ (↓ w1) and proves the Proposition.

With this premise, we are finally prepared to prove the main Theorem and shall
also later explain its crucial role for deformation theory.

Theorem 13. Let (V,QS) and (V ′,Q′S) be two L∞ algebras and assume that an L∞
quasi-morphism F S : (V,QS)→ (V ′,Q′S) has been defined. The mapping MF S∗ :
M (V )→M (V ′) is an isomorphism.

Proof. By application of the minimal model Theorem, V (resp. V ′) is L∞
isomorphic to the direct sum Vm ⊕Vc (resp. V ′

m ⊕V ′
c) of a minimal L∞ alge-

bra Vm (resp. V ′
m) and a contractible L∞ algebra Vc (resp. V ′

c). Composing the
aforementioned two L∞ isomorphisms with the considered L∞ quasi-morphism
F S : (V,QS)→ (V ′,Q′S), we get an L∞ quasi-morphism from Vm⊕Vc to V ′

m⊕V ′
c ,

which will also be denoted by F S. The composition of the following L∞ quasi-
morphisms

Vm
ιm
↪→Vm⊕Vc

F S→ V ′
m⊕V ′

c
P′m³ V ′

m,

provides an L∞ quasi-morphism F Sm : Vm →V ′
m, which is actually an L∞ isomor-

phism (see the proof of Theorem 8). Thus, the induced composition

M (Vm)
M ιm∗
↪→ M (Vm)×M (Vc)

MF S∗→ M (V ′
m)×M (V ′

c)
M Pm∗³ M (V ′

m)
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is the induced isomorphism MF Sm : M (Vm) → M (V ′
m). Moreover, as seen in

Example 5, both M (Vc) and M (V ′
c) are trivial. Thus, M ιm∗ and M Pm∗ are two

isomorphisms. This entails that MF S∗ is an isomorphism and completes the proof
of the Theorem.

3.4.1 Application: Moduli space of a canonical element

Let us consider a GLA (g,{−,−}) endowed with a e1 degree canonical element π .
Remember that the triple (g,∂π ,{−,−}) is a DGLA with ∂π being the Hamiltonian
differential {π,−}, and that this DGLA structure induces a formal DGLA (g⊗
νK[[ν ]],∂π ,{−,−}) in an obvious manner. Remember also that a formal series

πν = π +∑i≥1 ν iπi ∈ ge1 ⊗K[[ν ]]

is a formal deformation of π if and only if

∂π(πp)+ 1
2 ∑i+ j=p{πi,π j}= 0, ∀p≥ 1,

i.e. if and only if
∂πCπ + 1

2{Cπ ,Cπ}= 0, (3.17)

where Cπ is the formal series

Cπ := ∑i≥1 ν iπi ∈ ge1 ⊗νK[[ν ]].

When modifying the formal DGLA structure of g⊗νK[[ν ]] by setting

{−,−}− :=−1×{−,−}, (3.18)

then, in view of equation (3.17), Cπ is a Maurer Cartan element of the formal
DGLA g− := (g⊗νK[[ν ]],∂π ,{−,−}−).

This allows concluding that the set of Maurer Cartan elements MC(g−) of the
formal DGLA g− encodes all formal deformations of π .

Let us now consider two equivalent formal deformations π ′ν and πν of π in the
sense of Definition 5, i.e. there is a formal series χν ∈ g0⊗K[[ν ]] so that

π ′ν = exp(ad χν) πν = exp(ad− ξν) πν , (3.19)

where ξν = −χν and ad− ξν = {ξν ,−}−. When writing π ′ν = π +C′π , it follows,
as seen previously, that C′π ∈ MC(g−) and, moreover, C′π satisfies

C′π = exp(ad− ξν)Cπ +∑i≥0
(ad− ξν )i

(i+1)! ∂πξν .
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This defines an equivalence between Maurer Cartan elements of MC(g−).
This equivalence is clearly similar to the gauge equivalence defined in equa-
tion (3.16) with the only difference being that the Lie algebra νg0[[ν ]] is not
nilpotent. Nevertheless, we can formally define the gauge group as the set
G(g−) := exp(g0 ⊗ νK[[ν ]]) and introduce a well defined product taking (for-
mally) the Baker-Campbell-Hausdorff formula. Therefore, the moduli space of
the formal DGLA g− is the quotient Def(g−) := MC(g−)/G(g−) made up by the
set of all classes of formal deformations of the canonical element π .

If g is the GLA (Mr(V ), [−,−]⊗) (resp. (M(V ), [−,−]G), (A(V ), [−,−]NR),
(Diff1(V ), [−,−]NR), (Der(V ), [−,−]SN)) and π is a graded Loday structure
(resp. a graded associative structure, a graded Lie structure, a 0−weight graded
Jacobi structure, a 0−weight graded Poisson structure) on V , then Def(g−)
represents the classes of all formal deformations of π , where g− is the for-
mal DGLA (g ⊗ νK[[ν ]],∂π , [−,−]⊗−) (resp. (M(V ),∂π , [−,−]G−),. . .) with
[−,−]⊗− =−1× [−,−]⊗ ( resp. [−,−]G− =−1× [−,−]G, . . .).
As it is easily understood from the above discussion, we modify the original GLA
by multiplying the bracket by −1 in order to get the right sign in the Maurer
Cartan Equation (3.8).

We have now seen two points of view on how to control formal deformations:
firstly, the cohomological approach given in Section 2.2, and secondly, in terms
of the corresponding modulo space. The second point of view has been revealed
as being more efficient for building equivalence between two different deforma-
tion problems; more particularly, if the corresponding formal DGLAs of the two
deformation problems are quasi-isomorphic as L∞ algebras then, by application of
Theorem 13, the corresponding moduli spaces of the two (formal) induced DGLAs
are isomorphic. This was one of the main ingredients used by Kontsevich to build
a one-to-one correspondence between formal Poisson structures and star products
on Poisson manifolds, as we will discuss in the next Section.

3.5 Deformation quantization of Poisson manifolds

This Section aims to review the relationship between the above studied algebraic
tools and Kontsevich’s proof of the existence of deformation quantization on
Poisson manifolds and their classifications.

Let us recall some necessary notions and preliminaries. Let M be a smooth
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manifold. Let C∞(M) be the commutative associative algebra of K-valued smooth
functions on M and denote µ the pointwise multiplication of functions.

3.5.1 Formal Poisson structure

Definition 23. A smooth manifold M is called a Poisson manifold if
(C∞(M),{−,−}) is a (0−graded) Poisson algebra.

Proposition 27. Poisson structures {−,−} on C∞(M) are in one-to-one corre-
spondence with Poisson bivectors fields, i.e. smooth sections of Λ ∈ Γ(M,∧2T M)
satisfying [Λ,Λ]SN = 0.

Before proving this Proposition, let us remember the explicit formula of the
Schouten-Nijenhuis bracket [−,−]SN . For Xi,Yj ∈ Γ(M,∧1T M), the bracket of the
two polyvectorfields X1∧ . . .∧Xp ∈ Γ(M,∧pT M) and Y1∧ . . .∧Yq ∈ Γ(M,∧qT M),
p,q≥ 1, is defined by

[X1∧ . . .∧Xp,Y1∧ . . .∧Yq]SN

= ∑1≤i≤p
1≤ j≤q

(−1)i+ j[Xi,Yj]∧X1∧ . . .∧ X̂i∧ . . .∧Xp∧Y1∧ . . .∧ Ŷj ∧ . . .∧Yq,

and for any u ∈C∞(M)

[X1∧ . . .∧Xp,u]SN = ∑1≤i≤p(−1)i+1[Xi,u]∧X1∧ . . .∧ X̂i∧ . . .∧Xp

where [−,−] is the Lie bracket on vectorfields.

Proof. Any bivector Λ ∈ T 1
poly defines a bracket {−,−} on C∞(M) via the

pairing between exterior powers of the tangent and the cotangent space

{u,v} := 〈Λ,du∧dv〉, u,v ∈C∞(M),

where d denotes the exterior derivative. Clearly, bracket {−,−} satisfies all the
axioms of a Poisson algebra except for the Jacobi identity. But, if P is equal to
Λ = ∑i, j Λi j∂i∧∂ j in local coordinates xi of M, where ∂i = ∂/∂xi , then

{u,{v,w}}+{v,{w,u}}+{w,{u,v}}= 0

⇔ Λir∂r(Λ jk)(∂i(u)∂ j(v)∂k(w)+∂i(v)∂ j(w)∂k(u)+∂i(w)∂ j(u)∂k(v)) = 0

⇔ Λir∂r(Λ jk)∂i∧∂ j ∧∂k = 0

⇔ [Λ,Λ]SN = 0.
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We pointed out in Section 2.7.2 that the Z−graded vector space of polyvector-
fields

Tpoly(M) :=
⊕

k≥−1

T k
poly, T k

poly = Γ(M,∧k+1T M),

endowed with the Schouten-Nijenhuis bracket is a GLA. The GLA Tpoly(M) is then
turned into a DGLA with the differential d = 0.

Definition 24. A formal Poisson bivector Λν is a formal series Λν := ∑i≥1 ν iΛi ∈
T 1

poly⊗νK[[ν ]] satisfying
[Λν ,Λν ]SN = 0.

Mark that the first term Λ1 of a formal Poisson bivector Λν has to be a Poisson
bivector field because if one expands the previous equality in terms of powers of
ν , the lowest identity reads [Λ1,Λ1]SN = 0.

As previously, let us denote by T−poly(M) the DGLA (Tpoly(M) ⊗
νK[[ν]],0, [−,−]SN−) where [−,−]SN− =−1× [−,−]SN .

Proposition 28. The moduli space M (T−poly(M)) is made up by classes of formal
Poisson bivectors.

Proof. Obviously, the set MC(T−poly(M)) is made up by formal Poisson
bivectors. The gauge group in this case is G(T−poly(M)) = exp(T 0

poly⊗νK[[ν]]) and
the action is given by formal vector fields Xν ∈ T 0

poly⊗ νK[[ν]], where the action
is as defined in (3.16), with the only difference being that the second term in the
RHS vanishes because d = 0.

The reader may have noticed that here, the multiplication of [−,−]SN by −1
was not applied in order to obtain the right sign in the Maurer Cartan equation, as
d = 0, but rather so to end up with homogenous notations.

3.5.2 Star products on Poisson manifold

Definition 25. [BFFLS78] Let (M,Λ) be a Poisson manifold. A differential star
product (also called deformation quantization) on M is a bilinear map

∗ : C∞(M)×C∞(M)→C∞(M)[[ν ]] (u,v)→ u∗ v := µ(u,v)+∑r≥1 νrCr(u,v),

such that

1. itsK[[ν ]]-bilinear extension is an associative product (u∗v)∗w = u∗(v∗w);
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2. C1(u,v)−C1(v,u) = 2Λ(du,dv);

3. each Cr is a bidifferential operator vanishing on constants.

Example 7. The basic example of a star product is the Moyal product for a con-
stant Poisson structure Λ on Rd .
Let

Λ = Λi j∂i∧∂ j

where we are using the Einstein summation convention, ∂i = ∂/∂xi , and the xi are
coordinates on Rd , i = 1, . . . ,d.
The Poisson bivector Λ can be viewed as a bidifferential operator given by

Λ̃(u,v) = 2Λi j(
←−
∂ i
−→
∂ j)(u,v)

where the operator
←−
∂ i (resp.

−→
∂ j) acts on u (resp. on v). The Moyal product is

then given by exponentiating 1
2 Λ̃:

u∗M v = exp(ν Λi j←−∂ i
−→
∂ j)(u,v)

= µ(u,v)+νΛi1i2
←−
∂ i1(u)

−→
∂ i2(v)+

ν2

2!
Λi1i2Λi3i4

←−
∂ i1
←−
∂ i3(u)

−→
∂ i2
−→
∂ i4(v)+ . . . .

Definition 26. Two differential star products ∗ and ∗′ on a Poisson manifold M are
said to be equivalent if there exists a formal series

Tν = id+∑r≥1 νrTr,

where each Tr is a differential operator, such that

u∗′ v = T−1
ν (Tν(u)∗Tν(v)) (3.20)

for any u,v ∈C∞(M). Here, T−1
ν stands for the inverse of the formal series Tν .

Equivalence classes of a star product on a Poisson manifold can also be en-
coded in the moduli space of the DGLA of polydifferential operators. Recall that
the Z−graded vector space of polydifferential operators is

Dpoly(M) =
⊕

i∈Z
Di

poly

where
Di

poly ⊂M(0,i+1)(A ), A := C∞(M)

consists of polydifferential operators acting on smooth functions of M. Be aware
that M(0,i+1) denotes the space of 0−weight (i+1)−multilinear maps and M stands
for a smooth manifold.
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Proposition 29. The triple (Dpoly(M),∂µ , [−,−]G) is a differential graded Lie
subalgebra of the DGLA (M(A ),∂µ , [−,−]G), recalled in Section 2.2.2. We call
(Dpoly(M),∂µ , [−,−]G) the DGLA of polydifferential operators.

Proof. It is clear that Dpoly(M) is closed under the Gerstenhaber bracket
[−,−]G and also under the Hochschild differential ∂µ = [µ,−]G, because µ is
viewed as a differential operator of order 0.

Let D−
poly(M) be the DGLA (Dpoly(M) ⊗ νK[[ν ]],∂µ , [−,−]G−) where

[−,−]G− :=−1× [−,−]G.

Proposition 30. The moduli space M (D−
poly(M)) represents equivalence classes

of star products on M.

Proof. Since µ is a canonical element of the GLA Dpoly(M), any star product
on a Poisson M is simply a formal deformation of the pointwise product µ (in the
direction of the Poisson bracket {−,−}). Hence, in view of subsection 3.4.1, the
set MC(D−

poly(M)) contains star products on the Poisson manifold M.
Observe now that for any formal series Tν = id+∑r≥1 νrTr of differential oper-
ators, there exists a formal series ξν = ∑r≥1 νrξr of differential operators so that
Tν = exp(ξν). Hence, two star products ∗ and ∗′ are equivalent via the formal
series Tν if

u∗′ v = T−1
ν (Tν(u)∗Tν(v)) = exp(−ξν)(exp(ξν)(u)∗ exp(ξν)(v)).

But, as it easily checked, the previous equality entails

∗′ := exp(ad− ξν)∗ .

Because we find that this result puts us in the exact situation of subsection 3.4.1,
we can conclude the end of the Proof.

If we now assume the existence of an L∞ morphism

f S ∼F S : (Tpoly(M),0, [−,−]SN−)∼ (Tpoly(M),QS
T )

−→ (Dpoly(M),∂µ , [−,−]G−)∼ (Dpoly(M),QS
D)

(where the notations are those of Section 3.1), then there is a canonical way to
prove the existence of a star product of a given Poisson manifold (M,Λ).
Indeed, observe first that the L∞ morphism f S ∼F S can be naturally extended to
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the formal DGLA T−poly(M)∼ (Tpoly(M)⊗νK[[ν ]],QS
T ) by ν− linearity. Moreover,

as νΛ ∈MC(T−poly(M)), it follows from Proposition 22 that the element

F S∗ (ν ↓ Λ) = ∑∞
s=1 ↑ νs

s! F
S
s (↓ Λ, . . . ,↓ Λ)

is a Maurer Cartan element of the set MC(D−
poly(M)); remember that this set en-

codes the existence of star products. Thus, we obtain a star product ∗ on the Poisson
manifold (M,Λ), given by

∗ := ∑∞
s=0

νs

s! (−1)
s(s−1)

2 f S
s (Λ, . . . ,Λ)

where f0 is the pointwise product µ; remember that F S
s = (−1)

s(s−1)
2 ↑ f S

s ↓∨s.
Moreover, if f S ∼ F S is an L∞ quasi-isomorphism, it follows from Proposition
28, Proposition 30 and Theorem 13, that there is a one-to-one correspondence
between formal Poisson structures and star products.

Therefore, after having constructed an L∞ quasi-isomorphism from the DGLA
(Tpoly(M),0, [−,−]SN−) to the DGLA (Dpoly(M),∂µ , [−,−]G−), the problem of ex-
istence and classification of star products on a Poisson manifold M is solved. Such
an L∞ quasi-isomorphism was constructed by Kontsevich [Kon03] through the so
called formality Theorem.

Theorem 14. There exists an L∞ quasi-isomorphism from the DGLA
(Tpoly(M),0, [−,−]SN−) to the DGLA (Dpoly(M),∂µ , [−,−]G−).

Kontsevich proved this Theorem in two steps. First, he gave an explicit for-
mula for an L∞ quasi-isomorphism from the DGLA (Tpoly(M),0, [−,−]SN−) to the
DGLA (Dpoly(M),∂µ , [−,−]G−) assuming that M = Rd . He then globalized this
formula on a general manifold using abstract arguments. The upcoming subsection
will be concerned with outlining the first of Kontsevich’s steps as well as looking
at his explicit formula of a star product on Rd . The second step will be elaborated
in Chapter 4 through the angle of a more direct construction provided in [Dol05].

3.5.3 On the formality Theorem on Rd

Kontsevich’s star product on Rd

Kontsevich’s first main idea for constructing a star product on Rd was to provide a
graphical representation for bidifferential operators. For the better comprehension
of this procedure we go back to the basic example of the Moyal product introduced
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in Example 7. Its graphical illustration reveals the following figure

u∗M v :=
• •
u v

+ν
••

◦Λ
i1i2

1 2

u v
® U

+ν2

2! • •
u v

◦Λi1i2
◦Λi3i4

?
1

R
2

ª3 ?
4

. . .

. . .+νn

n!
• •
u v

◦Λi1i2

?

1
s

2
◦Λi3i4

® s

4
. . . . . . ◦Λ

in−1in

¼ ?
n

n−1
. . .

. . .

Figure 1: A graphical representation of the Moyal star product.

where Λi`i`+1 are the components of the Poisson bivector field Λ and where
the left (resp. right) arrow↙ (resp. ↘) emerging from the vertex Λi`i`+1 represents←−
∂ i` (resp.

−→
∂ i`+1) acting on u (resp. on v).

When writing the Moyal product with a non-constant Poisson bivector, we
loose the associativity already at the power 2 in the formal parameter ν . Never-
theless, it can be shown that a modification of the term in ν2 of ∗M yields a star
product on (Rd ,Λ) up to order 2 given by

u∗2 v = µ(u,v)+νΛi1i2∂i(u)∂ j(v)+

ν2

2 Λi1i2Λi3i4∂ 2
i1i3(u)∂ 2

i2i4(v)+ ν2

3 Λi1i2∂i2Λi3i4(∂ 2
i1i3u∂i4v+∂i4u∂ 2

i1i3v)︸ ︷︷ ︸
O

,
(3.21)

see [Kon03]. Hereafter, we omit the arrow in ∂ .
The function (bidifferential operator) O in the previous equation produces

another type of graphs in which the arrows also end in vertices of type ◦:

• •
u v

◦Λi1i2
◦Λ

i3i4

1
-2

ª3 ?

4
?

+
• •
u v

◦Λi3i4
◦Λ

i1i2

4
R

2¾

3 ?

1
?

Figure 2

When trying to extend ∗2 to the order 3 in ν by using the “classical” method,
namely the cohomological obstruction method, one can easily see that any bidif-
ferential operator that may appear in the formula of a star product, is represented
by special graphs:

(a) All edges start from a vertex of the type ◦.
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(b) There are no loops, i.e. edges start and end at the same vertex

(c) There are 8 vertices and 6 edges; (mark that the p−th term (graph) of the Moyal
product contain p+2 vertices and 2p edges).

However, particular care has to be devoted to the numerical coefficients assigned
to these graphs so that the associativity holds up to order 3. One has to take into
account the Jacobi identity and symmetries; e.g. the Jacobi identity creates the
factor 1

3 in (3.21). Computations of these numerical coefficients are already quite
long and delicate for the order 3; these coefficients can be found in Theorem 1 of
Chapter 4, where we explicitly constructed a star product up to order 3 on a general
Poisson manifold.
In view of the above discussion, a natural question arises:
Can we introduce an appropriate set of (suitable) graphs, and is there a natural
way of assigning numerical coefficients or weights to graphs so that a weighted
sum for all (suitable) graphs will yield a star product? The following Theorem by
Kontsevich [Kon03] shows that the answer is yes.

Theorem 15. Let Λ be a Poisson bivector field on Rd . The formula

u∗K v = µ(u,v)+
∞

∑
p=1

ν p ∑
Γ∈Gp,2

WΓ fΓ(Λ, . . . ,Λ︸ ︷︷ ︸
p

)(u,v)

defines a star product on (Rd,Λ) for any u,v ∈C∞(Rd).

In this formula, Gp,2 denotes a subset of the set of graphs, the so called
admissible graph, with n + 2 vertices and 2n edges. The bidifferential operators
fΓ(Λ, . . . ,Λ) are constructed from the graph Γ, and WΓ are numerical coefficients
obtained as integrals over certain configuration spaces of a differential form
depending on Γ.

Our focus turns to introducing the set of graphs Gp,2 to a more general setting,
namely to the context of the formality Theorem. We shall also look closely at the
operators fΓ since we will require their descriptions in Chapter 4. For a detailed
explanation of the configuration spaces and the coefficients WΓ, we refer the reader
to [AMM02]. The proof of the Theorem 15 was given in [Kon03], [AMM02] and
many references therein.

Admissible graphs

Definition 27. An oriented graph Γ is a pair (V (Γ),E(Γ)) of two finite sets such
that E(Γ) is a subset of V (Γ)×V (Γ).
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Elements of V (Γ) are the vertices of Γ, and elements of E(Γ) are its edges.
For e = (v1,v2) ∈ E(Γ) we say that e starts at v1 and ends at v2. The set of edges
starting (resp. ending) at a given vertex v will be denoted by Star(v) (resp. End(v)).

Definition 28. The set Gp,q, p,q ≥ 0 of admissible graphs consists of oriented
graphs satisfying the following proprieties:

• The set of vertices V (Γ) is decomposed into two ordered subsets V1(Γ) =
{a1,a2, . . . ,ap} and V2(Γ) = {b1,b2, . . . ,bq} whose elements are called re-
spectively vertices of the first type (aerial vertices) and vertices of the second
type (ground vertices).

• The number of vertices of the two types verifies 2p+q−2≥ 0.

• All edges in E(Γ) start from a vertex of the first type.

• The edges emanating from a vertex a` can land on any vertex other than a`

itself, i.e. for every a` ∈V1(Γ) the pair (a`,a`) /∈ E(Γ) (no loops).

• The set of edges EΓ is endowed with a total order compatible with the order
of vertices

a1 < a2 < .. . < ap, b1 < b2 < .. . < bq,

namely if (](Star(a`)) = t`) for any 1 ≤ ` ≤ p, then the starting edges at a`

are labeled by numbers

t1 + t2 + . . .+ t`−1 +1, . . . , t1 + t2 + . . .+ t`.

Example 8. The first and the second graphs of Fig. 3 are admissible, while the
others are not.

•
b1

•
b2

•
b3

◦
◦

◦a1

a2
a3

?

2

*1

®

j

4
5

U

3

À ?
6 7

Figure 3: Some examples of admissible and non-admissible graphs.

(i) (ii) (iii) (iv)

• •
b1 b2

◦a1 ◦a2

?

2 4

1

3

? • •
b1 b2

◦a1 ◦a2

6
-

?= • •
b1 b2

a1 ◦a2-

?=

Definition 29. We denote by Gp,q the subclass of the set of admissible graphs with
2p+q−2 edges, where p≥ 1 and q≥ 0 (and automatically 2p+q−2≥ 0).
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Polydifferential operators associated to admissible graphs

Let Γ ∈ Gp,q be an admissible graph. Consider a collection of polydifferential
operators Λ1, . . . ,Λp on Rd such that Λ` ∈ T k`

poly and k` = ](Star(a`))− 1 for any
1≤ `≤ p, where a` ∈V1(Γ). For such data, we associate a polydifferential operator
fΓ(Λ1, . . . ,Λp) ∈ Dq−1

poly acting on q smooth functions u1, . . . ,uq on Rd as follows:

1. We associate to each vertex a` ∈ V1(Γ) the skew-symmetric tensor Λ
i1...ik`+1
`

corresponding to the tensor Λ` via the natural identification.

2. We place a function u` at each vertex of the second type.

3. We label the edges of Star(Λ`) for any 1≤ `≤ p by the numbers k1 + . . .+
k`−1 + `, . . . ,k1 + . . .+ k` + `, in other words, we identify E(Γ) with

{1, . . . ,k1+1,k1+2, . . . ,k1+k2+2, . . . ,k1+. . .+kp−1+ p, . . . ,k1+. . .+kp+ p}

4. We associate to any vertex c` of the first type (i.e. Λ`) or of the second type
(i.e. u`), the operator

∂End(c`) =
∂ s

∂it1
. . .∂its

when End(c`) is made up by the edges ts ∈ E(Γ), for any 1≤ s≤ 2p+q−2.

5. Finally, we define the function fΓ(Λ1, . . . ,Λp)(u1, . . . ,uq) by

fΓ(Λ1, . . . ,Λp)(u1, . . . ,uq)

= ∑
1≤i1,...,ik≤d

1≤k≤d

p

∏̀
=1

∂End(Λ`)Λ
ik1+...+k`−1+`,...,k1+...+k`+`

`

q

∏
s=1

∂End(u j)u j.

As an example, the polydifferential operator corresponding to the first graph
(resp. to the second graph) of Fig. 3 is given by

Λi1i2∂i1(Λ
i3i4i5)∂i3(Λ

i6i7)∂ 2
i2i4(u1)∂i6(u2)∂ 2

i5i7(u3)

(resp.
∂i3(Λ

i1i2)∂i1(Λ
i3i4)∂i2(u1)∂i4(u2).)

Thus, given any admissible graph Γ ∈ Gp,q, the above procedure provides a
multilinear map

fΓ : Tpoly(M)× . . .×Tpoly(M)︸ ︷︷ ︸
p

→ Dq−1
poly
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that associates any collection of polyvectorfields Λ1, . . . ,Λp, Λ` ∈ T k`
poly with a poly-

differential operator fΓ(Λ1, . . . ,Λp) ∈ Dq−1
poly, which is given by the above detailed

procedure if k` = ](Star(a`))− 1 for any 1 ≤ ` ≤ p or equal to zero otherwise.
Moreover, it is easily seen that fΓ is a (1− p) weight Z−graded skew-symmetric
map. Indeed, by definition we have

∑p
`=1 k` = ∑p

`=1(](Star(a`))−1) = 2p+q−2− p = p+q−2;

so fΓ is a (1 − p) weight multilinear map because of the construction
fΓ(Λ1, . . . ,Λp) ∈ Dq−1

poly. The map fΓ is a Z−graded skew-symmetric map
because when permuting the order in which we label the edges, we get a sign
equal to the signature of the permutation; the polyvectorfields are of course
skew-symmetric and the partial derivatives are “symmetric”.

We are now prepared to state the Kontsevich formula for an L∞ quasi-
isomorphism on Rd .

Kontsevich’s L∞ quasi-isomorphism on Rd

Theorem 16. For any p≥ 1, the (1− p) weight Z−graded skew-symmetric maps

f K
p = ∑

q≥0
∑

Γ∈Gp,q

WΓ fΓ (3.22)

define an L∞ quasi-isomorphism

f K = ( f K
1 , f K

2 , . . .) : (Tpoly(Rd),0, [−,−]SN−)→ (Dpoly(Rd),∂µ , [−,−]G−).

The proof of this theorem is based on the special choice of the numerical co-
efficients WΓ, which are obtained as integrals over certain configuration spaces of
a differential form depending on Γ. We will not describe these coefficients WΓ and
prove this Theorem. We refer again to [Kon03],[AMM02]. Let us just investigate
the first structure map f K

1 .
By equation (3.22),

f K
1 = ∑

q≥0
∑

Γ∈G1,q

WΓ fΓ.

Now, the set G1,q contains only the graph Γq with one vertex of the first type,
with 2×1 + q−2 = q edges and q ground vertices. Thus, for any polyvectorfield
Λ ∈ T q−1

poly , we associate the polydifferential operator given by

WΓqfΓq(Λ)(u1, . . . ,uq) = WΓqΛi1...iq∂i1(u1) . . .∂iq(uq).
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Observe then that f K
1 is a 0 weight linear map from Tpoly to Dpoly since each fΓ is

too for any Γ ∈ G1,q. It remains to prove that f K
1 induces an isomorphism between

the corresponding cohomology, i.e.

f K
1] : Tpoly = H(Tpoly(Rd),0)→ H(Dpoly(Rd),∂µ)

is an isomorphism. This is due to a previous result by Hochschild, Kostant and
Rosenberg [HKR62] which establishes an isomorphism between Tpoly(Rd) and
H(Dpoly(Rd),∂µ).
For any q≥ 0 this isomorphism is given by the map

hq(X1∧ . . .∧Xq)(u1, . . . ,uq) = 1
q! ∑σ∈Sq(−1)σ X1(uσ(1)) . . .Xq(uσ(q))

where X` ∈ T 0
poly, u` ∈C∞(Rd) and where Sq stands for the group of permutation

and (−1)σ denotes the signature of the permutation σ . Since it can be shown that
WΓq = 1

q! , we conclude that WΓqfΓq = hq.

Let us mention that this result was first proven for smooth affine algebraic
varieties in [HKR62]. A smooth version of it was outlined in [Vey75] and a
detailed proof was given in [GR99]. Independently, Kontsevich gave also another
proof for smooth manifold in [Kon03].

Remark 11. Note that the “formality” in the name of the Theorem stems from
homotopy theory where a DGLA is called formal if it is quasi-isomorphic to its
cohomology, regarded as a DGLA with zero differential and the induced bracket. In
other words, the formality Theorem states that Dpoly(M) is formal for any smooth
manifold M.

In Chapter 4, we shall analyze Dolgushev’s globalization procedure [Dol05]
for the Kontsevich formality quasi-isomorphism f K . This construction needs cer-
tain particular proprieties of the Kontsevich quasi-isomorphism f K , which are pre-
sented in the following Theorem.

Theorem 17. Kontsevich’s quasi-isomorphism

f K : (Tpoly(Rd),0, [−,−]SN−)→ (Dpoly(Rd),∂µ , [−,−]G−)

satisfies the following proprieties
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1. f K is also an L∞ quasi-isomorphism in the formal setting, i.e. one can
replace Rd by the space R[[x1, . . . ,xd ]] of formal power series in x =
(x1, . . . ,xd) ∈ Rd with real coefficients, because the coefficients of the poly-
differential operators f K

` are polynomial functions of the derivatives of the
coordinates of the polyvectorfields.

2. f K is equivariant with respect to linear transformations of the coordinates
x1, . . . ,xd .

3. If p≥ 2, then
f K
p (X1,X2, . . . ,Xp) = 0 (3.23)

for any set of vector fields X1,X2, . . . ,Xp ∈ T 0
poly.

4. If n≥ 2 and X ∈ T 0
poly is linear in the coordinates x1, . . . ,xd , then for any set

of polyvectorfields Λ2, . . . ,Λn

f K
p (X ,Λ2, . . . ,Λp) = 0. (3.24)

Points (3) and (4) result from an explicit calculation of certain integrals over
configuration spaces, see [Kon03].
As a concluding act, let us observe that the coefficients of the polydifferential op-
erators f K

p (Λ1, . . . ,Λp) for any p ≥ 1 are given by universal (admissible) poly-
nomials in the polyvectorfields Λ1, . . . ,Λp and their partial derivatives, where the
concatenations are given by the subset Gp,q, q ≥ 0, of the admissible graph Gp,q;
the concatenations only arise between different polyvectorfields because there are
no loops, see Example 8.



Chapter 4

Universal Star Products

Throughout this Chapter, the notations employed are the same as those used in
Chapter 3.

4.1 Introduction

Using Kontsevich’s formality on Rd , a construction of a star product on a
d-dimensional Poisson manifold (M,Λ) was given by Cattaneo, Felder and
Tomassini in [CFT02]. Given a torsionfree connection ∇ on (M,Λ) one builds
an identification of the commutative algebra C∞(M) of smooth functions on M
with the algebra of flat sections of the jet bundle E → M, for the Grothendieck
connection DG. The next point is to “quantize" this situation: a deformed algebra
structure on Γ(M,E)[[ν ]] is obtained through fiberwize quantization of the jet
bundle using Kontsevich star product on Rd , and a deformed flat connection
D which is a derivation of this deformed algebra structure is constructed “à la
Fedosov". Then one constructs an identification between the formal series of
functions on M and the algebra of flat sections of this quantized bundle of algebras;
this identification defines the star product on M. Later, Dolgushev [Dol05] gave in
a similar spirit a construction for a Kontsevich formality quasi-isomorphism for a
general smooth manifold. The construction starts again with a torsionfree linear
connection ∇ on M and the identification of the commutative algebra C∞(M) of
smooth functions on M with the algebra of flat sections of the jet bundle E → M,
for a connection DF constructed “à la Fedosov". This is extended to a resolution of
the space Tpoly(M) of polyvectors on the manifold using the complexes of forms
on M with values in the bundle of formal fiberwize polyvectorfields on E and
a resolution of the space Dpoly(M) of polydifferential operators on the manifold

89
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using the complexes of forms on M with values in the bundle of formal fiberwize
polydifferential operators on E. The fiberwize Kontsevich L∞ quasi-morphism
is then twisted and contracted to yield an L∞ quasi-morphism from Tpoly(M) to
Dpoly(M).

In the following, we introduce the notion of universal formality L∞ quasi-
isomorphism and the notion of universal deformation quantization.
Given a torsionfree linear connection ∇ on a manifold M, any polydifferential op-
erator Op : C∞(M)×k →C∞(M) writes in a unique way as

Op(u1, . . . ,uk) = ∑
I1,...,Ik

OpI1,...,Ik ∇sym
I1

u1 . . .∇sym
Ik

uk (4.1)

where the I1, . . . , Ik are multiindices and ∇sym
I u is the symmetrized covariant deriva-

tive of order |I| of u:

∇sym
I u = ∑

σ∈Sm

1
m!

∇m
iσ(1)...iσ(m)

u for I = (i1, . . . , im),

where ∇m
i1...imu := ∇mu(∂i1 , . . . ,∂im) with ∇mu defined inductively by ∇u := d u and

∇mu(X1, . . . ,Xm) = (∇X1(∇m−1u))(X2, . . . ,Xm).
The tensors OpI1,...,Ik are covariant tensors of order |I1|+ . . .+ |Ik| which are sym-
metric within each block of Ir indices; they are called the tensors associated to Op
for the given connection.

Definition 30. For any integer k ≥ 1, a universal k−polyvectorfields-related poly-
differential operator will be the association to any manifold M, any torsionfree
connection ∇ on M and any collection of polyvectorfields Λ1, . . . ,Λk ∈ Tpoly(M),
of a polydifferential operator Op(M,∇,Λ1,...,Λk) : C∞(M)× j → C∞(M), so that, the
tensors associated to Op(M,∇,Λ1,...,Λk) for ∇ are given by universal polynomials in
Λ1, . . . ,Λk, the curvature tensor R and their covariant multiderivatives, involving
concatenations and the association being linear in each Λi.
We shall say that a universal k−polyvectorfields-related polydifferential operator
is of no-loop type if the concatenations only arise between different terms, not
within a given term (i.e.

(∇rΛ`)··i··s··(∇sΛ`′)·· j··r··∇
sym
··i·· j··

is of no-loop type but

(∇··t··Λ`)··t··i··∇
sym
··i·· or Rr

strΛ
··s··i··
` Λ··t·· j··`′ ∇sym

··i·· j··

are not).
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Definition 31. A universal Poisson-related polydifferential operator will be the as-
sociation to any manifold M, any torsionfree connection ∇ on M, any Poisson
tensor Λ on M and any integer k ≥ 1, of a universal k−polyvectorfields-related
polydifferential operator Op(M,∇,Λ,...,Λ), which will be denoted by Op(M,∇,Λ).
We shall say that a universal Poisson-related polydifferential operator is of no-loop
type if Op(M,∇,Λ) is too.
We shall say that the universal Poisson-related polydifferential operator Op(X ,∇,Λ)

is a polynomial of degree r in the Poisson structure if r = k.

Definition 32. A universal formality L∞ quasi-isomorphism will be the association
to any given manifold M and any torsionfree linear connection ∇ on M, of an
L∞ quasi-morphism f = ( f1, f2, . . .) from the DGLA (Tpoly(M),0, [−,−]SN−) to the
DGLA (Dpoly(M),∂µ , [−,−]G−), where, for any k ≥ 1, each structure map fk is a
k−polyvectorfields-related polydifferential operator of no-loop type.

Definition 33. A universal star product ∗ = µ + ∑r≥1 νrCr will be the association
to any manifold M, any torsionfree connection ∇ on M and any Poisson tensor Λ
on M, of a differential star product ∗(M,∇,Λ) := µ +∑r≥1 νrC(M,∇,Λ)

r where each Cr

is a universal Poisson-related bidifferential operator of no-loop type, which is a
polynomial of degree r in the Poisson structure.

An example of a universal star product at order 3 is given in section 4.2.
Unicity at order 3 is studied in section 4.3 using universal Poisson cohomology.
This, we compute for universal Poisson-related bidifferential operators of order 1
in each argument defined by low order polynomials in the Poisson structure.
The existence of a universal formality L∞ quasi-isomorphism and a universal star
product are implied by the Dolgushev’s globalization procedure [Dol05]. The glob-
alization proof of Cattaneo, Felder and Tomassini [CFT02, CF01], using the expo-
nential map of a torsionfree linear connection, gives also the existence of a univer-
sal star product. We show these existences in sections 4.5 and 4.6, stressing first
the relations between the resolutions involved in the two constructions in section
4.4.

4.2 An example at order 3

Theorem 1. There exists a universal star product up to order three, which asso-
ciates to a Poisson manifold (M,Λ) and a torsionfree linear connection ∇ on M,
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the star product at order three defined by

u∗̃(M,∇,Λ)
3 v = µ(u,v)+ν{u,v}+ν2C̃(M,∇,Λ)

2 (u,v)+ν3C̃(M,∇,Λ)
3 (u,v), u,v∈C∞(M)

(4.2)
C̃(M,∇,Λ)

2 (u,v)

= 1
2 ΛkrΛls∇2

klu∇2
rsv+ 1

3 Λkr∇rΛls(∇2
klu∇sv+∇su∇2

klv)+ 1
6 ∇lΛkr∇kΛls∇ru∇sv,

(4.3)
and

C̃(M,∇,Λ)
3 (u,v)=

1
6

S(M,Λ) 3
∇ (u,v)=−1

6
Λls(LXu∇) j

kl(LXv∇)k
js with Xu = i(du)Λ,

(4.4)
where LXu∇ is the tensor defined by the Lie derivative of the connection ∇ in the
direction of the Hamiltonian vector field Xu

(LXu∇) j
kl = Λi j∇3

kliu+∇kΛi j∇2
liu+∇lΛi j∇2

kiu+∇2
klΛ

i j∇iu+R j
iklΛ

si∇su.

This can be seen by direct computation.

Remark 12. The operator S(M,Λ) 3
∇ was introduced by Flato, Lichnerowicz and

Sternheimer [FLS76]; it is a Chevalley-cocycle on (M,Λ), i.e.

+©
u,v,w

{
S(M,Λ) 3

∇ (u,v),w
}

+S(M,Λ) 3
∇ ({u,v} ,w) = 0,

where +©
u,v,w

denotes the sum over cyclic permutations of u,v,w.

For this universal star product at order 3, there exists a universal Poisson-
related-differential-operator-valued 1-form D defined as follows:

Proposition 31. Given any Poisson manifold (M,Λ), any torsionfree linear con-
nection ∇ on M, and any vector field X on M, the differential operator D(M,∇,Λ)

X
defined by

D(M,∇,Λ)
X v = Xv−ν2 1

6
Λls(LX ∇) j

kl(LXv∇)k
js, v ∈C∞(M)

verifies at order 3 in ν

D(M,∇,Λ)
X (u∗̃(M,∇,Λ)

3 v)− (D(M,∇,Λ)
X u)∗̃(M,∇,Λ)

3 v−u∗̃(M,∇,Λ)
3 (D(M,∇,Λ)

X v)

= d
dt |t=0u∗̃(M,∇,φ X

t∗Λ)
3 v+O(ν4).
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where φ X
t denotes the flow of the vectorfield X.

If X is a Hamiltonian vector field corresponding to a function u ∈ C∞(M), then
D(M,∇,Λ)

Xu
coincides with the inner derivation at order 3 of ∗̃3 defined by the function

u, i.e.

D(M,∇,Λ)
Xu

v =
1

2ν
(u∗̃(M,∇,Λ)

3 v− v∗̃(M,∇,Λ)
3 u).

4.3 Equivalence of universal star products – Universal
Poisson cohomology

Lemma 1. • Any universal star product ∗ = µ + ∑r≥1 νrCr is a natural star
product, i.e. each bidifferential operator Cr is of order at most r in each ar-
gument. Indeed Cr is a universal r−Poisson-related bidifferential operator;
this implies, in view of the Bianchi’s identities for the curvature tensor, that
Cr is of order at most r in each argument.

• The universal Poisson-related bidifferential operator C1 of any universal star
product is necessarily the Poisson bracket C(M,∇,Λ)

1 = Λi j∇i∧∇ j.

• The Gerstenhaber bracket [−,−]G of two universal Poisson-related polyd-
ifferential operator of degree k and l in Λ, is a universal Poisson-related
polydifferential operator of degree k + l in Λ.

• If a universal Poisson-related p-differential operator C is a Hochschild p-
cocycle ( where ∂µ = [µ,−]G denotes the Hochschild differential) then C =
A + ∂µB where A a universal Poisson-related p-differential operator which
is of order 1 in each argument and is the totally skew-symmetric part of C,
and where B is a universal Poisson-related (p−1)-differential operator.

The last point comes from the explicit formulas [GR99] for the tensors associ-
ated to B in terms of those associated to C when one is given a connection.

Definition 34. A universal Poisson p-cocycle is a universal Poisson-related
p-differential skew-symmetric operator C of order 1 in each argument which
is a cocycle for the Chevalley cohomology for the adjoint representation of
(C∞(M),{−,−}), i.e. with the coboundary defined by

δΛC(u1, . . . ,um+1) =
m+1

∑
i=1

(−1)i{ui,C(u1, . . . ûi . . . ,um+1)}

+∑
i< j

(−1)i+ jC({ui,u j},u1 . . . ûi . . . û j . . . ,um+1).
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which can be written as a multiple of

[Λ,C(M,∇,Λ)]NR

where skew indicates the skew-symmetrization in all its arguments of an operator.
Equivalently, a universal Poisson p-cocycle C is defined by a universal Poisson
related skew-symmetric p-tensor c (with C(u1, . . . ,up) = c(du1, . . . ,dup)) so that

[Λ,c(M,∇,Λ)]SN = 0

A universal Poisson p-cocycle C is a universal Poisson coboundary if there
exists a universal Poisson-related skew-symmetric (p− 1)-differential operator C
of order 1 in each argument so that

C(M,∇,Λ) = δΛB(M,∇,Λ)(= [Λ,B(M,∇,Λ)]NR);

(equivalently, if there exists a universal Poisson related tensor b so that c(M,∇,Λ) =
[Λ,b(M,∇,Λ)]SN).
The universal Poisson cohomology H p is the quotient of the space of universal
Poisson p-cocycles by the space of universal Poisson p-coboundaries.
We can restrict ourselves to the space of universal Poisson p-cocycles defined by
polynomials of degree k in the Poisson structures and make the quotient by the
space of universal Poisson coboundaries defined by polynomials of degree k− 1.
We speak then of the universal Poisson p-cohomology of degree k in the Poisson
structure and we denote it by H p

polk. We can further restrict ourselves to universal
Poisson related tensors (or operators of order 1 in each argument) of no-loop type.

Definition 35. If ∗= µ +∑r≥1 νrCr is a universal star product and if E = ∑∞
r=2 νEr

is a formal series of universal differential operators vanishing on constants, of no-
loop type, with each Er a polynomial of degree r in the Poisson structure, then the
series ∗′ defined by

∗′ = (expadE)∗
is an equivalent universal star product. We say that ∗ and ∗′ are universally equiv-
alent.

Lemma 2. If ∗ and ∗′ are universal star products which coincide at order k in the
deformation parameter ν , then, by the associativity relation at order k, C′k−Ck is
a universal Hochschild 2-cocycle of no-loop type which is a polynomial of degree
k in the Poisson structure. Furthermore, associativity at order k+1 implies that its
skew-symmetric part p2 is a universal Poisson 2-cocycle :

+©
u,v,w

{
pM,∇,Λ

2 (u,v),w
}

+ pM,∇,Λ
2 ({u,v} ,w) = 0,
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where +©
u,v,w

denotes the sum over cyclic permutations of u,v,w.

If it is a universal Poisson 2-coboundary of no-loop type, then there is a a
formal series E of universal differential operators vanishing on constants such
that (expadE)∗ and ∗′ coincide at order k +1.

In particular, two universal star products are universally equivalent if
H2

(no−loop,pol) = {0}. They are always equivalent at order k in the deformation
parameter ν if H2

(no−loop)pol j = {0} ∀1≤ j ≤ k.

Consider now any universal star product ∗= µ +∑r≥1 νrCr. We automatically
have that C1 is the Poisson bracket. Associativity at order 2 yields ∂C2 = ∂C̃(M,∇,Λ)

2
so

C2(u,v) = C̃(M,∇,Λ)
2 (u,v)+ p2(u,v)+∂E2(u,v)

and the skew-symmetric part of associativity at order 3 yields that p2 is a universal
Poisson 2-cocycle (which is a polynomial of degree 2 in the Poisson structure).

Proposition 32. The spaces H2
pol2(Λ) and H2

(no−loop)pol2(Λ) of universal Poisson
2-cohomology of degree 2 in the Poisson structure vanish.

Proof. The universal skew-symmetric 2-tensors of degree 2 in Λ are combina-
tions of

∇sΛir∇rΛ js∇i∧∇ j,

(∇2
rsΛ

irΛ js−∇2
rsΛ

jrΛis)∇i∧∇ j,

(ΛirΛstR j
rst −Λ jrΛstRi

rst)∇i∧∇ j,

ΛriΛs jRt
rst∇i∧∇ j.

The only universal cocycles are the multiples of

ΛriΛs jRt
rst∇i∧∇ j

and those are the boundaries of the multiples of ∇rΛir∂i. Remark that there are no
cocycles of no-loop type.

Thus, universal star product at order 2 are unique modulo equivalence and one
can assume that C2 = C̃(M,∇,Λ)

2 . Then the skew-symmetric part of the Hochschild
2-cocycle C3−C̃(M,∇,Λ)

3 is a universal Poisson 2-cocycle of no-loop type which is
a polynomial of degree 3 in the Poisson structure.
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Proposition 33. The space H2
(no−loop)pol3(Λ) of universal Poisson 2-cohomology

of no-loop type and of degree 3 in the Poisson structure vanishes.

Proof. We consider all possible universal Poisson 2-cochains of no loop type
which are polynomials of degree 3 in the Poisson structure. They are defined by
universal skew-symmetric 2-tensors of degree 3 in Λ which are combinations with
constant coefficients of the different concatenations (with no loops) of

Λ··Λ··Λ··(∇2
··R)···· Λ··Λ··Λ··R····R

·
···,

Λ··(∇·Λ)··(∇·Λ)··R···· Λ··Λ··(∇·Λ)··(∇·R)····
Λ··Λ··(∇2

··Λ)··R···· Λ··(∇2
··Λ)··(∇2

··Λ)·· (∇2
··Λ)··(∇·Λ)··(∇·Λ)··.

Using the symmetry properties of R, the Bianchi’s identities and the fact that Λ is
a Poisson tensor, one is left with a combination with constant coefficients of 49
independent terms.
Universal 2-coboundaries come from the boundaries of universal 1-tensors of de-
gree 2 in Λ; such 1-tensors are given by combinations with constant coefficients of
concatenations of

Λ··Λ··(∇·R)···· Λ··(∇·Λ)··R····.

Hence, modulo universal coboundaries, one can assume that the coefficients of 4
of the 49 terms in a universal cochain are zero.
The cohomology that we are looking for is then given by the combinations with
constant coefficients of the remaining 45 terms which are cocycles (for all possible
choices of manifold, Poisson structure Λ and connection ∇.)
Let C be a combination of those 45 terms. The cocycle condition is [Λ,C]SN = 0.
We plug in examples of Poisson structures and connections and impose this cocycle
condition. This shows that all 45 coefficients must vanish.
It is enough, for instance, to consider the example on R4, with the non vanishing
coefficients of the connection defined by

Γ1
12 = x3

1, Γ1
14 = x4 Γ2

11 = x2
1, Γ2

13 = 1, Γ2
22 = 1, Γ2

14 = x3, Γ3
13 =−x4,

Γ3
33 = 1, Γ3

44 =−x2x3x4, Γ4
11 = 1, Γ4

13 = 1, Γ4
22 = x1, Γ3

44 =−3.

and the quadratic Poisson structure defined by

Λ = ∑
1=i< j=4

xix j
∂

∂xi
∧ ∂

∂x j

From this example, one gets that 41 of the 45 coefficients have to vanish. One is
left with a combination with constant coefficients of four terms and an example
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with constant Poisson structure in dimension 7 shows that all those coefficients
must vanish. The non vanishing coefficients of this example are:

Λ12 = 1 Λ15 = 1 Λ17 = 1 Λ25 = 1 Λ26 = 2 Λ27 = 2

Λ34 = 1 Λ37 = 3 Λ46 = 1 Λ47 = 4 Λ56 = 1 Λ57 = 5 Λ67 = 6.

Γ1
12 = 1 Γ1

62 = x7 Γ1
77 =−1 Γ2

17 = x1 Γ3
13 = x6 Γ4

11 = 1
Γ4

22 = 1 Γ4
33 = 2Γ4

77 = 3 Γ5
12 = x1x5 Γ5

33 = x2 Γ6
11 = 1

Γ6
44 = x2 Γ6

44 = x5 Γ7
11 = x7 Γ7

44 = x3 Γ7
17 = x1.

Corollary 3. Any universal star product is universally equivalent to one whose
expression at order 3 is given by formula (4.2).

4.4 Grothendieck- and Dolgushev-resolution of the space
of functions

Our purpose in this section is to prove that the Fedosov-resolution of the algebra of
smooth functions constructed in Dolgushev [Dol05] coincides with its resolution
given by Cattaneo, Felder and Tomassini in [CFT02]. We also give explicitly the
identification of smooth functions, polyvectorfields and polydifferential operators
on M with flat sections in the corresponding bundles.

Let M be a d-dimensional manifold and consider the jet bundle E → M (the
bundle of infinite jet of functions) with fibers R[[y1, . . . ,yd]] (i.e. formal power
series in y ∈ Rd with real coefficients) and transition functions induced from the
transition functions of the tangent bundle T M. Thus

E = F(M)×Gl(d,R)R[[y1, . . . ,yd ]] (4.5)

where F(M) is the frame bundle. Remark that E can be seen as the formally
completed symmetric algebra of the cotangent bundle T ∗M; a section s ∈ Γ(M,E)
can be written in the form

s = s(x;y) =
∞

∑
p=0

si1...ip(x)y
i1 · · ·yip

with repeated indices varying from 1 to d, and where the si1...ip are components
of symmetric covariant tensors on M. This bundle E is denoted S M by Dolgushev.
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The construction of a star product on a d-dimensional Poisson manifold (M,Λ)
given by Cattaneo, Felder and Tomassini in [CFT02], using a linear torsionfree
connection ∇ on the manifold M, starts with the identification of the commutative
algebra C∞(M) of smooth functions on M with the algebra Z 0(Γ(M,E),DG) of
flat sections of the jet bundle E →M , for the Grothendieck connection DG (which
is constructed using ∇). Let us recall this construction.

The exponential map for the connection ∇ gives an identification

expx : U ∩TxM →M y 7→ expx(y) (4.6)

at each point x, of the intersection of the tangent space TxM with a neighborhood
U of the zero section of the tangent bundle T M with a neighborhood of x in M.

To a function u ∈ C∞(M), one associates the section uφ of the jet bundle E → M
given, for any x ∈M by the Taylor expansion at 0 ∈ TxM of the pullback u◦ expx.

Lemma 3. The section uφ is given by:

uφ (x;y) = u(x)+ ∑
n>0

1
n!

∇n
i1...inu(x)yi1 . . .yin = u(x)+ ∑

n>0

1
n!

∇n,sym
i1...in u(x)yi1 . . .yin .

(4.7)

Proof. In local coordinates xi’s one has

d
dt

u(expx ty) =
d

∑
k=1

(∂xk u)(expx ty)
d
dt

(expx ty)k

and

d2

dt2 u(expx ty)

= ∑k,l(∂ 2
xkxl u)(expx ty) d

dt (expx ty)k d
dt (expx ty)l +∑d

k=1(∂xk u)(expx ty) d2

dt2 (expx ty)k.

The definition of the exponential map imply that

d2

dt2 (expx ty)k =−∑
r,s

Γk
rs(expx ty)

d
dt

(expx ty)r d
dt

(expx ty)s (4.8)

hence
d2

dt2 u(expx ty) = ∑
k,l

(∇2
klu)(expx ty)

d
dt

(expx ty)k d
dt

(expx ty)l.
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By induction, one gets

dn

dtn u(expx ty) = ∑
k1,...,kn

(∇n
k1...kn

u)(expx ty)
d
dt

(expx ty)k1 . . .
d
dt

(expx ty)kn

and the result follows at t = 0.

Definition 36. [CF01] The Grothendieck connection DG on E is defined by:

DG
X s(x;y) :=

d
dt |t=0

s(x(t); exp−1
x(t)(expx(y))) (4.9)

for any curve t → x(t) ∈ M representing X ∈ TxM and for any s ∈ Γ(M,E). It is
locally given by

DG
X =

d

∑
i=1

X i


∂xi +∑

k
∑

j

(
∂φx

∂y

−1
)k

j

∂φ j

∂xi ∂yk


 (4.10)

where φx(y) = φ(x,y) is the Taylor expansion of expx y at y = 0:

φ(x,y)k = xk + yk

−1
2 ∑rs Γk

rs(x)yr ys + 1
3! ∑rst

(−(∂xr Γk
st)(x)+2∑u Γu

rs(x)Γk
ut(x)

)
yr ys yt +O(y4).

Remark 13. • From the definition (4.9) it is clear that DG is flat (DG
X ◦DG

Y −DG
Y ◦

DG
X = DG

[X ,Y ]).
• It is also obvious that DG(uφ ) = 0 ∀u ∈C∞(M).

Lemma 4. [CF01] Introducing the operator on E-valued forms on M

δ = ∑
i

dxi ∂
∂ yi , (4.11)

one can write
DG =−δ +∇′+A, (4.12)

where

∇′ = ∑
i

dxi

(
∂xi −∑

jk
Γk

i j y j ∂yk

)
(4.13)

is the covariant derivative on E associated to ∇ and where A is a 1-form on M with
values in the fiberwize vectorfields on E,

A(x;y) =: ∑
ik

dxi Ak
i (x;y)∂yk = ∑

ik
dxi

(
−1

3 ∑
rs

Rk
ris(x)y

rys +0(y3)
)

∂yk . (4.14)
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One extends as usual the operator DG to the space Ω(M,E) of E-valued forms
on M:

DG =−δ +∇′+A with ∇′ = d−∑
i jk

dxiΓk
i j y j ∂yk . (4.15)

One introduces the operator δ ∗ = ∑ j y j i( ∂
∂ x j ) on Ω(M,E). Clearly (δ ∗)2 = 0,δ 2 =

0 and for any ω ∈ Ωq(M,Ep), i.e. a q-form of degree p in y, we have (δδ ∗ +
δ ∗δ )ω = (p+q)ω.
Defining, for any ω ∈Ωq(M,Ep)

δ−1ω =
1

p+q
δ ∗ω when p+q 6= 0

= 0 when p = q = 0

we see that any δ -closed q-form ω of degree p in y, when p+q > 0, writes uniquely
as ω = δσ with δ ∗σ = 0; σ is given by σ = δ−1ω .
One proceeds by induction on the degree in y to see that the cohomology of DG is
concentrated in degree 0 and that any flat section of E is determined by its part of
degree 0 in y. Indeed a q-form ω is DG-closed if and only if δω = (∇′+A)ω; this
implies that δωp = 0 for ωp the terms of lowest order (p) in y. When p + q > 0
we can write ωp = δ (δ−1ωp) and ω −DG(δ−1ωp) has terms of lowest order at
least p+1 in y. Remark that given any section s of E then s(x;y = 0) determines a
smooth function u on M. If DGs = 0, then s−uφ is still DG closed. By the above,
its terms of lowest order in y must be of the form δσ hence must vanish since we
have a 0-form. Hence we have:

Lemma 5. [CF01] Any section of the jet bundle s∈Γ(E) is the Taylor expansion of
the pullback of a smooth function u on M via the exponential map of the connection
∇ if and only if it is horizontal for the Grothendieck-connection DG:

s = uφ for a u ∈C∞(M)⇔ s ∈ Γhor(E) := {s′ ∈ Γ(E) |DGs′ = 0}. (4.16)

Furthermore, the cohomology of DG is concentrated in degree 0. In other word,
one obtains a “Grothendieck-resolution” of the algebra of smooth functions, i.e.

H•(Ω(M,E),DG) = H0(Ω(M,E),DG) = Γhor(E)∼= C∞(M).

Remark 14. When a q-form ω is DG exact, we have written ω = DGσ where
the tensors defining σ are given by universal polynomials (with no-loop concate-
nations) in the tensors defining ω , the tensors defining A, the curvature of the
connection, and their iterated covariant derivatives.
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Lemma 6. The 1-form A on M with values in the fiberwize vectorfields on E is
given by A(x;y) =: ∑ik dxi Ak

i (x;y)∂yk where the Ak
i are universal polynomials given

by (no-loop) concatenations of iterative covariant derivatives of the curvature; they
are of the form

∑(∇...R) j1
i·· (∇...R) j2

j1·· . . .(∇...R)k
js−1·· y

· . . .y·. (4.17)

In particular δ−1A = 0 since the curvature is skew-symmetric in its first two lower
arguments. The 1-form A is uniquely characterized by the fact that δ−1A = 0 and
the fact that DG =−δ +∇′+A is flat, i.e;

(
DG

)2 = 0 which is equivalent to

δA = R∇′ +∇′A+
1
2
[A,A] (4.18)

for

1
2
[A,A](X ,Y ) := [A(X),A(Y )] and R∇′ =−1

2
Rl

i jkdxi∧dx jyk ∂
∂yl .

Proof. Any section s ∈ Γ(M,E) writes ∑∞
p=0 sp

i1...ip
(x)yi1 · · ·yip with symmetric

p-covariant tensors sp
i1...ip

. Write

A(x;y) = ∑
r≥2

dxi(A(r)(x))k
i, j1... jr y

j1 . . .y jr ∂yk

with (A(2)(x))k
i,rs =−1

3 ∑rs Rk
ris(x)y

rys. Then the covariant tensors of DG
X s are given

by the symmetrization of

(
DG

X s
)p

=−i(X)sp+1 +∇X sp +
p−2

∑
r=0

(A(p−r)(X))k ∂yk sr+1.

The fact that DG(uφ ) = 0 ∀u ∈C∞(M) implies the expression given in the lemma
for A. Indeed, the symmetric tensors defining uφ are given by 1

p! ∇
p,symu and we

must have

0 =
(

DG
∂xi

uφ

)p

j1... jp
=− 1

(p+1)!
(∇p+1,symu)i j1... jp +

1
p!

(∇(∇p,symu))i j1... jp

+
p−2

∑
r=0

(
A(p−r)(x)

)k

i, j1... jp−r

1
r!

(∇r+1,symu)k jp−r+1... jp



102 CHAPTER 4. UNIVERSAL STAR PRODUCTS

with the last terms symmetrized in the j′s. The commutation of covariant deriva-
tives of a q-form ω gives

(∇p+2u)kl j1... jp − (∇p+2u)lk j1... jp =−
p

∑
r=0

Rs
kl jr(∇

pu) j1... jr−1s jr+1... jp

and implies by induction that (∇(∇p,symu))i j1... jp − (∇p+1,symu)i j1... jp is a univer-
sal expression contracting covariant derivatives of the curvature tensor with lower
covariant derivatives of u of the form

(∇...R)t1
i·· (∇...R)t2

t1·· . . .(∇...R)s
ts−1·· (∇

r+1,symu)s...

with the j′s put in a symmetrized way at the ·’s, and for 0≤ r ≤ p−2. Hence the
expression for A.

Observe that dδ + δd = 0 and also δ∇′ + ∇′δ = 0 since ∇ is torsionfree.
Hence

(
DG

)2 = 0 if and only if−δA+R∇′ +∇′A+ 1
2 [A,A] vanishes on all sections

of E; since it is a 2-form on M with values in the fiberwize vectorfields on E, this
must vanish.

Dolgushev [Dol05] gave in a similar spirit a construction for a Kontsevich’s for-
mality quasi-isomorphism for a general smooth manifold. The construction starts
again with a torsionfree linear connection ∇ on M. A resolution (called Fedosov’s
resolution in Dolgushev’s paper) of the algebra of functions is given using the com-
plex of algebras (Ω(M,E),DF) for a flat connection (differential) DF defined by

DF := ∇′−δ +A (4.19)

where A is a 1-form on M with values in the fiberwize vectorfields on E, obtained
by induction on the order in y by the equation

A = δ−1R∇′ +δ−1(∇
′
A+

1
2
[A,A]). (4.20)

This implies that δ−1A = 0 and δA = R∇′ +∇′
A+ 1

2 [A,A] so that A coincides with
the 1-form already considered. Hence

Lemma 7. The differential DG and DF coincide.

Similarly, Dolgushev defined a resolution of polydifferential operators
and polyvectorfields on M using the complexes (Ω(M,Dpoly),D

Dpoly
F ) and
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(Ω(M,Tpoly),D
Tpoly
F ) where Tpoly is the bundle of formal fiberwize polyvector-

fields on E and Dpoly is the bundle of formal fiberwize polydifferential operators
on E. A section of T k

poly is of the form

P(x;y) =
∞

∑
n=0

P
j1... jk+1

i1...in (x)yi1 . . .yin ∂
∂y j1

∧ . . .∧ ∂
∂y jk+1

, (4.21)

where P
j1... jk+1

i1...in (x) are coefficients of tensors, symmetric in the covariant indices
i1, . . . , in and antisymmetric in the contravariant indices j1, . . . , jk+1. A section of
Dk

poly is of the form

O(x;y) =
∞

∑
n=0

O
α1...αk+1
i1...in (x)yi1 . . .yin ∂ |α1|

∂yα1
⊗ . . .⊗ ∂ |αk+1|

∂yαk+1
, (4.22)

where the αl are multi-indices and O
α1...αk+1
i1...in (x) are coefficients of tensors

symmetric in the covariant indices i1, . . . , in and symmetric in each block of αi

contravariant indices.

The spaces Ω(M,Tpoly) and Ω(M,Dpoly) have a formal fiberwize DGLA struc-
ture. Namely, the degree of an element in Ω(M,Tpoly) ( resp. Ω(M,Dpoly) ) is de-
fined by the sum of the degree of the exterior form and the degree of the polyvector
field (resp. the polydifferential operator), the bracket on Ω(M,Tpoly) is defined by
[ω1⊗P1,ω2⊗P2]SN := (−1)k1q2ω1∧ω2⊗ [P1,P2]

SN for ωi a qi form and Pi

a section in T ki
poly and similarly for Ω(M,Dpoly) using the Gerstenhaber bracket.

The differential on Ω(M,Tpoly) is 0 and the differential on Ω(M,Dpoly) is defined
by ∂ := [µp f ,−]G where µp f is the fiberwize multiplication of formal power series
in y of E.

Definition 37. [Dol05] The differential DTpoly
F is defined on Ω(M,Tpoly) by

DTpoly
F P := ∇TpolyP−δTpolyP +[A,P]SN (4.23)

where

∇TpolyP = dP−
[
∑
i jk

dxiΓk
i j y j ∂yk ,P

]SN

and where

δP =

[
∑

i
dxi ∂

∂yi ,P

]SN

.
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Similarly DDpoly
F is defined on Ω(M,Dpoly) by

DDpoly
F O := ∇DpolyO−δDpolyO +[A,O]G (4.24)

with ∇Dpoly and δDpoly defined as above with the Gerstenhaber bracket.
Again the cohomology is concentrated in degree 0 and a flat section P ∈ Tpoly
or O ∈ Dpoly is determined by its terms P0 or O0 of order 0 in y; it is defined
inductively by

P = P0 +δ−1
(
∇TpolyP +[A,P]SN

)
O = O0 +δ−1

(
∇DpolyO +[A,O]G

)
.

On the other hand, if s1 . . .sk+1 are sections of E, we have for a P ∈ Γ(M,Tpoly):

DF (P(s1, . . . ,sk+1))

= (DTpoly
F P)(s1, . . . ,sk+1)+P(DFs1, . . . ,sk+1)+ · · ·+P(s1, . . . ,DFsk+1)

(4.25)
and similarly for a O ∈ Γ(M,Dpoly).

Definition 38. [CFT02] As in Cattaneo et al. we associate to a polyvector field
F ∈ T k

poly a section Pφ ∈ Γ(M,Tpoly) : for a point x ∈ M one considers the Tay-
lor expansion (infinite jet) Pφ (x;y) at y = 0 of the push-forward (expx)

−1∗ P(expx y).
Clearly this definition implies that Xφ (uφ ) = (Xu)φ so that Pφ is uniquely deter-
mined by the fact that

Pφ (u1
φ , . . . ,uk+1

φ ) =
(

P(u1, . . . ,uk+1)
)

φ
∀u j ∈C∞(M). (4.26)

Similarly we associate to a differential operator O ∈ Dk
poly a section Oφ ∈

Γ(M,Dpoly) determined by the fact that

Oφ (u1
φ , . . . ,uk+1

φ ) =
(

O(u1, . . . ,uk+1)
)

φ
∀u j ∈C∞(M). (4.27)

Observe that DTpoly
F Pφ = 0 by 4.25 and 4.26 and similarly DDpoly

F Oφ = 0, hence
we have

Proposition 34. A section of Tpoly is DTpoly
F −horizontal if and only if is a Taylor

expansion of a polyvectorfield on M, i.e. if and only if it is of the form Pφ for some
P ∈ T k

poly.

Similarly a section of Dpoly is DDpoly
F −horizontal if and only if is of the form Oφ for
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some O ∈ Dk
poly.

The terms in such a flat section are defined by tensors which are universal poly-
nomials (involving concatenations of no-loop type) in the tensors defining the
polyvectorfield (or differential operator) on M, the curvature tensor and their iter-
ated covariant derivatives.

Observe also that a DF closed section s ∈ Ωq(M,E) or P ∈ Ωq(M,Tpoly) or
O ∈Ωq(M,Dpoly) for q≥ 1 is the boundary of a section defined by tensors which
are given by universal polynomials (involving concatenations of no-loop type) in
the tensors defining the section, the curvature tensor and their iterated covariant
derivatives.

The isomorphisms obtained are isomorphisms of differential graded Lie alge-
bras.

4.5 Construction of a universal star product

The Cattaneo, Felder and Tomassini construction of a star product on any Poisson
manifold consists of quantizing the identification of the commutative algebra of
smooth functions on M with the algebra of flat sections of E in the following way.
A deformed algebra structure on Γ(M,E)[[ν ]] is obtained through fiberwize quan-
tization of the jet bundle using Kontsevich’s star product on Rd . Precisely, one
considers the fiberwize Poisson structure on E defined by Λφ and, in view of point
(1) of Theorem 17, the fiberwize Kontsevich star product on Γ(M,E)[[ν ]]:

σ ∗Λφ
K τ = µp f (σ ,τ)+

∞

∑
p=1

νn

p!
(−1)

p(p−1)
2 f K

p (Λφ , . . . ,Λφ )(σ ,τ).

The operator DG
X is not a derivation of this deformed product; one constructs a flat

connection D which is a derivation of ∗Λφ
K . One defines first

D1
X = X +

∞

∑
j=0

ν j

j!
(−1)

j( j−1)
2 f K

j+1(X̂ ,Λφ , . . . ,Λφ ) (4.28)

where X̂ := DG
X −X is a vertical vectorfield on E. The formality equations (L∞

morphisms conditions (2.52)) imply that D1
X is a derivation of the star product.

Using the fact that f1(ξ ) = ξ for any vector field ξ and that, for n ≥ 2, the maps
fn(ξ ,α2, . . . ,αn) = 0 if ξ is a linear vector field (see point (4) of Theorem 17), we
see that

D1
X = DG

X +
∞

∑
j=1

ν j

j!
(−1)

j( j−1)
2 f K

j+1(
ˆ̂X ,Λφ , . . . ,Λφ ) (4.29)
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where ˆ̂X = ∑i X i(−∂yi + ∑k Ak
i (x;y)∂yk) as defined in equation 4.14, so that it is

given by universal polynomials (with no-loop type concatenations) in the tensors
defining X , the curvature tensor and their iterated derivatives. The connection D1

is not flat so one deforms it by

D := D1 +[γ, ·]∗Λφ
K

so that D is flat. The 1-form γ is constructed inductively using the fact that the
cohomology of DG vanishes.
The next point is to identify series of functions on M with the algebra of flat sec-
tions of this quantized bundle of algebras to define the star product on M.
This is done by building a map ρ : Γ(M,E)[[ν ]]→ Γ(M,E)[[ν]] so that ρ ◦DG =
D◦ρ . This map is again constructed by induction using the vanishing of the coho-
mology.
All these points show that the star product constructed in this way is universal.

4.6 Construction of a universal formality L∞ quasi-
isomorphism

Dolgushev’s formality L∞ quasi-isomorphism was obtained in two steps from the
fiberwize Kontsevich formality from Ω(M,Tpoly) to Ω(M,Dpoly) building first a
twist that depends only on the curvature and its covariant derivatives, then building
a contraction by using the vanishing of the DF cohomology. Below, we give more
details of this construction and show that the Dolgushev L∞ quasi-isomorphism is
a universal formality L∞ quasi-isomorphism.

In view of point (1) of Theorem 17, the local Kontsevich L∞ quasi isomorphism
f K on Rd gives rise to a fiberwize quasi-isomorphism

f̃ K : (Ω(M,Tpoly),0, [−,−]SN−)→ (Ω(M,Dpoly),µp f , [−,−]G−)

such that the structure maps f̃ K
n are given by

f̃n(P1⊗ζ1, . . . ,Pn⊗ζn)= (−1)∑n−1
i=1 |ζi|(|Pi+1|+...+|Pn|−n+i) f K

n (P1, . . . ,Pn)ζ1∧. . .∧ζn

for any Pi ⊗ ζi ∈ Ω|ζi|(M,T
|Pi|

poly ). Here, [−,−]SN− := −1 × [−,−]SN and
[−,−]G− :=−1× [−,−]G; remember that we change the DGLA structure in order
to get the right sign in MCE (3.8).
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Take a contractible coordinates neighborhood W of M. It is easily seen that d com-
mutes with both the fiberwize DGLA structures of Ω(W,Tpoly) and Ω(W,Dpoly).
Hence, both (Ω(W,Tpoly),d, [−,−]SN−) and (Ω(W,Dpoly),d +∂µp f , [−,−]G

−
) are

fiberwize DGLAs. Hence, f̃ K obviously extends to an L∞ morphism

f̃ W : (Ω(W,Tpoly),d, [−,−]SN−)→ (Ω(W,Dpoly),d +∂µp f , [−,−]G
−
).

However, as W is contractible, then the L∞ morphism f̃ W is actually an L∞ quasi-
isomorphism.
We now apply the twisting procedure described in Proposition 24 to the L∞ quasi-
isomorphism f̃ W . This goal obviously requires to have a Maurer Cartan of the
DGLA (Ω(W,Tpoly),d, [−,−]SN−). Write

DTpoly
F = d− [B,−]SN−,

where B ∈Ω1(M,T 0
poly) and

B =−∑i dxi ∂
∂yi −∑i jk dxiΓk

i j y j ∂yk +∑r≥2 dxiAk
i, j1... jr y

j1 . . .y jr ∂yk . (4.30)

As the connection DTpoly
F is flat ((DTpoly

F )2 = 0), then B is a Maurer Cartan ele-
ment (as vector field) of the DGLA (Ω(W,Tpoly),d, [−,−]SN−). Thus, in view of
Proposition 22, we obtain a Maurer Cartan element of the DGLA (Ω(W,Dpoly),d+
∂µp f , [−,−]G

−
) defined by

B′ = ∑
n≥1

1
p!

(−1)
p(p−1)

2 f̃ W
p (B, . . . ,B).

But, as B is a valued 1-form vectorfield, point (3) of Theorem 17 implies that
B′ = B. Using now the twisted procedure described in Proposition 24 and Example
4, the twisted quasi-isomorphism of f̃ W by the Maurer Cartan element B is the L∞
quasi-isomorphism

f̃ WB : (Ω(W,Tpoly),D
Tpoly
F , [−,−]SN−)→ (Ω(W,Dpoly),D

Dpoly
F +∂µp f , [−,−]G−),

with structure maps

f̃ WB
p (P1, . . . ,Pn) = f̃ W

p (P1, . . . ,Pp)+ ∑
s≥1

1
s!

f̃ W
p+s(B, . . . ,B︸ ︷︷ ︸

s

,P1, . . . ,Pp)

for any P` ∈Ω(W,Tpoly).
Moreover, observe that B transforms upon a change of coordinates by adding
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a 1−form valued in linear vector fields, because all the coefficients in its ex-
pression are tensorial except Γk

i j. This, together with point (4) of Theorem 17,
entails that f̃ WB is independent of the choice of the coordinates neighborhood
W and also that, for any p ≥ 1, the polydifferential operators f̃ WB

p (P1, . . . ,Pp)
are p−polyvetorfields-related universal polydifferential operators of no-loop type.
Eventually, using the Fedosov resolution of Tpoly(M), we therefore obtain an L∞
quasi-isomorphism

f : (Tpoly(M),0, [−,−]SN−)→ (Ω(M,Dpoly),D
Dpoly
F +∂µp f , [−,−]G−)

such that fp(Λ1, . . . ,Λp) are p−polyvetorfields-related universal polydifferential
operators of no-loop type.

The second step of Dolgushev’s construction consists in contracting f to
an L∞ quasi-isomorphism taking values in the space of DDpoly

F −closed sections
H0(Ω(M,Dpoly),D

Dpoly
F ). Observe that once we succeed with this contraction, we

automatically obtain the desired L∞ quasi-isomorphism

f D : (Tpoly(M),0, [−,−]SN−)→ (Dpoly(M),∂µ , [−,−]G−)

because H0(Ω(M,Dpoly),DD poly

F ) is isomorphic via the Fedosov resolution to
Dpoly(M).
The contraction of f is based on the following general result.

Lemma 6. [Dol05] Let (V,π) and (V ′,π ′) be two (Z−graded) L∞ algebras and
assume that an L∞ quasi-morphism f = ( f1, f2, . . .) : (V,π) → (V,π ′) has been
defined. For any p≥ 1 and any (−p) weight Z−graded skew-symmetric map

h : V×p →V ′

one can construct an L∞ quasi-morphism

f̃ = ( f̃1, f̃2, . . .) : (V,π)→ (V,π ′)

such that f̃` = h` for any ` < p,

f̃p(v1, . . . ,vp) = fp(v1, . . . ,vp)

+π1h(v1, . . . ,vp)−∑p
`=1(−1)p+v1+...+v`−1h(v1, . . .v`−1,π1(v`),v`+1, . . . ,vp)

and
f̃` = f` +g`
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for any ` > p, where g` : V×p →V ′ are (1− `) weight Z−graded skew-symmetric
maps given in terms of h, fs, πs and π ′s for s≤ `.

This result can easily be obtained from the L∞ morphism conditions (2.52).

We now come back our main task and modify the L∞ quasi-isomorphism

f : (Tpoly(M),0, [−,−]SN−)→ (Ω(M,Dpoly),D
Dpoly
F +∂µp f , [−,−]G−)

to an L∞ quasi-isomorphism taking values in the space H0(Ω(M,Dpoly),D). Firstly,
we modify the first structure map f1 and then proceed by induction on the order p
of the structure maps fp.
For p = 1, the L∞ morphism conditions (2.52) implies that

(DDpoly
F +∂µp f ) f1(Λ) = 0 (4.31)

for any Λ ∈ Tpoly(M). When decomposing f1 w.r.t. the exterior degrees as

f1 =
d

∑̀
=1

( f1)`,

equation (4.31) entails that DDpoly
F ( f d

1 (Λ)) = 0 since the manifold M is
d−dimensional. But, as the cohomology of DDpoly

F is concentrated in degree zero,
there exists a map hd

1 : Tpoly →Ωd−1(M,Dpoly) such that

f1(Λ)+(DDpoly
F +∂µp f )h

d
1(Λ)

is of maximal exterior degree qmax < d. Proceeding in this way, we can construct a
(−1)−weight map h : Tpoly →Ω(M,Dpoly) such that

f1(Λ)+(DDpoly
F +∂µp f )(h1(Λ))

is of exterior degree zero. Applying now Lemma 6, we can modify the L∞ quasi-
isomorphism f1 to an L∞ quasi-isomorphism f̃ such that the first structure map is
given by

f̃1(Λ) := f1(Λ)+(DDpoly
F +∂µp f )h1(Λ).

Finally, as it is easily seen that DDpoly
F ( f̃1(Λ)) = 0, we therefore obtain an L∞ quasi-

isomorphism f̃ with DDpoly
F −closed first structure map f̃1.
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Suppose now that for any 1 ≤ ` < p the structure maps f̃` of the L∞ quasi-
isomorphism f̃ are DDpoly

F −closed. It follows from the L∞ morphism conditions
(2.52) that

(DDpoly
F +∂µp f )( f̃p(Λ1 . . . ,Λp)) =

1
2 ∑

r+s=p
r,s≥1

∑
σ∈Sr,p

(−1)θ

r!s! (−1)σ εΛ(σ)
[

f̃r(Λσ(1), . . . ,Λσ(r)), f̃s(Λσ(r+1), . . . ,Λσ(p))
]G−

+ ∑
1≤r<s≤p

(−1)s−r(−1)η f̃p−1([Λr,Λs]SN−,Λ1, . . . , Λ̂r, . . . , Λ̂s, . . . ,Λp),

where Sr,p is the set of unshuffles σ ∈ Sp with σ(1) < .. . < σ(r), σ(r+1) < .. . <
σ(p) and where

θ = r +(s+1)(|Λ1|+ . . .+ |Λr|),

η = (|Λr|+ |Λs|)(|Λ1|+ . . .+ |Λr−1|)+ |Λs|(|Λr+1|+ . . .+ |Λs−1|).

By the hypothesis of induction, the RHS of the previous equality has a zero exterior
degree. Thus, by using similar arguments as applied above, one can construct a
(−p) weight Z−graded skew-symmetric map

hp : Tpoly(M)×p →Ω(M,Dpoly)

so that
f̃p(Λ1, . . . ,Λp)+(DDpoly

F +∂µp f )hp(Λ1 . . . ,Λp)

is of exterior degree zero. Using again Lemma 6, we can modify the L∞ quasi-

isomorphism f̃ to an L∞ quasi-isomorphism ˜̃f such that the p−th structure map
is DDpoly

F −closed. This completes the induction, and thus we obtain the desired
contraction of the L∞ quasi-isomorphism f .

We conclude therefore that there exists an L∞ quasi-isomorphism f D from the
DGLA (Tpoly(M),0, [−,−]SN−) to the DGLA (Dpoly(M),∂µ , [−,−]G−).

Finally, as the second step (the contraction) of Dolgushev’s proof involves only
the vanishing of the cohomology of DDpoly

F , the L∞ quasi-isomorphism f D is a uni-
versal formality L∞ quasi-isomorphism. This implies in particular the existence of
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a universal star product on a given Poisson manifold (M,Λ) defined by

u∗D v = µ(u,v)+
∞

∑
p=1

ν p

p!
f D
p (Λ, . . . ,Λ)(u,v)

for any u,v ∈C∞(M).
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Chapter 5

Formal Poisson Cohomology of
Twisted r-matrix Induced
Structures

5.1 Introduction

It is easily seen that any quadratic Poisson tensor of the Dufour-Haraki classifica-
tion (DHC), [DH91], reads

Λ = ΛI +ΛII = aY23 +bY31 + cY12 +ΛII, (5.1)

where a,b,c ∈ R, where the Yi are linear, mutually commuting vector fields (Yi j =
Yi ∧Yj), and where ΛII is—as ΛI—a quadratic Poisson structure. This entails of
course that ΛI and ΛII are compatible, i.e. that [ΛI,ΛII ] = 0, where [., .] is the
Schouten bracket. Except for structure 10 of the DHC, where ΛII = (3b+1)(y2−
2xz)∂23 (∂23 = ∂x2∂x3 = ∂y∂z), the second Poisson structure is always Koszul-exact,
i.e.

ΛII = Πφ := (∂1φ)∂23 +(∂2φ)∂31 +(∂3φ)∂12, φ ∈S 3R3∗.

In [Xu92], P. Xu has proved that any quadratic Poisson tensor of R3 reads

Λ =
1
3

K∧E +Π f , (5.2)

where K is the curl of Λ, E the Euler field, and f ∈S 3R3∗.

113
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In most cases (only cases 9 and 10 of the DHC are exceptional), term ΛI of
Equation (5.1), which is twisted by the exact term ΛII and is—as easily seen—
implemented by an r-matrix in the stabilizer gΛ∧gΛ, gΛ = {A ∈ gl(3,R) : [A,Λ] =
0}, is given by

ΛI =
1
3

K∧E +ΠλD,

where λ ∈ R∗ and D = det(Y1,Y2,Y3), whereas

ΛII = Πφ = Π f−λD.

Hence, the difference between decompositions (5.1) and (5.2) is that in (5.1)
the biggest possible part of Λ is incorporated into the r-matrix induced structure,
whereas in (5.2) it is incorporated into the exact structure.

We privilege decomposition (5.1), since a general computing technique allows
to deal with the cohomology of ΛI , [MP06], and ΛII vanishes in many cases. In
most of the cases where the small exact tensor ΛII does not vanish, the decompo-
sition

∂Λ := [Λ, .] = [ΛI, .]+ [ΛII, .] =: ∂ΛI +∂ΛII , ∂ 2
ΛI

= ∂ 2
ΛII

= ∂ΛI ∂ΛII +∂ΛII ∂ΛI = 0

leads to a vertically positive double complex and the corresponding spectral
sequence allows to deduce bit by bit the cohomology of Λ from that of ΛI .

In Section 2, we show how twisted r-matrix induced tensors generate ver-
tically positive double complexes. As richness of Poisson cohomology entails
computation through the whole associated spectral sequence, we detail a complete
model of the sequence in Section 3. Section 4 contains the computation of the
cohomology of tensor Λ4 of the Dufour-Haraki classification. More precisely,
Subsection 4.1 provides the second term of the spectral sequence, i.e. the
cohomology of the r-matrix induced part Λ4,I of Λ4, which is accessible to the
general cohomological technique developed in [MP06]. After some preliminary
work in Subsections 4.2 and 4.3, we are prepared to compute, in Subsection
4.4, through the entire spectral sequence, see Theorem 18. As we aim at
the extraction of “true results”, we are obliged to detail all the isomorphisms
involved in the theory of spectral sequences and to read our upshots through
these isomorphisms. Hence, in particular, a study of the limiting process in the
sequence and of the reconstruction of the cohomology, precedes, in Subsection
4.5.1, the concrete description of the cohomology of twisted structure Λ4, see The-
orem 19 in Subsection 4.5.2, and of twisted tensor Λ8, Theorem 20 in Subsection 5.
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The description of the main features of the cohomology of r-matrix induced
Poisson structures has been given in [MP06]. The tight relation between Casimir
functions and Koszul-exactness of these Poisson tensors is recalled in Subsection
4.1, see Equation (5.10) (a generalization can be found in Subsection 4.3, see
Equation(5.11)). Since our r-matrix induced Poisson structures are built with
infinitesimal Poisson automorphisms Yi, see Equation (5.1), the wedge products
of the Yi constitute a priori “privileged” cocycles. The associative graded com-
mutative algebra structure of the Poisson cohomology space now explains part
of the cohomology classes. The second and third term of this cohomology space
contain, in addition to the just mentioned wedge products of Casimir functions
and infinitesimal automorphisms Yi, non-bounding cocycles the coefficients of
which are—in a broad sense—polynomials on the singular locus of the considered
Poisson tensor. The “weight in cohomology” of the singularities increases with
closeness of the Poisson structure to Koszul-exactness. The appearance of some
“accidental Casimir-like” non bounding cocycles completes the depiction of the
main characteristics of the cohomology.

If the r-matrix induced structure is twisted by an exact quadratic tensor, the
aforementioned spectral sequence constructs little by little the cohomology of Λ
from that of ΛI . In the examined cases, the basic Casimir CI of ΛI is the first
term of the expansion by Newton’s binomial theorem of the basic Casimir C of Λ.
Beyond the emergence of systematic conditions on the coefficients of the powers
Ci, i ∈ N, and the methodic disappearance of monomials on the singular locus of
ΛI , the main impact on Poisson cohomology of twist ΛII is the (partial) passage
from first term CI to complete expansion C, a change that takes place gradually for
all powers of these Casimirs, as we compute through the spectral sequence.

5.2 Vertically positive double complex

5.2.1 Definition

Let (K,d) be a complex, i.e. a differential space, made up by a graded vector space
K =⊕n∈NKn and a differential d : Kn →Kn+1 that has weight 1 with respect to this
grading. Assume that each term Kn is itself graded,

Kn =⊕r,s∈N,r+s=nKrs,

so that K = ⊕r,s∈NKrs is bigraded. We will refer to grading K = ⊕n∈NKn as the
diagonal grading. Let p,q∈N, p+q = n. Differential d : K pq →⊕r,s∈N,r+s=n+1Krs
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induces linear maps

dab : K pq → K p+a,q+b (a,b ∈ Z,a+b = 1),

such that
d = ∑

a,b∈Z,a+b=1
dab.

If dab = 0,∀b < 0 (resp. dab = 0,∀a < 0), the preceding complex is a vertically
positive double complex (VPDC) (resp. a horizontally positive double complex
(HPDC)). Vertically positive and horizontally positive double complexes are semi-
positive double complexes. A complex that is simultaneously a VPDC and a HPDC
is a double complex (DC) in the usual sense.

We filter a VPDC (resp. a HPDC) using the horizontal filtration (resp. vertical
filtration)

hKp =⊕r∈N,s≥pKrs (resp. vKp =⊕r≥p,s∈NKrs).

These filtrations are compatible (in the usual sense) with the diagonal grading and
differential d. Moreover, they are regular, i.e. Kp ∩Kn = 0,∀p > n (as well for
Kp =hKp as for Kp =vKp), and verify K0 = K and K+∞ = 0.

The (convergent) spectral sequence (SpecSeq) associated with this graded fil-
tered differential space is extensively studied below. Let us stress that in the fol-
lowing we prove several general results on spectral sequences, which we could not
find in literature. In order to increase the reader-friendliness of this chapter and to
avoid scrolling, we chose to give these upshots in separate subsections that directly
precede those where the results are needed.

5.2.2 Application to twisted r-matrix induced Poisson structures

We will now associate a VPDC to twisted r-matrix induced Poisson tensors. Let

Λ = ΛI +ΛII = aY23 +bY31 + cY12 +Πφ

be as in Equation (5.1).
Set Yi = `i j∂ j, `i j ∈ R3∗ (we use the Einstein summation convention) and D =

det` = det(`i j) ∈S 3R3∗. If L ∈ gl(3,S 2R3∗) is the matrix of algebraic (2×2)-
minors of `, we have ∂i = L ji

D Yj. The formal Poisson cochain space P is made up
by the 0−, 1−, 2−, and 3−cochains

C0 =
σ
D

,C1 =
σ1

D
Y1 +

σ2

D
Y2 +

σ3

D
Y3,C2 =

σ1

D
Y23 +

σ2

D
Y31 +

σ3

D
Y12,C3 =

σ
D

Y123,

(5.3)
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where σ ,σ1,σ2,σ3 ∈R[[x1,x2,x3]] and where σ , `i jσi, Li jσi are divisible by D (for
any j; 3-cochains do not generate any divisibility condition). In order to understand
these results, note first that, if L ∈ gl(3,S 4R3∗) denotes the matrix of algebraic
(2× 2)-minors of L, we have L = (detL)L̃−1 and L = (det`) ˜̀−1. The last equa-
tion entails that detL = (det`)2 and that L−1 = 1

det`
˜̀. Hence, it follows from the

first equation that L = (det`)` = D`. Let now C2 = σ1∂23 + σ2∂31 + σ3∂12 be an
arbitrary 2-cochain. Since its first term reads

σ1∂23 =
σ1

D2 L j2Lk3Yjk =
σ1

D2 (L11Y23 +L21Y31 +L31Y12)

=
σ1

D
(`11Y23 + `21Y31 + `31Y12) , (5.4)

its is clear that any 2-cochain can be written as announced. Conversely, the first
term of any 2-vector C2 = σ1

D Y23 + σ2
D Y31 + σ3

D Y12 reads

σ1

D
Y23 =

σ1

D
`2 j`3k∂ jk =

σ1

D
(L11∂23 +L12∂31 +L13∂12) .

Thus, such a 2-vector C2 is a formal Poisson 2-cochain if and only if Li jσi is divis-
ible by D for any j. The proofs of the statements concerning 0-, 1-, and 3-cochains
are similar.

Hence, if we substitute the Yi for the standard basic vector fields ∂i, the cochains
assume—roughly speaking—the shape ∑ f Y, where f is a function and Y is a
wedge product of basic fields Yi. Then the Lichnerowicz-Poisson coboundary op-
erator ∂ΛI = [ΛI, ·] is just

∂ΛI ( f Y) = [ΛI, f Y] = [ΛI, f ]∧Y. (5.5)

More precisely, the coboundary operator associated with ΛI is given by

[ΛI,C0] = ∇C0, [ΛI,C1] = ∇∧C1, [ΛI,C2] = ∇.C2, and [ΛI,C3] = 0, (5.6)

where ∇ = ∑i Xi(·)Yi, X1 = cY2−bY3,X2 = aY3−cY1,X3 = bY1−aY2, and where the
RHS have to be viewed as notations that give the coefficients of the coboundaries
in the Yi-basis. For instance, [ΛI,C2] = (∑i Xi(σi

D ))Y123.
Of course the formal power series σ ,σ1,σ2,σ3 in Equation (5.3) read

∑
J∈N3

cJXJ =
∞

∑
j1=0

∞

∑
j2=0

∞

∑
j3=0

c j1 j2 j3x j1
1 x j2

2 x j3
3 (c j1 j2 j3 ∈ R).

The degrees j1, j2, j3 ∈N and the cochain degree c∈ {0,1,2,3} induce a 4-grading
of the formal Poisson cochain space P of polyvector fields with coefficients in for-
mal power series. Let us emphasize that the degrees ji are read in the numerators σ
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of the decomposition C = ∑ σ
D Y. They are tightly related with the r-matrix induced

nature of ΛI and were basic in the method developed in [MP06]. In the following
we use the degrees r = j1 + j2 +c and s = j3 (depending on the considered Poisson
tensor, other degrees could be used, but the preceding ones encompass the major-
ity of twisted structures) that generate a bigrading of P , P = ⊕r,s∈NPrs. When
defining the diagonal degree n = r + s, we get a graded space

P =⊕n∈NPn,Pn =⊕r,s∈N,r+s=nP
rs.

We now determine the weights of the coboundary operators ∂ΛI and ∂ΛII with
respect to r and s. Actually D is an eigenvector of the basic fields Yi, hence of
the fundamental fields Xi, YiD = λiD, XiD = µiD, λi,µi ∈ R. Indeed, since πλD =
λ (∂1D∂23 + ∂2D∂31 + ∂3D∂12), it follows from Equation (5.4) (take σ j = λ∂ jD)
(and its cyclic permutations) that

πλD =
λ
D

(Y1DY23 +Y2DY31 +Y3DY12) .

But πλD is part of ΛI and is—more precisely—of type (5.1), i.e. reads

πλD = l1Y23 + l2Y31 + l3Y12

(l1, l2, l3 ∈ R). Hence,

YiD =
li

λ
D =: λiD,∀i ∈ {1,2,3}.

In view of Equations (5.3) and (5.6), the degrees j1, j2, j3 of the ΛI-coboundary
∂ΛIC of any cochain C only depend on the values Xi

(σ
D

)
of the fundamental linear

fields Xi for an arbitrary formal power series σ = ∑J cJXJ . Since

Xi

(σ
D

)
= ∑

J
cJ

1
D

(Xi−µi id)XJ,

it is clear that ∂ΛI preserves the total degree t = j1 + j2 + j3.
In the following, we focus on the first twisted quadratic Poisson structures that

appear in the DHC, i.e. on classes 4, 8, and 11, see [DH91]. Let us recall that

Λ4 = ayz∂23 +axz∂31 +
(
bxy+ z2)∂12

= aY23 +aY31 +bY12 +
z3

D
Y12 = Λ4,I +Λ4,II ,

a 6= 0,b 6= 0,Y1 = x∂1,Y2 = y∂2,Y3 = z∂3,D = xyz,
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Λ8 =
(

a+b
2

(x2 + y2)± z2
)

∂12 +axz∂23 +ayz∂31

= aY23 +
a+b

2
Y12± z3

D
Y12 = Λ8,I +Λ8,II,

a 6= 0,b 6= 0,Y1 = x1∂1 + x2∂2,Y2 = x1∂2− x2∂1,Y3 = x3∂3,D = (x2 + y2)z,

Λ11 =
(
ax2 +bz2)∂12 +(2a+1)xz∂23

= Y23 +aY12 +b
z3

D
((3a+1)Y12 +Y23) = Λ11,I +Λ11,II,

a 6= −1
3

,b 6= 0,Y1 = E ,Y2 = x∂2,Y3 = (3a+1)z∂3,D = (3a+1)x2z.

Owing to the above remarks, it is obvious that ∂Λi,I , i ∈ {4,8,11}, preserves the
partial degree p = j1 + j2 (and, as aforementioned, the total degree t). Hence, its
weight with respect to (r,s) is (1,0):

d′ := d10 := ∂Λi,I : Prs →Pr+1,s (i ∈ {4,8,11})

(dependence on i omitted in d′ and d10).
As for the weight of ∂Λi,II , i ∈ {4,8,11}, with respect to (r,s), let us first recall

that, if f and g are some functions, and if X and Y denote wedge products of
Y1,Y2,Y3 with (non-shifted) degrees α and β respectively, we have

[ f X,gY] = f [X,g]∧Y+(−1)αβ−α−β g[Y, f ]∧X. (5.7)

Of course, the RHS of the preceding equation is a linear combination of terms of
the type fYi(g)Z or gYi( f )Z, where Z is a wedge product of Y1,Y2,Y3 of degree
α + β − 1. It follows that ∂Λi,IIC

c, i ∈ {4,8,11}, Cc ∈ P , is a formal series of
terms of the type

[
z3

D
X,

XJ

D
Y].

Any such term is a linear combination of terms of the type

z3

D
Yi

(
XJ

D

)
Z and

XJ

D
Yi

(
z3

D

)
Z.

As D is an eigenvector of Yi, this entails that coboundary ∂Λi,IIC
c has the form

∂Λi,IIC
c = ∑ ∑K cKXK

D2 Z,
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where in each term k1 + k2 = j1 + j2 and k3 = j3 + 3, and where the degree of
wedge product Z is α + β − 1 = c + 1. When dividing the preceding numerators
by D (see above), we find that the weight of ∂Λi,II with respect to (r,s) is (−1,2) :

d′′ := d−12 := ∂Λi,II : Prs →Pr−1,s+2 (i ∈ {4,8,11})

(dependence on i omitted in d′′ and d−12).
Finally, (P,∂Λi), i ∈ {4,8,11}, endowed with the previously mentioned grad-

ings
P =⊕n∈NPn,Pn =⊕r,s∈N,r+s=nP

rs

and the differential

d := ∂Λi = ∂Λi,I +∂Λi,II = d′+d′′ = d10 +d−12,

is a VPDC. We will compute the cohomology H(Λi) = H(P,d) using the SpecSeq
associated with this VPDC (see above).

5.3 Model of the spectral sequence associated with a
VPDC

As mentioned above, a VPDC, a HPDC, and a DC can canonically be viewed as
regular filtered graded differential spaces. Hence, a SpecSeq (two, for any DC) is
associated with each one of these complexes.

In order to introduce notations, let us recall that, if (K,d,Kp,Kn) is any (regular,
i.e. Kp ∩Kn = 0,∀p > n) filtered (subscripts) graded (superscripts) differential
space (in our work p and n can be regarded as positive integers), the associated
SpecSeq (Er,dr) (r ∈ N) is defined by

E pq
r = Zpq

r /(Zp+1,q−1
r−1 +Bpq

r−1),

where Zpq
r = Kp∩d−1Kp+r∩K p+q and Bpq

r = Kp∩dKp−r∩K p+q are the spaces of
“weak cocycles” and “strong coboundaries” of order r in Kp∩K p+q, and

dr : E pq
r 3 [zpq

r ]E pq
r
→ [dzpq

r ]E p+r,q+1−r
r

∈ E p+r,q+1−r
r .

In the following, we also use the vector space isomorphism

σr : E pq
r+1 → H pq(Er,dr),
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which assigns to each [zpq
r+1]E pq

r+1
, z

pq
r+1 ∈ Zpq

r+1 ⊂ Zpq
r , the dr-cohomology class

[[zpq
r+1]E pq

r
]dr , [zpq

r+1]E pq
r
∈ E pq

r ∩ kerdr. For more detailed results on spectral
sequences, we refer the reader to [Cle85], [God52], [CE56], [Vai73], ... In these
monographs, a model for the SpecSeq associated with a (HP)DC is partially
depicted up to r = 2. It is well-known that spectral sequences are particularly easy
to use, if many spaces E pq

2 (or E pq
r (r > 2)) vanish. Due to richness of Poisson

cohomology, this lacunary phenomenon is less pronounced in our setting. Since
we have thus to compute through the whole SpecSeq, we need the complete
description of the entire model of the SpecSeq (Er,dr) (r ∈ N) associated with a
VPDC.

So consider an arbitrary VPDC and let Gpq(K) (p,q∈N) be the term of degree
(p,q) of the bigraded space associated with the filtered graded space K. It is clear
that the mapping

I0 : E pq
0 = Kp∩K p+q/Kp+1∩K p+q = Gpq(K)3 [zpq

0 =
q

∑
i=0

zq−i,p+i]E pq
0
→ zqp ∈Kqp,

where zrs (as well as—in the following—all Latin characters with double super-
script) is an element of Krs (whereas German Fraktur characters with double su-
perscript, such as z

pq
0 , do not refer to the bigrading of K), is an isomorphism of

bigraded vector spaces (i.e. a vector space isomorphism that respects the bigrad-
ing). It is easily seen that, when reading d0 through this isomorphism, we get the
compound map

d0 = I0d0I−1
0 = d10.

Thus I0 : (E0,d0) → (K,d0) is an isomorphism between bigraded differential
spaces, and induces an isomorphism

I0] : H pq(E0,d0) 3 [[zpq
0 = ∑q

i=0 zq−i,p+i]E pq
0

]d0

−→ [zqp]d0
∈ H pq(K,d0) =: 0H pq(K) = 0Hq(K∗p)

of bigraded vector spaces, where the last space is the q-term of the cohomology
space of (K∗p,d0 = d10). Hence the bigraded vector space isomorphism

I1 = I0]σ0 : E pq
1 3 [zpq

1 =
q

∑
i=0

zq−i,p+i]E pq
1
→ [[zpq

1 ]E pq
0

]d0 → [zqp]d0
∈ 0Hq(K∗p).

We now again verify straightforwardly that differential d1 read on model 0H(K) is
induced by d01, i.e. that

d1 = I1d1I−1
1 = d01].
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Finally,

I2 = I1]σ1 : E pq
2 3 [zpq

2 =
q

∑
i=0

zq−i,p+i]E pq
2
→ [[zpq

2 ]E pq
1

]d1 → [[zqp]d0
]d1
∈1H p(0Hq(K))

is an isomorphism of bigraded vector spaces. As for the sense of the last space,
note that (0Hq(K) =⊕p

0Hq(K∗p),d1) is a complex. Observe now that the inverse
I−1
2 is less straightforward than I−1

0 and I−1
1 . Indeed, if [[zqp]d0

]d1
∈1H p(0Hq(K)),

representative zqp is generally not a member of Zpq
2 . However, since the considered

class makes sense,
d10zqp = 0
d01zqp +d10zq−1,p+1 = 0,

where zq−1,p+1 ∈ Kq−1,p+1. Thus, z
pq
2 := zqp + zq−1,p+1 ∈ Zpq

2 and

I−1
2 [[zqp]d0

]d1
= [zpq

2 ]E pq
2

.

So
d2[[zqp]d0

]d1
= I2[dz

pq
2 ]E p+2,q−1

2
= [[d−12zqp +d01zq−1,p+1]d0

]d1
.

The preceding results extend those given in [Vai73] (for a HPDC). They can easily
be adapted to the most frequently encountered situations where only some terms
dab of d do not vanish.

In the following, we complete the description of the SpecSeq associated with
a VPDC, assuming that d = d10 + d−12 := d′ + d′′. This hypothesis entails that
d′2 = d′′2 = d′d′′+d′′d′ = 0, i.e. that d′ and d′′ are two anticommuting differentials.
Hereafter, we denote by rH(.) (r ∈N) the cohomology of differential d2r and by [.]r
the corresponding classes. Moreover, we will deal with strongly triangular systems
of type

d′zqp = 0 (E0)
d′′zqp +d′zq−2,p+2 = 0 (E1)
. . .

d′′zq−2(k−2),p+2(k−2) +d′zq−2(k−1),p+2(k−1) = 0. (Ek−1)

Note that when solving such a system, we prove at each stage that some d′-cocycle
is actually a d′-coboundary. We refer to this kind of system using the notation
S(zqp;k) or S(k;zq−2(k−1),p+2(k−1)) depending on the necessity to emphasize the
first or the last unknown or entry of an ordered solution.
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Proposition 35. The spectral sequence associated to a VPDC with differential
d = d10 + d−12 = d′ + d′′ admits the following model. The model of E0, isomor-
phisms I0 and I−1

0 , and differential d0 are the same as above. For any r ∈ {1,2, . . .},

(i) The map

I2r−1 : E pq
2r−1 3 [zpq

2r−1 =
q

∑
i=0

zq−i,p+i]E pq
2r−1

−→ [[[zqp]0]1 . . .]r−1 ∈ r−1H pq(r−2H(. . .(0H(K))))

is a bigraded vector space isomorphism. Its inverse I−1
2r−1 associates to any

RHS-class the LHS-class with representative z
pq
2r−1 = ∑r−1

i=0 zq−2i,p+2i, where
(zqp, . . . ,zq−2(r−1),p+2(r−1)) is any solution of system S(zqp;r). Furthermore,
d2r−1 = 0.

(ii) The model of E pq
2r and the corresponding isomorphisms I2r and I−1

2r coincide
with those pertaining to E pq

2r−1. Moreover,

d2r[[[zqp]0]1 . . .]r−1 = [[[d′′zq−2(r−1),p+2(r−1)]0]1 . . .]r−1, (5.8)

where zq−2(r−1),p+2(r−1) is the last entry of an arbitrary solution of S(zqp;r).

Proof. It is easier to prove an extended version of Proposition 35. Indeed, let
us complete assertions (i) and (ii) by item

(iii) Existence (resp. vanishing) of a class [[[zqp]0]1 . . .]r−1 is equivalent with
existence of at least one solution of system S(zqp;r) (resp. with existence of zq−1,p

and of zq+1,p−2
i , i ∈ {1, . . . ,r− 1}, which induce systems S(i;zq+1,p−2

i ) with solu-
tion, such that

zqp +d′zq−1,p +d′′
r−1

∑
i=1

zq+1,p−2
i = 0.)

The proof is by induction on r. Observe first that the assertions are valid
for r = 1 (see above). Assume now that all items hold for r ∈ {1, . . . , `− 1}.
Proceeding as above, we easily show that I2`−1 := I2(`−1)]σ2(`−1) is the appropriate
bigraded vector space isomorphism. In order to determine I−1

2`−1, take any RHS-
class [[[zqp]0]1 . . .]`−1.
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Let us first prove assertion (iii). Existence of class [[[zqp]0]1 . . .]`−1 is equivalent
with existence of class [[[zqp]0]1 . . .]`−2 (itself equivalent to existence of at least one
solution

zq−2 j,p+2 j (0≤ j ≤ `−2)

for S(zqp;`−1), by induction) and condition

d2(`−1)[[[z
qp]0]1 . . .]`−2 = 0.

Using the induction assumptions, we see that the last condition is equivalent, first
with

[[[d′′zq−2(`−2),p+2(`−2)]0]1 . . .]`−2 = 0,

then with existence of
zq−2(`−1),p+2(`−1)

and zq−2(`−2),p+2(`−2)
i (1 ≤ i ≤ ` − 2), which implement systems

S(i;zq−2(`−2),p+2(`−2)
i ) with solution, say

zq−2 j,p+2 j
i (1≤ `− i−1≤ j ≤ `−2),

such that

d′′
(

zq−2(`−2),p+2(`−2) +
`−2

∑
i=1

zq−2(`−2),p+2(`−2)
i

)
+d′zq−2(`−1),p+2(`−1) = 0. (5.9)

Assume now that all this holds and define new zq−2 j,p+2 j (0≤ j ≤ `−1). For each
j, take just the sum of the old zq−2 j,p+2 j and of all existing zq−2 j,p+2 j

i . These new
zq−2 j,p+2 j form a solution of S(zqp;`). Note first that for j ∈ {0, `− 1}, the old
and new zq−2 j,p+2 j coincide. Hence, the last equation (E`−1) of S(zqp;`) is nothing
but Equation (5.9). Moreover, it is easily checked that Equations (E`−2), . . . ,(E0)
are also verified. Conversely, if S(zqp;`) has a solution, the successive classes
[zqp]0, [[zqp]0]1, . . . , [[[zqp]0]1 . . .]`−1 are actually defined. It suffices to note that
d0zqp = 0 and that, by induction,

d2r[[[zqp]0]1 . . .]r−1 = [[[d′′zq−2(r−1),p+2(r−1)]0]1 . . .]r−1

= −[[[d′zq−2r,p+2r]0]1 . . .]r−1 = 0,

for any r ∈ {1, . . . , `−1}.
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As for the second part of (iii), note that a class [[[zqp]0]1 . . .]`−1 van-
ishes if and only if there is zq+2(`−1)−1,p−2(`−1)

`−1 that generates a system

S(zq+2(`−1)−1,p−2(`−1)
`−1 ;`−1) with solution, say

zq+2(`− j−1)−1,p−2(`− j−1)
`−1 (0≤ j ≤ `−2),

such that

[[[zqp]0]1 . . .]`−2 = −d2(`−1)[[[z
q+2(`−1)−1,p−2(`−1)
`−1 ]0]1 . . .]`−2

= −[[[d′′zq+1,p−2
`−1 ]0]1 . . .]`−2.

But, by induction, [[[zqp + d′′zq+1,p−2
`−1 ]0]1 . . .]`−2 = 0 if and only if there are zq−1,p

and zq+1,p−2
i (1 ≤ i ≤ `− 2), which induce systems S(i;zq+1,p−2

i ) with solution,
such that

zqp +d′′zq+1,p−2
`−1 +d′′

`−2

∑
i=1

zq+1,p−2
i +d′zq−1,p = 0.

Hence the conclusion.

We now revert to items (i) and (ii). For any RHS-class [[[zqp]0]1 . . .]`−1 ∈
`−1H pq(`−2H(. . .(0H(K)))), the corresponding system S(zqp;`) admits, as just ex-
plained, at least one solution zq−2 j,p+2 j (0≤ j ≤ `−1). Set

z
pq
2`−1 :=

`−1

∑
j=0

zq−2 j,p+2 j.

As dz
pq
2`−1 = d′′zq−2(`−1),p+2(`−1) ∈ Kq−2`+1,p+2`, we see that z

pq
2`−1 ∈ Zpq

2`−1 =
Kp ∩ d−1Kp+2`−1 ∩K p+q. Hence I−1

2`−1. As d2`−1[z
pq
2`−1]E pq

2`−1
∈ E p+2`−1,q−2`+2

2`−1 , it

is clear that d2`−1 = 0. Thus, the statement concerning the model of E pq
2` and the

isomorphisms I2` and I−1
2` is obvious. Finally, as d2`[z

pq
2` ]E pq

2`
∈ E p+2`,q−2`+1

2` , we get

d2`[[[zqp]0]1 . . .]`−1 = [[[d′′zq−2(`−1),p+2(`−1)]0]1 . . .]`−1.

Remark. Result (5.8) can be rephrased as d2r =
(
(−1)r−1d′′(d′−1d′′)r−1

)
]
, for

any r ∈ {1,2, . . .}.

5.4 Formal cohomology of Poisson tensor Λ4

As aforementioned, we use the just depicted SpecSeq associated with the above
detailed VPDC implemented by the twisted r-matrix induced Poisson structure Λ4.
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5.4.1 Computation of the second term of the SpecSeq

In this section, we give the second term E2 ' 0H(P) of the SpecSeq. Note that
0H(P) is the formal Poisson cohomology of d0 = d′ = d10 = ∂Λ4,I . As already
elucidated in the Introduction, we came up with decomposition (5.1), since the
cohomology of ∂ΛI is always accessible by the technique proposed in [MP06].
Hence, cohomology space 0H(P) can be obtained (quite straightforwardly) by this
modus operandi. Let us emphasize that our results are in accordance, as well with
similar upshots in [Mon02,2], as with our comments in [MP06], regarding the tight
relation between Casimir functions and Koszul-exactness or “quasi-exactness”, the
appearance of “accidental Casimir-like” non bounding cocycles, and the increase
of the “weight in cohomology” of the singularities, with closeness of the considered
Poisson structure to Koszul-exactness.

If b
a ∈Q∗, we denote by (β ,α)∼ (b,a), α ∈N∗, the irreducible representative

of b
a . Remember that, see [MP06], for b

a ∈Q∗+, a quasi-exact structure

Λ = a∂1(pq)∂23 +a∂2(pq)∂31 +b∂3(pq)∂12, (5.10)

p = p(x,y), q = q(z), exhibits the basic Casimir pαqβ . Furthermore, we set D =
xyz, D′ = xy, and write AαY3, α ∈N∗, instead of D′αz−1Y3 = D′α∂3, and ⊕i j . . .Yi j

instead of . . .Y23 + . . .Y31 + . . .Y12. Remark also that the algebra of polynomials of
the algebraic variety of singularities of Λ4,I is R[[x]]⊕R[[y]]⊕R[[z]], where it is
understood that term R is considered only once.

The following proposition is now almost obvious.

Proposition 36.

1. If b
a ∈ Q∗+, the algebra of Λ4,I-Casimirs is Cas(Λ4,I) = ⊕i∈NRD′αizβ i and

the cohomology space 0H(P)' E2 is given by

0H(P) = Cas(Λ4,I)⊕
⊕

i

Cas(Λ4,I)Yi⊕
⊕

i j

Cas(Λ4,I)Yi j⊕Cas(Λ4,I)Y123

⊕
{
R[[x]]∂23⊕R[[y]]∂31⊕ (R[[x]]⊕R[[y]])∂123, if b = a
0,otherwise

⊕R[[z]]∂12⊕R[[z]]∂123

2. If b
a ∈R∗ \Q∗+, we have Cas(Λ4,I) =R and the cohomology space 0H(P)'
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E2 is given by

0H(P) = Cas(Λ4,I)⊕
⊕

i

Cas(Λ4,I)Yi⊕
⊕

i j

Cas(Λ4,I)Yi j⊕Cas(Λ4,I)Y123

⊕
{
RAαY3⊕Aα(RY23 +RY31)⊕RAαY123, if (−1,α)∼ (b,a)
0,otherwise

⊕R[[z]]∂12⊕R[[z]]∂123

Remark. Due to the properties—used below—of the preceding (non bound-
ing) Λ4,I-cocycles, we classify these representatives as follows:

1. Representatives of type 1: All cocycles with cochain degree 0, the 1− and
2−cocycles that contain a Casimir (maybe the accidental Casimir Aα ), ex-
cept cocycles Cas(Λ4,I)Y12

2. Representatives of type 2: All 3−cocycles, all cocycles with singularities,
and cocycles Cas(Λ4,I)Y12

5.4.2 Prolongable systems S(zqp;r)

Since computation through the whole SpecSeq will shape up as inescapable, we
need the below corollary of Proposition (35). It allows to short-circuit the pro-
cess of computing the successive terms of the sequence. Let us specify that in the
following a system of representatives of a space of classes is made up by represen-
tatives that are in 1-to-1 correspondence with the considered classes.

Corollary 4. If, for some fixed r ∈ N∗, all the classes [[[zqp]0]1 . . .]r−1 in model
space r−1H(r−2H(. . .0H(K))), appendant on a SpecSeq associated to a VPDC with
differential d = d10 +d−12 = d′+d′′, give rise to an enlarged system S(zqp;s) with
solution, for some fixed s≥ r, the following upshots hold:

1. All the differentials d2r−1,d2r, . . . ,d2s−1 vanish

2. Differential d2s is defined by

d2s[[[zqp]0]1 . . .]r−1 = [[[d′′zq−2(s−1),p+2(s−1)]0]1 . . .]r−1

3. Any system (zqp) of representatives of r−1H(r−2H(. . .0H(K))) is in 1-to-1
correspondence with the system (zpq

2s := ∑s−1
k=0 zq−2k,p+2k) of representatives

of E2s

Proof. Induction on s.
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5.4.3 Forecast

In order to increase readability of this chapter, some intuitive advisements are nec-
essary.

The basic idea of the theory of spectral sequences is that computation of the
successive terms Er ' H(Er−1,dr−1) (r ∈ N∗) allows to detect their inductive limit
E∞, which—for a convergent sequence—is isomorphic with the graded space G(H)
associated to the sought-after filtered cohomology space H. We then hope to
be able to reconstruct this filtered space H from the corresponding graded space
G(H). Let us recall that space H is of course the cohomology of the filtered graded
differential space associated with the SpecSeq. Hence, in our case, H = H(Λ4).
It is clear that the successive cohomology computations take place on the concrete
model side. To determine H, we have to pull our results back to the theoretical side,
and more precisely to read them through the numerous isomorphisms involved.

Actually the application of spectral sequences presented in this work, provides
a beautiful insight into the operating mode of a SpecSeq. Since—roughly spoken—
the “weak cocycle condition” in the definition of Zpq

r (resp. the “strong coboundary
condition” in the definition of Bpq

r ) converges to the usual cocycle condition (resp.
the usual coboundary condition), we understand that, when passing from one es-
timate Er−1 of H to the next approximation Er, we obtain an increasing number
of conditions on our initial weak non bounding cocycles of E2 and an increasing
number of bounding cocycles. Moreover, when we compute through the SpecSeq,
the aforementioned pullbacks, see Proposition (35), add up solutions of crescive
systems,

z
pq
2r = zqp +

r−1

∑
k=1

zq−2k,p+2k.

The next remarks aim at anticipation of these systems. The reader is already
familiar with Casimirs of exact and quasi-exact structures. When taking an interest
in slightly more general quasi-exact tensors,

Λ = a∂1((p+ r)q)∂23 +a∂2((p+ r)q)∂31 +b∂3((p+ r)q)∂12, (5.11)

a,b ∈ R∗, p = p(x,y), q = q(z), r = r(z), it is natural to ask which polynomials of
the type (p+ cr)nqm, c ∈ R, n,m ∈ N, (n,m) 6= (0,0), are Casimir functions. It is
easily checked that structure Λ4 has this form and that the Casimir conditions read
am = bn and 3bn = ca(2n+m). So, for b

a ∈Q∗+, the basic Casimir C of Λ4 and its
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powers Ci, i ∈ N, are given by

Ci = (p+
3b

2a+b
r)α iqβ i = (D′+

z2

2a+b
)α izβ i

= D′α izβ i +
α i

∑
k=1

{k
α i

(2a+b)k D′α i−kzβ i+2k.

These powers Ci (non bounding cocycles of H = H(Λ4)) will be obtained—while
we compute through the SpecSeq—from those, D′α izβ i, of the Casimir of Λ4,I

(non bounding cocycles of E2 ' 0H(P)). Hence, the above-quoted solutions and
corresponding systems S(D′α izβ i,α i+1).

5.4.4 Computation through the SpecSeq

In view of the preceding awareness, it is natural to set

Zqic−2k,pi+2k =
{k

αi
(2a+b)k D′αi−kzβ i+2k





Aik

BikY1 +CikY2 +DikY3 ,

EikY23 +FikY31

where k ∈ {0,1, . . . ,α i} and Aik,Bik,Cik,Dik,Eik,Fik ∈ R. More precisely, if b
a ∈

Q∗+, we have (b,a) ∼ (β ,α), α,β ∈ N∗, and we ask that i ∈ N, if b
a ∈ R∗ \Q∗+,

we choose i = 0, and if moreover (b,a) ∼ (β ,α) = (−1,α), α ∈ N∗, we also
accept the value i = 1, but add the conditions A10 = B10 = C10 = 0. We define
(qic, pi) := (2α i + 2 + c,β i + 1), where c ∈ {0,1,2} denotes the cochain degree,
so that the double superscript in the LHS is the bidegree (r,s) = ( j1 + j2 + c, j3) of
the RHS.

Observe that the Zqic,pi are exactly the representatives of type 1 of the classes
of E2 ' 0H(P).

Lemma 7. For any admissible exponent i and any cochain degree c ∈ {0,1,2},
the cochains Zqic−2k,pi+2k, k ∈ {0,1, . . . ,α i}, constitute a solution of system
S(Zqic,pi ;α i+1), if and only if, for any k ∈ {0,1, . . . ,α i−1},

Ai,k+1 = Aik, if c = 0, (C0)

Bi,k+1 +Ci,k+1 =
(αi− k +1)(Bik +Cik)−2Dik

αi− k
and Di,k+1 = Dik, if c = 1, (C1)

Ei,k+1−Fi,k+1 =
αi− k +1

αi− k
(Eik−Fik) , if c = 2. (C2)
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Furthermore,

d′′Zqic−2αi,pi+2αi = d′′Z2+c,pi+2αi

=





0, for c = 0,

(2a+b)−αi (Bi,αi +Ci,αi−2Di,αi)z2+i(2α+β )∂12, for c = 1,

(2a+b)−αi (Ei,αi−Fi,αi)z3+i(2α+β )∂123, for c = 2,

is a d′-coboundary if and only if the coefficient vanishes.

Proof. We must compute the differentials d′ = ∂Λ4,I = [Λ4,I, .] and d′′ = ∂Λ4,II =
[D−1z3Y12, .] =: [ f X, .] on the Zqic−2k,pi+2k. These cochains have the form gY :=
D−1XJY := D−1D′nzm ∑ j r jY j, n,m ∈ N,r j ∈ R, where the degree c of wedge
product Y j is independent of j. Hence, Equation (5.7) gives

d′′(gY ) = [ f X,gY ] = f [X,g]∧Y +(−1)cg[Y , f ]∧X.

On the other hand, Equations (5.5) and (5.6) entail d′(gY ) = [Λ4,I,gY ] =
[Λ4,I,g] ∧ Y = ∑` X`(g) Y` ∧ Y , where X1 = bY2 − aY3,X2 = aY3 − bY1,X3 =
a(Y1−Y2). Since

Y`

(
XJ

D

)
= ( j`−1)

XJ

D

(same notations as above), we get

d′(gY ) = g(b(n−1)−a(m−1))(Y1−Y2)∧Y .

In particular, we recover the result d′Zqic,pi = ig(bα−aβ )(Y1−Y2)∧Y = 0, and,
when setting a = 0,b = 1,Y = 1, we find

[X,g] = g(n−1)(Y1−Y2).

We now compute d′′Zqic−2k,pi+2k, k∈ {0,1, . . . ,α i}, and d′Zqic−2(k+1),pi+2(k+1),
k ∈ {0,1, . . . ,α i−1}.

1. c = 0
It follows from the preceding equations that

d′′Zqi0−2k,pi+2k = {k
αi(α i− k)Aik(2a+b)−kD−1D′αi−kz3+β i+2k(Y1−Y2)
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and that

d′Zqi0−2(k+1),pi+2(k+1) =−{k+1
αi (k+1)Ai,k+1(2a+b)−kD−1D′αi−kz3+β i+2k(Y1−Y2).

Since for any p,n ∈ N, p < n, we have {p
n(n− p) = {p+1

n (p + 1), the sum of these
coboundaries vanishes if and only if Ai,k+1 = Aik, for any k ∈ {0,1, . . . ,α i− 1}.
For k = α i, we get

d′′Zqi0−2αi,pi+2αi = d′′Z2,pi+2αi = 0.

2. c = 1
A short computation shows that

d′′Zqi1−2k,pi+2k

= {k
αi(2a+b)−kD−1D′αi−kz3+β i+2k[−Dik(α i− k)Y23−Dik(α i− k)Y31

+((Bik +Cik)(α i− k +1)−2Dik)Y12]

and that

d′Zqi1−2(k+1),pi+2(k+1)

=−{k+1
α i (k +1)(2a+b)−kD−1D′α i−kz3+β i+2k[−Di,k+1Y23

−Di,k+1Y31 +(Bi,k+1 +Ci,k+1)Y12].

If k ∈ {0,1, . . . ,α i−1}, the sum of these coboundaries vanishes if and only if

Bi,k+1 +Ci,k+1 =
(αi− k +1)(Bik +Cik)−2Dik

αi− k
and Di,k+1 = Dik.

Furthermore, for k = α i, the first of the preceding “coboundary equations”
provides the announced result for d′′Zqi1−2αi,pi+2αi. As R[[z]]∂12 is part of the
cohomology of d0 = d′, this d′′-coboundary is a d′-coboundary if and only if its
coefficient vanishes.

3. c = 2
We immediately obtain

d′′Zqi2−2k,pi+2k = {k
αi(α i− k +1)(2a+b)−kD−1D′αi−kz3+β i+2k(Eik−Fik)Y123

and

d′Zqi2−2(k+1),pi+2(k+1)

=−{k+1
αi (k +1)(2a+b)−kD−1D′α i−kz3+β i+2k(Ei,k+1−Fi,k+1)Y123.
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Hence the announced upshots.
Let us recall that the admissible values of i (and the potential conven-

tions on coefficients A10,B10,C10) depend on quotient b/a. Moreover, for b/
a ∈ R∗ \Q∗+,(b,a) � (−1,α),α ∈ N∗, we set α = 1 ∈ N∗. Actually, in this case,
α needed not be defined before, as it was systematically multiplied by i = 0.

The following theorem provides the complete description of the considered
SpecSeq.

Theorem 18. The even terms E2(n−1)α+4 = E2(n−1)α+6 = . . . = E2nα+2 (n ∈ N;
for n = 0, this package contains only term E2) of the above defined SpecSeq are
canonically isomorphic (i.e. d2(n−1)α+4 = d2(n−1)α+6 = . . . = d2nα = 0 ) and admit
the below system of representatives:
1. All representatives of type 2 of E2 ∼ 0H(P), except

Rzi(2α+β )+2∂12 and Rzi(2α+β )+3∂123,

for all admissible i ∈ {0,1, . . . ,n−1}.
2. All representatives of type 1 of E2 ∼ 0H(P), altered as follows:

• For all admissible i ∈ {n,n+1, . . .},

Zqic,pi Ã
α n

∑
k=0

Zqic−2k,pi+2k,

where the coefficients Aik,Bik,Cik,Dik,Eik,Fik incorporated into the terms of
the RHS verify conditions (C0)− (C2) of Lemma 7 up to k = α n−1.

• For all admissible i ∈ {0,1, . . . ,n−1},

Zqic,pi Ã





(
D′+ z2

2a+b

)αi
zβ iAi0, if c = 0,

(
D′+ z2

2a+b

)αi
zβ i

(
Bi0(Y1 + 1

2Y3)+Ci0(Y2 + 1
2Y3)

)
, if c = 1,

D′αizβ iEi0(Y23 +Y31), if c = 2.

Proof. The proof is by induction on n. For n = 0, Theorem 18 is obviously
valid. Assume now that it holds true for 0,1, . . . ,n− 1 (n ∈ N∗). We first transfer
the description of E2(n−2)α+4 = . . . = E2(n−1)α+2 to the concrete model side, in
order to compute d2(n−1)α+2. When having a look at the packages of terms that are
known to be isomorphic, we see that the only differentials (under d2(n−1)α+2) that
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do not vanish are d2mα+2 (m ∈ {0,1, . . . ,n−2}). Hence the target of vector space
isomorphism

I2(n−1)α+2 : E2(n−1)α+2 → (n−2)α+1H((n−3)α+1H(. . .1H(0H(P)))),

which—as it appears from its general description—maps the system of E2(n−1)α+2-
representatives onto the system evidently made up by:

1. All representatives of type 2 of E2, except Rzi(2α+β )+2∂12 and
Rzi(2α+β )+3∂123, for all admissible i ∈ {0,1, . . . ,n−2}.

2. All representatives of type 1 of E2, Zqic,pi , i admissible, c∈{0,1,2}, with, for
all admissible i ∈ {0,1, . . . ,n−2}, Bi0 +Ci0 = 2Di0, if c = 1, and Ei0 = Fi0,
if c = 2.

We now compute the cohomology of space

((n−2)α+1H(. . .0H(P)),d2(n−1)α+2).

If zqp is one of the representatives of the preceding system,

d2(n−1)α+2[[z
qp]0 . . .](n−2)α+1 = [[d′′zq−2α(n−1),p+2α(n−1)]0 . . .](n−2)α+1, (5.12)

where zq−2α(n−1),p+2α(n−1) is the last entry of an arbitrary solution of S(zqp;α(n−
1)+1).

The d′′-coboundary of any zqp of type 2 vanishes. This is obvious if zqp is a 3-
cochain or has the form Cas(Λ4,I)Y12 (as d′′ = [Λ4,II, .] = [D−1z3Y12, .]). If zqp is a 2-
cochain with singularities, e.g. D−1 p(x)Y23, where p(x) is a polynomial in x, we get
d′′zqp = [D−1z3Y12,D−1 p(x)Y23] = −z3 p(x)D−2Y123 + z3 p(x)D−2Y123 = 0. Hence,
for any type 2 representative zqp, system S(zqp;s) admits solution (zqp,0, . . . ,0), for
any s ∈ N∗ (S1, representative extended by 0 [reference needed in the following]),
and Coboundary (5.12) vanishes.

Let now zqp be a representative Zqic,pi of the first type. We know from Lemma
7 that Zqic−2k,pi+2k, k ∈ {0,1, . . . ,α i}, with coefficients that verify (C0)-(C2), is a
solution of S(Zqic,pi ;α i+1).

1. For any admissible i ∈ {n,n + 1, . . .}, this solution can be truncated to a
solution of S(Zqic,pi ;α n+1) (S2, truncated standard solution). Hence, Coboundary
(5.12) vanishes.
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2. If i is admissible in {0,1, . . . ,n−2}, we have

Bi0 +Ci0 = 2Di0 and Ei0 = Fi0.

It then follows from (C1) and (C2) that the same relation holds for k = α i,
i.e. that Bi,α i + Ci,α i = 2Di,α i and Ei,α i = Fi,α i. This however implies that
d′′Zqic−2α i,pi+2α i = 0, so that system S(Zqic,pi ;α n+1) admits an obvious solution
(S3, standard solution extended by 0) and that Coboundary (5.12) vanishes again.

3. If i = n−1 is admissible,

d2(n−1)α+2[[Zqn−1,c,pn−1 ]0 . . .](n−2)α+1

= [[d′′Zqn−1,c−2α(n−1),pn−1+2α(n−1)]0 . . .](n−2)α+1.

In view of Lemma 7, this class vanishes for c = 0, and coincides, if c = 1
(resp. c = 2), up to a coefficient, with class [[z(n−1)(2α+β )+2∂12]0 . . .](n−2)α+1

(resp. [[z(n−1)(2α+β )+3∂123]0 . . .](n−2)α+1). The above depicted system of repre-
sentatives of (n−2)α+1H(. . .0H(P)) shows that the preceding two classes do not
vanish. Hence, the cocycle-condition is equivalent with the annihilation of the
mentioned coefficient, i.e. with

Bn−1,α(n−1) +Cn−1,α(n−1) = 2Dn−1,α(n−1) (resp. En−1,α(n−1) = Fn−1,α(n−1)),

or, as already explained,

Bn−1,0 +Cn−1,0 = 2Dn−1,0 (resp. En−1,0 = Fn−1,0). (5.13)

Since it clearly follows from our computations that the space
of d2(n−1)α+2-coboundaries is generated by the two just encoun-
tered non-vanishing classes, cohomology space (n−1)α+1H((n−2)α+1H(
. . .0H(P))) has the same system of representatives than its predecessor
(n−2)α+1H(. . .0H(P)), but with exclusions carried out and conditions on
Bi0,Ci0,Di0,Ei0,Fi0 valid for all admissible i ∈ {0,1, . . . ,n−1}.

It now suffices to apply Corollary 4 to cohomology space
(n−1)α+1H((n−2)α+1H(. . .0H(P))). Observe first that (S1)-(S3) entail exis-
tence of a solution of S(zqp;α n + 1), for all representatives zqp dissimilar from
Zqn−1,c,pn−1 . But, as the coefficients of these last representatives—viewed as rep-
resentatives of the preceding d2(n−1)α+2-cohomology space—satisfy Conditions
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(5.13), the coboundaries d′′Zqn−1,c−2α(n−1),pn−1+2α(n−1) vanish. So the previously
met solution of S(Zqn−1,c,pn−1 ;α (n−1)+ 1) can be indefinitely extended by 0 (S4,
standard solution extended by 0). Finally, Corollary 4 is applicable for s = α n+1.

Hence, spaces E2(n−1)α+4 = . . . = E2nα+2 coincide and we build, from the
known system zqp of representatives of (n−1)α+1H(. . .0H(P)), a system of E2nα+2
by just summing-up the entries of any solutions of the systems S(zqp;α n+1). For
any Zqic,pi , the coefficients of which verify

Bi0 +Ci0 = 2Di0 (c = 1) and Ei0 = Fi0 (c = 2),

the standard Zqic−2k,pi+2k, k ∈ {0,1, . . . ,α i}, are solution, see Lemma 7, of
S(Zqic,pi ;α i+1), e.g. if we choose

Aik = Ai0 (c = 0), Bik = Bi0, Cik = Ci0,
Dik = Di0 (c = 1), and Eik = Fik = 0 (c = 2,k 6= 0).

(5.14)

If we pull the concrete side representatives back to theoretical side representatives
using these solutions, we exactly get, see S1-S4, the sought-after system.

Remark.

1. We already observed previously the obvious fact that when pulling RHS-
representatives back, using different solutions of the standard system, we ob-
tain equivalent LHS-representatives. These equivalent LHS-representatives
would implement cohomologous cocycles in cohomology space H(Λ4).
Choice (5.14) will induce in cohomology the most basic possible cocycles.

2. Note also that in view of Theorem 18 and our conventions on coefficients
B10,C10, cocycle RAαY3 disappears from all spaces E2r, r ≥ 2α +4.

5.4.5 Limit of the SpecSeq and reconstruction of the cohomology

The limit of the SpecSeq can be guessed from Theorem 18. However, we already
stressed the importance of a careful reading of all results through the isomorphisms
involved in the theory of spectral sequences. The proof of Theorem 18 shows for
instance that the appropriate Casimir functions appear, when we pull the RHS-
representatives back to the LHS, i.e. read them through isomorphism I−1

2(n−1)α+3.
Hence, a precise description of the isomorphisms that lead now to the cohomology
of Λ4 is essential.
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General results

Let us consider the SpecSeq associated with a (regular) filtered graded differential
space (K,d,Kp,Kn) and recall that the limit spaces E pq

∞ ,Zpq
∞ ,Bpq

∞ are defined ex-
actly as spaces E pq

r ,Zpq
r ,Bpq

r , see Section 5.3, so that Zpq
∞ and Bpq

∞ are the spaces
of cocycles and coboundaries in Kp ∩K p+q respectively. For any fixed p and q,
regularity implies that the target space of the restriction of dr to E pq

r vanishes, if
r > q+1. Thus, there is a canonical linear surjective map

ϑ pq
r : E pq

r → H pq(Er,dr)→ E pq
r+1.

For s≥ r > q+1, we define θ pq
rs := ϑ pq

s−1 ◦ . . .◦ϑ pq
r : E pq

r → E pq
s , and for r > q+1,

we set
θ pq

r : E pq
r 3 [zpq

r ]E pq
r
→ [zpq

r ]E pq
∞ ∈ E pq

∞ . (5.15)

Due to regularity, the first two of the well-known inclusions Zpq
∞ ⊂ Zpq

r ,Zp+1,q−1
∞ ⊂

Zp+1,q−1
r−1 , and Bpq

r−1 ⊂ Bpq
∞ are actually double inclusions, and Zp+1,q−1

∞ + Bpq
r−1 ⊂

Zp+1,q−1
∞ + Bpq

∞ ⊂ Zpq
∞ . Hence, map θ pq

r is canonical, linear and surjective. It is
known that space E pq

∞ together with the preceding linear surjections θ pq
r is a model

of the inductive limit of the inductive system (E pq
r ,θ pq

rs ). Consider now a first quad-
rant SpecSeq (i.e. p,q ∈ N) and assume that K0 = K. For any p,q, the SpecSeq
collapses at

r > sup(p,q+1),

more precisely, E pq
r = E pq

∞ and θ pq
r = id. Indeed, in this case, in addi-

tion to the aforementioned double inclusions (r > q + 1), we now have also
Bpq

r−1 = Kp ∩ dKp+1−r ∩ K p+q = Kp ∩ dK0 ∩ K p+q = Bpq
∞ (r > p). Hence the

announced results.

The SpecSeq associated with any filtered graded differential space is conver-
gent in the sense that limit E pq

∞ is known to be isomorphic as a vector space with
term Gpq of the bigraded space G(H(K)), G for short, associated with the filtered
graded space H(K). Let us recall that the filtration of H(K) is induced by that of K.
More precisely, injection i : (Kp,d)→ (K,d) is a morphism of differential spaces
and Hp := i]H(Kp)⊂H(K) is the mentioned filtration of H(K). In order to reduce
notations, we denote the terms of the grading of H(K) simply by Hn. It is a fact that
the filtration and the grading of H(K) are compatible and that filtration Hp is regu-
lar if its generatrix Kp is. Hence, Hp = ⊕q∈NHp∩H p+q =: ⊕q∈NH p+q

p . Finally, it
is a matter of knowledge that the isomorphism, say ι , between Gpq := H p+q

p /H p+q
p+1

and E pq
∞ is canonical,

ι : E pq
∞ 3 [zpq

∞ ]E pq
∞ → [[zpq

∞ ]H p+q
p

]Gpq ∈ Gpq. (5.16)
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We now reconstruct H(K) from G. Let us again focus on a first quadrant Spec-
Seq associated with a (regular) filtered complex (K,d,Kp,Kn) (such that K0 = K).
For any n ∈ N, we denote by Gn− j1, j1 ,Gn− j2, j2 , . . . ,Gn− jkn , jkn , n ≥ j1 > j2 > .. . >
jkn ≥ 0, the non vanishing Gpq = H p+q

p /H p+q
p+1 , p + q = n. Since H0 = H(K) and

Hn
p = Hp∩Hn = 0,∀p > n, it follows that

Hn = Hn
0 = . . . = Hn

n− j1 ⊃ Hn
n− j1+1 = . . . = Hn

n− j2

⊃ Hn
n− j2+1 . . .Hn

n− jkn
⊃ Hn

n− jkn+1 = . . . = Hn
n = 0.

Hence,

Hn/Hn
n− j2 = Gn− j1, j1 , . . . ,Hn

n− jkn−1
/Hn

n− jkn
= Gn− jkn−1, jkn−1 ,Hn

n− jkn
= Gn− jkn , jkn .

However, if B/A = C, A a vector subspace of B, the sequence 0 → A i→ B
p→

C → 0, is a short exact sequence of vector spaces. A short exact sequence in a
category is split if and only if kernel A admits in vector space B a complementary
subspace that is a subobject, or—alternatively—if and only if there is a right inverse
morphism χ : C → B of projection p. Of course, in the category of vector spaces
such a sequence is always split. If χ is a linear right inverse of p, we have B =
A⊕χ(C).

Let us now come back to our circumstances. If χ1, . . . ,χkn−1 denote splittings
of the involved sequences, central extension Hn is given by

Hn = χ1(Gn− j1, j1)⊕ . . .⊕χkn−1(Gn− jkn−1, jkn−1)⊕Gn− jkn , jkn . (5.17)

It follows of course from Equation (5.17) that H(K) is—in this vector space
setting—isomorphic with G = G(H(K)). It is known that in the case of ring coeffi-
cients, extension problems may prevent the reconstruction of H(K) from G(H(K)).

Application to Poisson tensor Λ4

The next proposition provides a system of representatives of the cohomology space
of

Λ4 = ayz∂23 +axz∂31 +(bxy+ z2)∂12 (a 6= 0,b 6= 0).

Remember that D′ = xy and Y1 = x∂1,Y2 = y∂2,Y3 = z∂3. If b
a ∼ β

α ∈Q∗+, we define

Cas(Λ4) :=⊕i∈NR
(

D′+
z2

2a+b

)α i

zβ i

and use the above introduced notation Cas(Λ4,I) =⊕i∈NRD′α izβ i. If b
a ∈R∗ \Q∗+,

we set Cas(Λ4) := R and, as aforementioned, Aα = D′αz−1.
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Theorem 19. 1. If b
a ∈Q∗+, the cohomology of Λ4 is given by

E∞ ∼ G∼ H(Λ4) =

Cas(Λ4)⊕Cas(Λ4)(Y1 +
1
2

Y3)⊕Cas(Λ4)(Y2 +
1
2

Y3)

⊕Cas(Λ4,I)(Y23 +Y31)⊕Cas(Λ4,I)Y12⊕Cas(Λ4,I)Y123

⊕
⊕

k∈N\N(2α+β )+2

Rzk∂12⊕
⊕

k∈N\N(2α+β )+3

Rzk∂123

⊕
{
R[[x]]∂23⊕R[[y]]∂31⊕ (R[[x]]⊕R[[y]])∂123, if b = a
0,otherwise

2. If b
a ∈ R∗ \Q∗+, we have :

E∞ ∼ G∼ H(Λ4) =

Cas(Λ4)⊕Cas(Λ4)(Y1 +
1
2

Y3)⊕Cas(Λ4)(Y2 +
1
2

Y3)

⊕Cas(Λ4)(Y23 +Y31)⊕Cas(Λ4)Y12⊕Cas(Λ4)Y123

⊕
{ ⊕RAα(Y23 +Y31)⊕RAαY123, if (b,a)∼ (−1,α)

0,otherwise

⊕
{⊕

k∈N\{2,2α+1}Rzk∂12⊕⊕
k∈N\{3,2α+2}Rzk∂123, if (b,a)∼ (−1,α)

⊕
k∈N\{2}Rzk∂12⊕⊕

k∈N\{3}Rzk∂123,otherwise

Proof. Fix a,b ∈R∗ and take any representative of E2. Remember that the rep-
resentatives of type 1 are exactly the cochains Zqic,pi (i admissible, c ∈ {0,1,2}).
Moreover, we say that a representative of type 2 is critical if it has the form
Rzi(2α+β )+2∂12 or Rzi(2α+β )+3∂123 (i admissible). If the considered representative
zqp is of type 2 and not critical (resp. of type 2 and critical, of type 1), we choose
n ∈ N such that 2nα + 2 > sup(p,q + 1) (resp. 2nα + 2 > sup(p,q + 1,2iα + 2)
[hence, we have n− 1 ≥ i], 2nα + 2 > sup(pi,qic + 1,2iα + 2)). The system of
representatives of E∞ ∼ G specified in Theorem 19 arises now from Theorem 18
and from the canonical isomorphisms (5.15) (condition: r > sup(p,q + 1)) and
(5.16). These representatives are representatives of bases of the non vanishing
Gpq. In order to compute H(K), it suffices to build arbitrary splittings in keeping
with Equation (5.17). Hence, it suffices to choose, for any class of any basis of the
concerned Gpq, an arbitrary representative, e.g. the aforementioned one. It follows
that H(K) admits exactly the same representatives as E∞ ∼ G.
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Remarks. Hence, the twist makes a threefold impact on cohomology. When
applying our computing device, see Theorem 18, we get, at each turn of the han-
dle, on the model level, roughly speaking, cocycle-conditions on the coefficients
related with an additional power of the basic Casimir CΛ4,I of Λ4,I , and we exclude
a supplementary pair of singularity-induced classes. These conditions appear in
cohomology as terms Yi or Yi j with the same “Casimir-coefficient”. Eventually, the
cocycle-conditions allow to lift the mentioned accessory power of CΛ4,I to the real
level as power of Casimir CΛ4 of Λ4 or—depending on cochain degree—as power
of Casimir CΛ4,I . We know that such a lift is not unique and that two different
ones are cohomologous. It follows from Theorem 19 (resp. from the proof of
Theorem 18) that any term of Cas(Λ4)(Y23 +Y31) is a Λ4-cocycle (resp. can be
chosen as lift of the corresponding term in Cas(Λ4,I)(Y23 +Y31), as well as this
term itself). So any term of Cas(Λ4)(Y23 +Y31) is cohomologous to the analogous
term in Cas(Λ4,I)(Y23 +Y31). Finally, the aforementioned proof allows to see that
Λ4,I-cocycle RAαY3 = RD′αz−1Y3, which is not a product of two Λ4-cocycles, is a
Λ4-cocycle if and only if its coefficient vanishes.

Let us in the end have a look at singularities. The singular locus of Λ4,I (resp.
Λ4) is made up by the three coordinate axes (resp. the axis of abscissæ and the axis
of ordinates). Comparing the results of Proposition 36 and of Theorem 19, we see
that the twist Λ4,II , which removes the z-axis from the singular locus, cancels only
part of the corresponding polynomials in cohomology. We already observed in
[MP06] that, for r-matrix induced tensors, some coefficients of non bounding 2- or
3-cocycles can just be interpreted as polynomials on singularities via an extension
of the polynomial ring of the singular locus. In the case of twisted r-matrix induced
structures, some of these polynomial coefficients are simply not polynomials on
singularities.

5.5 Formal cohomology of Poisson tensor Λ8

We now describe the cohomology space of the twisted quadratic Poisson structure

Λ8 =
(

a+b

2
(x2 + y2)± z2

)
∂12 +axz∂23 +ayz∂31 (a 6= 0,b 6= 0).

If we substitute c (resp. b) for −b (resp. (a+b)/2), tensor Λ8 reads

Λ8 = b(x2 + y2)∂12 +(2b+ c)xz∂23 +(2b+ c)yz∂31± z2∂12. (5.18)
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Henceforth we use parameters b and c. Assumptions a 6= 0,b 6= 0 are
equivalent with 2b + c 6= 0,c 6= 0. Moreover, the r-matrix induced part
Λ8,I = b(x2 + y2)∂12 +(2b+ c)xz∂23 +(2b+ c)yz∂31 of Λ8 is nothing but structure
Λ7 with parameter a = 0, see [MP06, Section 9], so that term E2 ' H(Λ8,I) of the
spectral sequence follows from [MP06, Theorems 6,8,9].

Let us recall that the Yi stem from Λ8,I , i.e. from Λ7. Hence, Y1 = x∂1 +
y∂2,Y2 = x∂2− y∂1,Y3 = z∂3. We set D′ = x2 + y2. Moreover, if b

c ∈ Q,b(2b +
c) < 0, we denote by (β ,γ) ∼ (b,c) the irreducible representative of the rational
number b

c , with positive denominator, β ∈ Z,γ ∈ N∗, and if b
c ∈Q,b(2b + c) > 0,

(β ,γ) ∼ (b,c) denotes the irreducible representative with positive numerator, β ∈
N∗,γ ∈ Z∗.

Theorem 20. The terms of the cohomology space of Λ8 (see (5.18)) are given by
the following equations:

1. If b
c ∈Q,b(2b+ c) > 0,

H0(Λ8) = Cas(Λ8) =⊕i∈N,γi∈2ZR
(

D′± z2

3b+ c

)(β+ γ
2 )i

zβ i ,

H1(Λ8) = Cas(Λ8,I)Y2⊕Cas(Λ8)(Y1 +Y3) ,

H2(Λ8) = Cas(Λ8,I)Y12⊕Cas(Λ8,I)Y23⊕
⊕

k∈N\N(3β+γ)+2

Rzk∂12 ,

H3(Λ8) = Cas(Λ8,I)Y123⊕
⊕

k∈N\N(3β+γ)+3

Rzk∂123 ,

where Cas(Λ8,I) =⊕i∈N,γi∈2ZRD′(β+ γ
2 )izβ i.
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2. If b
c /∈Q or b

c ∈Q,b(2b+ c) < 0,

H0(Λ8) = Cas(Λ8) = R ,

H1(Λ8) = Cas(Λ8)Y2⊕Cas(Λ8)(Y1 +Y3) ,
H2(Λ8) = Cas(Λ8)Y12⊕Cas(Λ8)Y23

⊕
{⊕

k∈N\{2,γ−1}Rzk∂12, if (b,c)∼ (−1,γ), γ ∈ {4,6,8, ...}
⊕

k∈N\{2}Rzk∂12,otherwise

⊕
{
RAγY23, if (b,c)∼ (−1,γ),γ ∈ {4,6,8, ...}
0,otherwise ,

H3(Λ8) = Cas(Λ8)Y123

⊕
{⊕

k∈N\{3,γ}Rzk∂123, if (b,c)∼ (−1,γ),γ ∈ {4,6,8, ...}
⊕

k∈N\{3}Rzk∂123,otherwise

⊕
{
RAγY123, if (b,c)∼ (−1,γ),γ ∈ {4,6,8, ....}
0,otherwise ,

where Aγ = D′ γ
2−1z−1.

3. If b = 0,

H0(Λ8) = Cas(Λ8) =⊕i∈NR
(

D′± z2

c

)i

,

H1(Λ8) = Cas(Λ8,I)Y2⊕Cas(Λ8)(Y1 +Y3) ,

H2(Λ8) = Cas(Λ8,I)Y12⊕Cas(Λ8,I)Y23⊕
⊕

k∈N\{2N+2}
Rzk∂12 ,

H3(Λ8) = Cas(Λ8,I)Y123⊕
⊕

k∈N\{2N+3}
Rzk∂123 ,

where Cas(Λ8,I) =⊕i∈NRD′i.
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Chapter 6

Strongly r-matrix Induced
Tensors, Koszul Cohomology, and
Arbitrary-Dimensional
Quadratic Poisson Cohomology

6.1 Introduction

In this chapter, we focus on the formal Poisson cohomology associated with the
quadratic Poisson tensors (QPT) Λ of Rn that read as real linear combination

Λ = ∑
i< j

α i jYi∧Yj =: ∑
i< j

α i jYi j, α i j ∈ R (6.1)

of the wedge products of n commuting linear vector fields Y1, . . . ,Yn, such that
Y1∧ . . .∧Yn =: Y1...n 6= 0. Let us recall that “formal” means that we substitute the
spaceR[[x1, . . . ,xn]]⊗∧Rn of multivectors with coefficients in the formal series for
the usual Poisson cochain space X (Rn) =C∞(Rn)⊗∧Rn. Furthermore, the reader
may think about QPT of type (6.1) as QPT implemented by a classical r-matrix in
their stabilizer for the canonical matrix action.

Hence, in Section 2, we are interested in the characterization of the QPT that are
images of a classical r-matrix. We comment on the tight relation between the fact
that a QPT is induced by an r-matrix and the dimension of its stabilizer. We prove
that if the stabilizer of a given QPT Λ of Rn contains n commuting linear vector
fields Yi, such that Y1...n 6= 0, then Λ is implemented by an r-matrix in its stabilizer,
see Theorem 21. In the following, we refer to such tensors as strongly r-matrix

143
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induced (SRMI) structures and show that any structure of the DHC decomposes
into the sum of a major SRMI structure and a small compatible (mostly exact)
Poisson tensor, see Theorem 22. This decomposition constitutes the foundation of
our cohomological techniques proposed in [MP06] and Chapter 5. The preceding
description and the philosophy of the mentioned cohomological modus operandi
allow understanding that our splitting is in some sense in opposition to the one
proven in [LX92] that incorporates the largest possible part of the Poisson tensor
into the exact term.

In [MP06], the authors developed a cohomological method in the Euclidean
Three-Space that led to a significant simplification of Poisson cohomology compu-
tations for the SRMI structures of the DHC. Section 3 of the present note aims for
extension of this procedure to arbitrary dimensional vector spaces. Nontrivial lem-
mata allow injecting the space R of “real” Poisson cochains (formal multivector
fields) into a larger space P of “potential” cochains, see Theorem 23, and identi-
fying the natural extension to P of the Poisson differential as the Koszul differ-
ential associated with n commuting endomorphisms Xi− (divXi) id, Xi = ∑ j α i jYj,
α ji =−α i j, of the space made up by the polynomials onRn with some fixed homo-
geneous degree, Theorems 24 and 25. We then choose a space S supplementary
to R in P and show that the Poisson differential induces a differential on S .
Eventually, we end up with a short exact sequence of differential spaces and an
exact triangle in cohomology. It could be proven that the Poisson cohomology
(R-cohomology) reduces, essentially, to the above-depicted Koszul cohomology
(P-cohomology) and a relative cohomology (S -cohomology), see Theorem 26.

In order to take advantage of these upshots, we investigate in Section 4
the Koszul cohomology associated to n commuting linear operators on a finite-
dimensional complex vector space. We prove a homotopy-type formula, see Propo-
sition 44, and—using spectral properties—we show that the Koszul cohomology
is, roughly spoken, located inside (a direct sum of intersections of) the kernels of
some transformations that can be constructed recursively from the initially consid-
ered operators, Proposition 45 and Corollary 7.

In Section 5, we apply this result, gain valuable insight into the structure of
the Koszul cohomology implemented by SRMI tensors, and show that in order
to compute this central part of Poisson cohomology it basically suffices to solve
triangular systems of linear equations.

Section 6 contains a full description of the Poisson cohomology spaces of struc-
tures Λ3 and Λ9 of the DHC.

Eventually, the aforementioned general upshots and our growing list of explicit
data allow describing the main Poisson cohomological phenomena, see Section 7.
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6.2 Characterization of strongly r-matrix induced Pois-
son structures

6.2.1 Stabilizer dimension and r-matrix generation

In the following, we report on an idea regarding generation of quadratic Poisson
tensors by classical r-matrices.

Set G = GL(n,R) and g = gl(n,R). The Lie algebra isomorphism between g

and the algebra X 1
0 (Rn) of linear vector fields, extends to a Grassmann algebra

and a graded Poisson-Lie algebra homomorphism J : ∧g→⊕k
(
S kRn∗⊗∧kRn

)
.

It is known that its restriction

Jk : ∧kg→S kRn∗⊗∧kRn

is onto, but has a non-trivial kernel if k,n≥ 2. In particular,

J3[r,r] = [J2r,J2r], r ∈ g∧g,

where [., .] is the Schouten-Nijenhuis bracket. These observations allow to under-
stand that the characterization of the quadratic Poisson structures that are imple-
mented by a classical r-matrix, i.e. a bimatrix r ∈ g∧ g that verifies the Classical
Yang-Baxter Equation [r,r] = 0, is an open problem.

Quadratic Poisson tensors Λ1 and Λ2 are equivalent if and only if there is A∈G
such that A∗Λ1 = Λ2, where ∗ denotes the standard action of G on tensors of Rn.
As J2 is a G-module homomorphism, i.e.

A∗(J2r) = J2(Ad(A)r), A ∈ G,r ∈ g∧g,

the G-orbit of a quadratic Poisson structure Λ = J2r is the pointwise J2-image
of the G-orbit of r. Furthermore, representation Ad acts by graded Lie algebra
homomorphisms, i.e.

Ad(A)[r,r] = [Ad(A)r,Ad(A)r].

Hence, if Λ = J2r, where r is a classical r-matrix, the whole orbit of this quadratic
Poisson tensor is made up by r-matrix induced structures.

Of course, any quadratic Poisson tensor Λ is implemented by bimatrices r ∈
g∧ g. In order to determine wether the G-orbit OΛ of this tensor is generated by
r-matrices, we have to take an interest in the preimage

(J2)−1(OΛ) = ∪r∈(J2)−1ΛOr,
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composed of the G-orbits Or of all the bimatrices r that are mapped on Λ by J2.
We claim that the chances that a fiber of this bundle is located inside r-matrices
are the bigger, the smaller is OΛ. In other words, the dimension of the isotropy Lie
group GΛ of Λ, or of its Lie algebra, the stabilizer

gΛ = {a ∈ g : [Λ,Ja] = 0}
of Λ for the corresponding infinitesimal action, should be big enough. In addition to
the ostensible intuitive clearness of this conjecture, positive evidence comes from
the fact that, in R3, the Poisson tensor Λ = (x2

1 + x2x3)∂23, ∂23 := ∂2 ∧ ∂3, ∂i :=
∂/∂xi , is not r-matrix induced, see [MMR02], and the dimension of its stabilizer is
dimgΛ = 2, as well as from the following theorem (we implicitly identify stabilizer
gΛ ⊂ g and the (isomorphic) Lie subalgebra J1gΛ = {Y ∈X 1

0 (Rn) : [Λ,Y ] = 0} ⊂
X 1

0 (Rn) of linear vector fields of Rn).

Theorem 21. Let Λ be a quadratic Poisson tensor of Rn. If its stabilizer gΛ con-
tains n commuting linear vector fields Yi, i ∈ {1, . . . ,n}, such that Y1∧ . . .∧Yn 6= 0,
then Λ is implemented by a classical r-matrix that belongs to the stabilizer, i.e.
Λ = J2a, [a,a] = 0, a ∈ gΛ∧gΛ.

Proof. Let (x1, . . . ,xn) be the canonical coordinates of Rn. Set ∂r = ∂xr and
Yi = ∑n

r=1 `ir∂r, with ` ∈ gl(n,Rn∗). The determinant D = det` does not vanish
everywhere, since Y1...n = D∂1...n and Y1...n 6= 0. At any point of the nonempty open
subset Z = {x ∈ Rn,D(x) 6= 0} of Rn, the Yi form a basis of the corresponding
tangent space of Rn. Moreover, in Z, we get

∂i j = D−2 ∑
k<l

(
Lk

iL
l
j−Ll

iL
k
j

)
Ykl =: D−2 ∑

k<l
Qkl

i jYkl,

where L denotes the matrix of maximal algebraic minors of `, and where Qkl
i j ∈

S 2n−2Rn∗. Hence, if the quadratic Poisson tensor Λ reads Λ = ∑i< j Λi j∂i j, Λi j ∈
S 2Rn∗, we have in Z,

Λ = D−2 ∑
k<l

∑
i< j

Λi jQkl
i jYkl =: D−2 ∑

k<l
PklYkl,

where Pkl ∈S 2nRn∗. We now prove that the rational functions D−2Pkl are actu-
ally constants. Since the Yi are commuting vector fields in gΛ, the commutation
relations [Yi,Yj] = 0 and [Λ,Yi] = 0, i, j ∈ {1, . . . ,n}, hold true. It follows that

Yi

(
D−2Pkl

)
=

n

∑
r=1

`ir∂r

(
D−2Pkl

)
= 0, i ∈ {1, . . . ,n},
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everywhere in Z, and, as ` is invertible in Z, that ∂r
(
D−2Pkl

)
= 0, r ∈ {1, . . . ,n}.

Hence, Pkl = αklD2, αkl ∈R, in each connected component of Z. As these compo-
nents are open subsets of Rn, the last result holds in Rn (in particular the constants
αkl associated with different connected components coincide). Eventually,

Λ = ∑
k<l

αklYkl = J2

(
∑
k<l

αklakl

)
,

where ai = (J1)−1Yi ∈ gΛ. Since the ai are (just as the Yi) mutually commuting, it is
clear that the bimatrix r = ∑k<l αklakl ∈ gΛ∧gΛ verifies the classical Yang-Baxter
equation.

Definition 39. We refer to a quadratic Poisson structure Λ that is implemented
by a classical r-matrix r ∈ gΛ ∧ gΛ, where gΛ denotes the stabilizer of Λ for the
canonical matrix action, as a strongly r-matrix induced (SRMI ) tensor.

6.2.2 Classification theorem in Euclidean Three-Space

Two concepts of exact Poisson structure—tightly related with two special coho-
mology classes—are used below. Let Λ be a Poisson tensor on a smooth manifold
M oriented by a volume element Ω. We say that Λ, which is of course a Poisson
2-cocycle, is Poisson-exact, if

Λ = [Λ,X ], X ∈X 1(M),

and we term Λ K-exact (Koszul), if

Λ = δ (T ), T ∈X 3(M).

Operator δ := φ−1 ◦ d ◦ φ is the pullback of the de Rham differential d by the
canonical vector space isomorphism φ := i·Ω. Although introduced earlier, the
generalized divergence δ (δ (X) = divΩ X , X ∈X 1(M)) is prevalently attributed
to J.-L. Koszul. The curl vector field K(Λ) := δ (Λ) of Λ (if Ω is the standard
volume of R3 and Λ is identified with a vector field ~Λ of R3, K(Λ) coincides with
the standard curl ~∇∧~Λ) is a Poisson 1-cocycle. In Rn, n≥ 3, a Poisson tensor Λ is
K-exact, if and only if it is “irrotational”, i.e. K(Λ) = 0, and in R3, K-exact means
“function-induced”, i.e.

Λ = Π f := ∂1 f ∂23 +∂2 f ∂31 +∂3 f ∂12, f ∈C∞(R3).

The K-exact quadratic Poisson tensors Πp of R3, i.e. the K-exact Poisson struc-
tures that are induced by a homogeneous polynomial p ∈S 3R3∗, represent class
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14 of the DHC. The cohomology of this class has been studied in [Pic05] (actu-
ally the author deals with structures Πp implemented by a weight homogeneous
polynomial p with an isolated singularity). Hence, class 14 of the DHC will not be
examined in the current work.

Let us also recall that two Poisson tensors Λ1 and Λ2 are compatible, if their
sum is again a Poisson structure, i.e. if [Λ1,Λ2] = 0.

The following theorem classifies the quadratic Poisson classes according to
their membership of the family of strongly r-matrix induced structures. Further-
more, we show that any structure reads as the sum of a major strongly r-matrix
induced tensor and a small compatible Poisson structure. On one hand, this mem-
bership entails accessibility to the cohomological technique exemplified in [MP06],
on the other, this splitting—which, by the way, differs from the decomposition sug-
gested in [LX92] in the sense that we incorporate the biggest possible part of the
structure into the strongly induced term—is of particular importance with regard
to the cohomological approach detailed in Chapter 5.

Theorem 22. Let a,b,c ∈ R and let Λi (i ∈ {1, . . . ,13}) be the quadratic Pois-
son tensors of the DHC, see [DH91]. Denote the canonical coordinates of R3 by
x,y,z (or x1,x2,x3) and the partial derivatives with respect to these coordinates by
∂1,∂2,∂3 (∂i j = ∂i∧∂ j).

If dimgΛ > 3 (subscript i omitted), there are mutually commuting linear vector
fields Y1,Y2,Y3, such that

Λ = αY23 +βY31 + γY12 (α,β ,γ ∈ R),

so that Λ is strongly r-matrix induced (SRMI), i.e. implemented by a classical r-
matrix in gΛ∧gΛ. In the following classification of the quadratic Poisson tensors
with regard to property SRMI, we decompose each not SRMI tensor into the sum of
a major SRMI structure and a smaller compatible quadratic Poisson tensor.

• Set Y1 = x∂1,Y2 = y∂2,Y3 = z∂3

1. Λ1 = ayz∂23 + bxz∂31 + cxy∂12 is SRMI for all values of the parameters
a,b,c. More precisely,

Λ1 = aY23 +bY31 + cY12
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2. Λ4 = ayz∂23 + axz∂31 +(bxy + z2)∂12 is not SRMI if and only if (a,b) 6=
(0,0). We have,

Λ4 = a(Y23 +Y31)+bY12 +
1
3

Πz3

• Set Y1 = x∂1 + y∂2,Y2 = x∂2− y∂1,Y3 = z∂3

1. Λ2 = (2ax−by)z∂23 +(bx+2ay)z∂31 +a(x2 +y2)∂12 is SRMI for any a,b.
More precisely,

Λ2 = 2aY23 +bY31 +aY12

2. Λ7 = ((2a+ c)x−by)z∂23 +(bx+(2a+ c)y)z∂31 +a(x2 +y2)∂12 is SRMI
for all a,b,c. More precisely,

Λ7 = (2a+ c)Y23 +bY31 +aY12

3. Λ8 = axz∂23 +ayz∂31 +
(a+b

2 (x2 + y2)± z2
)

∂12 is not SRMI if and only if
(a,b) 6= (0,0). We have,

Λ8 = aY23 +
a+b

2
Y12± 1

3
Πz3

• Set Y1 = x∂1 + y∂2,Y2 = x∂2,Y3 = z∂3

1. Λ3 = (2x−ay)z∂23 +axz∂31 + x2∂12 is SRMI for any a. More precisely,

Λ3 = 2Y23 +aY31 +Y12

2. Λ5 = ((2a+1)x+ y)z∂23− xz∂31 + ax2∂12 (a 6= −1
2) is SRMI for any a.

More precisely,
Λ5 = (2a+1)Y23−Y31 +aY12

3. Λ6 = ayz∂23−axz∂31− 1
2 x2∂12 is SRMI for any a. More precisely,

Λ6 =−aY31− 1
2

Y12

• Set Y1 = E := x∂1 + y∂2 + z∂3,Y2 = x∂2 + y∂3,Y3 = x∂3
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1. Λ9 = (ax2− 1
3 y2 + 1

3 xz)∂23 + 1
3 xy∂31− 1

3 x2∂12 is SRMI for any a. More
precisely,

Λ9 = aY23− 1
3

Y12

2. Λ10 =
(
ay2− (4a+1)xz

)
∂23 +(2a+1)xy∂31− (2a+1)x2∂12 is not SRMI

if and only if a 6=−1
3 . We have,

Λ10 =−(2a+1)Y12 +(3a+1)(y2−2xz)∂23

• Set Y1 = E ,Y2 = x∂2,Y3 = (ax+(3b+1)z)∂3

1. Λ11 =
(
ax2 +(2b+1)xz

)
∂23 +(bx2 + cz2)∂12 (a = 0) is not SRMI if and

only if c 6= 0. We have,

Λ11 = Y23 +bY12 +
c
3

Πz3

2. Λ12 =
(
ax2 +(2b+1)xz

)
∂23 +(bx2 + cz2)∂12 (a = 1) is not SRMI if and

only if c 6= 0. We have,

Λ12 = Y23 +bY12 +
c
3

Πz3

3. Λ13 =
(
ax2 +(2b+1)xz+ z2

)
∂23 +(bx2 + cz2 + 2xz)∂12 is not SRMI for

any a,b,c. We have,

Λ13 = Y23 +bY12 +Π c
3 z3+xz2

Proof. Let us first mention that the specified basic fields Y1,Y2,Y3 have been
read in the stabilizers of the considered Poisson tensors, but that we refrain from
publishing the often fairly protracted stabilizer-computations. Indeed, once the
vector fields Yi are known, it is easily checked that, in the SRMI cases, they verify
the assumptions of Theorem 21. Thus the corresponding Poisson structures are
actually SRMI tensors. In order to ascertain that a quadratic Poisson structure Λ is
not SRMI, it suffices to prove that Λ /∈ J2(gΛ∧gΛ). This will be done thereinafter.
All the quoted decompositions can be directly verified. In most instances, the
twist is obviously Poisson, so that compatibility follows. In the case of Λ10, the
twist Λ10, II = (y2 − 2xz)∂23 is a non-K-exact Poisson structure. This is a direct
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consequence of the result K(Λ10, II) =~∇∧~Λ10, II =−2x∂2−2y∂3 6= 0 and the handy
formula

[P,Q] = (−1)pδ (P∧Q)−δ (P)∧Q−(−1)pP∧δ (Q),∀P∈X p(M),Q∈X q(M).

The statement regarding the dimension of stabilizer gΛ is obvious in view of the
following main part of this proof.

Denote by Ei j (i, j ∈ {1,2,3}) the canonical basis of gl(3,R).

• For Λ4, if (a,b) 6= (0,0), stabilizer gΛ4 and the image J2(gΛ4 ∧gΛ4) are gen-
erated by

(
1
2

E11 +E22,
1
2

E11 +E33) and yz∂23− 1
2

xz∂31− 1
2

xy∂12,

respectively. Hence, Λ4 is not SRMI.

• For Λ8, if (a,b) 6= (0,0), the generators of gΛ8 and J2(gΛ8 ∧gΛ8) are

(E11 +E22 +E33,E12−E21) and − xz∂23− yz∂31 +(x2 + y2)∂12.

So Λ8 is not SRMI.

• For Λ10, if a 6=−1
3 , the generators are

(E11 +E22 +E33,E12 +E23) and (y2− xz)∂23− xy∂31 + x2∂12.

• For Λ11, c 6= 0, Λ12, c 6= 0, and Λ13, the generators are

(E11 +E22 +E33,E12,E32) and (−xz∂23 + x2∂12,z2∂23− xz∂12).

Remarks.

• For Λ = Λi, i∈ {11,12,13}, c 6= 0 if i∈ {11,12}, the dimension of the stabi-
lizer is dimgΛ = 3, whereas JgΛ∧JgΛ∧JgΛ = {0}. Hence, if the dimension
of the stabilizer coincides with the dimension of the space, the Poisson struc-
ture is not necessarily a SRMI tensor.

• For Λ10 e.g., the decomposition proved in [LX92] yields

Λ10 =−1
3

Y12 + Π c
3 z3+xz2+(b+ 1

3 )x2z+ a
3 x3 .
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6.3 Poisson cohomology of quadratic structures in a
finite-dimensional vector space

6.3.1 Koszul homology and cohomology

Let ∧ = ∧n〈~η〉 be the Grassmann algebra on n ∈ N0 generators ~η = (η1, . . . ,ηn),
i.e. the algebra generated over a field F of characteristic 0 (in this work F = R or
F = C) by generators η1, . . . ,ηn subject to the anticommutation relations ηkη` +
η`ηk = 0, k, ` ∈ {1, . . . ,n}. Set ∧ = ⊕n

p=0∧p, with obvious notations, and let~h =
(h1, . . . ,hn) be dual generators: ihk η` = δk`. We also need the creation operator
eηk : ∧ 3 ω → ηk ω ∈ ∧ and the annihilation operator ihk : ∧ 3 ω → ihk ω ∈ ∧,
where the interior product is defined as usual. Eventually, we denote by E a vector
space over F and by ~X = (X1, . . . ,Xn) an n-tuple of commuting linear operators on
E.

Definition 40. The complex

0→ E⊗F∧n → E⊗F∧n−1 → . . .→ E⊗F∧1 → E → 0,

with differential κ~X = ∑n
k=1 Xk ⊗ ihk , is the Koszul chain complex (K∗-complex)

K∗(~X ,E) associated with ~X on E. The Koszul homology group is denoted by
KH∗(~X ,E).

Definition 41. The complex

0→ E → E⊗F∧1 → . . .→ E⊗F∧n−1 → E⊗F∧n → 0,

with differential K~X = ∑n
k=1 Xk⊗ eηk , is the Koszul cochain complex (K∗-complex)

K∗(~X ,E) associated with ~X on E. We denote by KH∗(~X ,E) the corresponding
Koszul cohomology group.

Observe that commutation of the Xk and anticommutation of the ihk (resp. the
eηk ) entail that κ~X (resp. K~X ) actually squares to 0.

Example 1. It is easily checked that, if we choose F = R, E = C∞(R3), ηk = dxk
(resp. ηk = ∂k = ∂xk and hk = dxk), and Xk = ∂k (k ∈ {1,2,3}, x1,x2,x3 canonical
coordinates of R3), the K∗-complex (resp. the K∗-complex) is nothing but the de
Rham complex (Ω(R3),d) (resp. its dual version (X (R3),δ ), see above). Note
that, if we identify the subspaces Ωk(R3) of homogeneous forms with the corre-
sponding spaces of components E,E3,E3,E, this K∗-complex reads

0→ E
K =~∇(.)→ E3 K =~∇∧(.)→ E3 K =~∇·(.)→ E → 0, (6.2)
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with self-explaining notations.

Example 2. For F=R, E = SR3∗ =R[x1,x2,x3], ηk = ∂k, Xk = mPk (k ∈ {1,2,3},
Pk ∈ Edk , dk ∈N, mPk : E 3Q→ PkQ ∈ E), the chain spaces of the K∗-complex are
the spaces of homogeneous polyvector fields on R3 with polynomial coefficients,
and anew identification with the corresponding spaces E,E3,E3,E of components,
allows to write this K∗-complex in the form

0→ E
κ=(.)~P→ E3 κ=(.)∧~P→ E3 κ=(.)·~P→ E → 0, (6.3)

where ~P = (P1,P2,P3).

Remarks.

• Of course, the Koszul cohomology and homology complexes defined in Ex-
ample 1 are exact, expect that KH0(~∂ ,C∞(R3))' KH3(~∂ ,C∞(R3))' R.

• Let us recall that an R–regular sequence on a module M over a commutative
unit ring R, is a sequence (r1, . . . ,rd) ∈ Rd , such that rk is not a zero divisor
on the quotient M/〈r1, . . . ,rk−1〉M, k ∈ {1, . . . ,d}, and M/〈r1, . . . ,rd〉M 6=
0. In particular, x1, . . . ,xd is a (maximal length) regular sequence on the
polynomial ring R = F[x1, . . . ,xd] (so that this ring has depth d).

It is well-known that the K∗-complex described in Example 2 is exact, ex-
cept for surjectivity of κ = (.) ·~P, if sequence ~P = (P1,P2,P3) is regular for
R[x1,x2,x3]. For instance, if ~P =~∇p, where p is a homogeneous polynomial
with an isolated singularity at the origin, sequence ~P is regular, see [Pic05].

6.3.2 Poisson cohomology in dimension 3

Set E := C∞(R3) and identify—as above—the spaces of homogeneous multivector
fields in R3, with the corresponding component spaces: X 0(R3) 'X 3(R3) ' E
and X 1(R3)'X 2(R3)' E3.

Let~Λ = (Λ1,Λ2,Λ3)∈E3 be a Poisson tensor and f ∈E,~X ∈E3,~B∈E3,T ∈E
a 0-, 1-, 2-, and 3-cochain of the Poisson complex. The following formulæ for the
Poisson coboundary operator ∂~Λ can be obtained by straightforward computations:

∂ 0
~Λ

f = ~∇ f ∧~Λ,

∂ 1
~Λ
~X = (~∇ ·~X)~Λ−~∇(~X ·~Λ)+~X ∧ (~∇∧~Λ),

∂ 2
~Λ
~B = −(~∇∧~B) ·~Λ−~B · (~∇∧~Λ),

∂ 3
~Λ

T = 0.
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If we denote the differential detailed in Equation (6.2) (resp. in Equation (6.3) if
~P =~Λ, in Equation (6.3) if ~P = ~∇∧~Λ) by K (resp. κ ′, κ ′′), we get

∂ 0
~Λ = κ ′K ,∂ 1

~Λ = κ ′K −K κ ′+κ ′′,∂ 2
~Λ =−κ ′K −κ ′′,∂ 3

~Λ = 0. (6.4)

As aforementioned, investigations are confined in this chapter to quadratic
Poisson tensors and polynomial (or formal) Poisson cochains. If structure ~Λ is K-
exact, i.e., in view of notations due to the elimination of the module basis of multi-
vector fields,~Λ =~∇p (p∈S 3R3∗)⇔~∇∧~Λ = 0, homology operator κ ′′ vanishes.
If, moreover, p has an isolated singularity (IS), not only the K∗-complex associated
with K is exact up to injectivity of K =~∇(.), but also the K∗-complex associated
with κ ′ is, see above, acyclic up to surjectivity of κ ′ = (.) ·~Λ. In [Pic05], the au-
thor has computed inter alia the Poisson cohomology for a weight-homogeneous
polynomial p with an IS.

Below, we describe a generic cohomological technique for SRMI Poisson ten-
sors in a finite-dimensional vector space. This approach extends Formulæ (6.4) to
dimension n and reduces simultaneously the Poisson coboundary operator ∂Λ to a
single Koszul differential.

6.3.3 Poisson cohomology in dimension n

We denote by L the matrix of maximal minors of a matrix ` ∈ gl(n,Rn∗) (or of a
matrix with entries in a field F of non-zero characteristic), so Li j is the minor of `
obtained by cancellation of line i and column j. More generally, if ν = {1, . . . ,n},
i = (i1, . . . , im)∈ νm (i1 < .. . < im, m∈ {1, . . . ,n}), we denote by I = (I1, . . . , In−m)
the complement of i in ν . If j = ( j1, . . . , jm) is an m-tuple similar to i, we denote
by Lij the minor of ` obtained by cancellation of the lines i and the columns j, and
by Lij the minor of ` at the intersections of lines i and columns j. Hence, Lij = LIJ

and LIJ = Lij. Moreover, D = det` ∈ S nRn∗ is the determinant of `, L stands
for the matrix of maximal minors of L ∈ gl(n,S n−1Rn∗), and we apply the just
introduced notations Lij and L ij also to L . Eventually, as already mentioned
above, L denotes the matrix of algebraic maximal minors of `.

Remark. In the following, we systematically assume that D 6= 0, i.e. that polyno-
mial D does not vanish everywhere.

Lemma 8. For any m ∈ {1, . . . ,n−1} and for any i = (i1, . . . , im), j = ( j1, . . . , jm)
as above, we have

Lij = Dn−m−1Lij and L ij = Dm−1Lij.
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The first ( resp. second ) equation also holds for m = 0 ( resp. m = n ). In this
case it just means that detL = Dn−1.

Proof. Of course, the second statement is nothing but a reformulation of the
first. We prove the first assertion by induction on m. For m = n− 1, the assertion
is obvious. Indeed, the both sides coincide with the element LIJ of L at the inter-
section of the line I and the column J. Assume now that the equation holds true
for 2 ≤ m ≤ n− 1 and take any i = (i1, . . . , im−1) and j = ( j1, . . . , jm−1) of length
m−1. Let im be an (arbitrary) element of (n−m+1)-tuple I. We will also have to
consider the m-tuple i = (i1, . . . , im, . . . , im−1), where the elements have of course
been written in the natural order i1 < .. . < im < .. . < im−1. The rank of im inside
I and i will be denoted be rI(im) and ri(im) respectively. Using these notations, we
get

Lij = L IJ = ∑
jm∈J

(−1)rI(im)+rJ( jm)Lim jmLij.

Applying the induction assumption, we see that Lij = Dn−m−1Lij, so that

Lij = Dn−m−1 ∑
jm∈ν

(−1)rI(im)+rJ( jm)Lim jm ∑
σ∈P(j)

signσ `i1σ j1
. . . `imσ jm

. . . `im−1σ jm−1
,

where P(j) is the permutation group of j, and where the first sum could be ex-
tended to all jm ∈ ν , as for jm ∈ j the last determinant vanishes. It is clear that
we obtain all the permutations σ of j, if we assign jm to ip (p ∈ {1, . . . ,m}) and,
for each choice of p, all the permutations µ ∈ P(j) to the remaining subscripts
iq. Observe that the signature of the permutation σ that associates jm with ip and
permutes j by µ , is signσ = (−1)ri(ip)−rj( jm) sign µ . Hence, we get

Lij =
Dn−m−1 ∑m

p=1 ∑µ∈P(j) sign µ `i1µ j1
. . . ̂̀ip jm . . .

`im−1µ jm−1
∑ jm∈ν(−1)rI(im)+ri(ip)+rJ( jm)−rj( jm)`ip jmLim jm .

Remark now that the exponent of −1 can be replaced by

ri(ip)+ ri(im)+ ri(im)+ rI(im)+ rj( jm)+ rJ( jm)∼ ri(ip)+ ri(im)+ im + jm.

Thus, the last sum reads (−1)ri(ip)+ri(im) ∑ jm∈ν(−1)im+ jm`ip jmLim jm . If p 6= m, this
sum vanishes, and if p = m it coincides with determinant D. Eventually, we find

Lij = Dn−m ∑
µ∈P(j)

sign µ `i1µ j1
. . . `̂im jm . . . `im−1µ jm−1

= Dn−mLij.
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Definition 42. Let Yi = ∑r `ir∂r be n linear vector fields in Rn. Set

R =⊕n
p=0R

p =⊕n
p=0R[[x1, . . . ,xn]]⊗∧p

n〈~∂ 〉
and

P =⊕n
p=0P

p = D−1⊕n
p=0R[[x1, . . . ,xn]]⊗∧p

n〈~Y 〉,
where D = det` and where ∧p

n〈~∂ 〉 and ∧p
n〈~Y 〉 are the terms of degree p of the

Grassmann algebras on generators ~∂ = (∂1, . . . ,∂n) and ~Y = (Y1, . . . ,Yn) respec-
tively. Space R (resp. P) is the space of real formal Poisson cochains (resp.
potential formal Poisson cochains).

Remark. The space of polyvector fields Yk = Yk1...kp = Yk1 ∧ . . .∧Ykp (k1 < .. . <
kp, p ∈ {0, . . . ,n}) with coefficients in the quotients by D of formal power series in
(x1, . . . ,xn), is a concrete model of space P . Indeed, observe first that these spaces
are bigraded by the “exterior degree” p and the (total) “polynomial degree”, say
r. If such a polyvector field vanishes, its homogeneous terms D−1 ∑k PkrYk (Pkr ∈
S rRn∗) vanish. If we decompose the Yi (i ∈ {1, . . . ,n}) in the natural basis ∂i, we
immediately see that the sums ∑k LkiPkr vanish for all i = (i1, . . . , ip) (i1 < .. . < ip).
Since these sums can be viewed as the product of a matrix with polynomial entries
and the column made up by the P·r, the column vanishes outside the vanishing set
V of the homogeneous polynomial determinant of this matrix. As the complement
of (the conic closed) subset V of Rn is dense in Rn, the polynomials Pkr vanish
everywhere.

Theorem 23. (i) There is a canonical non surjective injection i : R →P from R
into P .
(ii) A homogeneous potential cochain D−1 ∑k PkrYk [of bidegree (p,r)] is real if and
only if the [n!/p!(n− p)!] homogeneous polynomials ∑k LkiPkr [of degree p+r] are
divisible by D (for p = 0 this condition means that Pr be divisible by D).

Proof. Take a real cochain Cp = ∑i ς i∂i ∈R p, where, as above, i = (i1, . . . , ip),
i1 < .. . < ip. As ∂ j = D−1 ∑k Lk jYk, we get

∂i = D−p ∑
k1,...,kp

Lk1i1 . . .LkpipYk1...kp

= D−p ∑
k1<...<kp

(
∑

σ∈P(k)
signσ Lσk1 i1 . . .Lσkp ip

)
Yk1...kp .

If | i |= ∑p
j=1 i j, it follows from Lemma 8, that the determinant in the above bracket

is given by
(−1)|i|+|k|L ki = (−1)|i|+|k|Dp−1Lki,
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so that

Cp = D−1 ∑
k

(
∑

i
(−1)|i|+|k|Lki ς i

)
Yk,

where the RHS is in P p.

Point (ii) is a direct consequence of the preceding remark.

Remark. In view of this theorem, the bigrading P = ⊕n
p=0 ⊕∞

r=0 P pr, defined
on P by the exterior degree and the polynomial degree, induces a bigrading
R =⊕n

p=0⊕∞
r=0 R pr on R.

Consider now a quadratic Poisson tensor Λ in Rn. In the following, we assume
that Λ is SRMI, and more precisely that there are n mutually commuting linear
vector fields Yi = ∑n

r=1 `ir∂r, ` ∈ gl(n,Rn∗), such that D = det ` 6= 0 and

Λ = ∑
i< j

α i jYi j (α i j ∈ R).

Proposition 37. The determinant D = det` ∈S nRn∗ \{0} of ` is the unique joint
eigenvector of the Yi with eigenvalues divYi ∈ R, i.e., D is, up to multiplication by
nonzero constants, the unique nonzero polynomial of Rn that verifies

YiD = (divYi)D,∀i ∈ {1, . . . ,n}.

Moreover, if D = D1D2, where D1 ∈S n1Rn∗ and D2 ∈S n2Rn∗ (n1 +n2 = n) are
two polynomials without common divisor, these factors D1 and D2 are also joint
eigenvectors. If λi and µi denote their eigenvalues, we have λi + µi = divYi.

Proof. Set Yi = ∑r `ir∂r = ∑rs as
irxs∂r, as

ir ∈R. Note first that Yi(` jr) = ∑t at
jr`it ,

and that [Yi,Yj] = 0 means Yi(` jr) =Yj(`ir), for all i, j,r ∈ {1, . . . ,n}. If Pn denotes
the permutation group of {1, . . . ,n}, we then get

YiD =
n

∑
k=1

∑
σ∈Pn

signσ `σ11 . . .Yi(`σkk) . . . `σnn

=
n

∑
k=1

∑
σ∈Pn

signσ `σ11 . . .Yσk(`ik) . . . `σnn

=
n

∑
k,t=1

at
ik ∑

σ∈Pn

signσ `σ11 . . . `σkt . . . `σnn.
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This last sum vanishes if k 6= t since two columns coincide in this determinant.
Eventually, we have

YiD =

(
∑
k

ak
ik

)
D = (divYi)D.

As for uniqueness, suppose that there is another polynomial P ∈SRn∗ \{0},
such that YiP = (divYi)P, for all i ∈ {1, . . . ,n}. Then Yi (P/D) = 0 in Z = {x ∈
Rn,D(x) 6= 0} and the same reasoning as in the proof of Theorem 21 allows con-
cluding that there exists α ∈ R∗ such that P = αD.

The assertion concerning the factorization of D is easily understood. Indeed,
since ((divYi)D1−YiD1)D2 = D1(YiD2) and as the polynomials D1 and D2 have
no common divisor, YiD2 = PD2 and (divYi)D1 −YiD1 = QD1, where P = Q is
a polynomial. Looking at degrees, we immediately see that P = Q is necessarily
constant.

Remark. Observe that the eigenvalues divYi, i ∈ {1, . . . ,n}, cannot vanish simul-
taneously. Indeed, in this case, polynomial D ∈ S nRn∗ \ {0}, n ∈ N∗, vanishes
everywhere.

Definition 43. The complex

0→R0 →R1 → . . .→Rn → 0

with differential ∂Λ = [Λ, .], is the formal complex of Poisson tensor Λ ∈S 2Rn∗⊗
∧2Rn. We denote the corresponding cohomology groups by LH∗(R,Λ).

The next theorem shows that if the cochains C ∈R are read as C = iC ∈P ,
the Poisson differential assumes a simplified shape.

Theorem 24. Set Λ = ∑i< j α i jYi j, α ji =−α i j, and Xi = ∑ j 6=i α i jYj.
(i) Let

C = D−1 ∑
k

PkrYk ∈P pr

be a homogeneous potential cochain. The Poisson coboundary of C is given by

∂ΛC = ∑
ki

Xi
(
D−1Pkr)Yi∧Yk = D−1 ∑

ki
(Xi−δi id)(Pkr)Yi∧Yk ∈P p+1,r, (6.5)

where δi = divXi ∈ R.
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(ii) The Poisson coboundary operator ∂Λ endows P with a differential complex
structure, and preserves the polynomial degree r. This Poisson complex of Λ
over P contains the Poisson complex (R,∂Λ) of Λ over R as a differential sub-
complex.

Proof. Note first that if C = f Y, where f a function and Y a wedge product of
vector fields Yk, we get

∂Λ( f Y) = [Λ, f Y] = [Λ, f ]∧Y, (6.6)

since the Yk are mutually commuting. However,

[Λ, f ] = ∑
i< j

α i j ((Yj f )Yi− (Yi f )Yj) = ∑
i
(∑

j 6=i
α i j Yj f )Yi = ∑

i
(Xi f )Yi. (6.7)

When combining Equations (6.6) and (6.7), we get the first part of Equation (6.5),
whereas its second part is the consequence of Proposition 37.

Corollary 5. The Poisson cohomology groups of Λ over R and P are bigraded,
i.e.

LH(R,Λ)=⊕∞
r=0⊕n

p=0 LH pr(R,Λ) and LH(P,Λ)=⊕∞
r=0⊕n

p=0 LH pr(P,Λ),

where for instance LH pr(P,Λ) is defined by

LH pr(P,Λ) = ker(∂Λ : P pr →P p+1,r)/ im(∂Λ : P p−1,r →P pr).

In the following we deal with the terms LP∗r(P,Λ) =⊕n
p=0LPpr(P,Λ) of the

Poisson cohomology over P and with the corresponding part of Poisson cohomol-
ogy the subcomplex R.

Theorem 25. Let Er be the real finite-dimensional vector space S rRn∗, and let
~Xδ := (X1 − δ1 id, . . . ,Xn − δn id), δi = divXi, be the n-tuple of the commuting
linear operators Xi − δi id on Er defined in Theorem 24. The Poisson cohomol-
ogy space LH∗r(P,Λ) of Λ over P coincides with the Koszul cohomology space
KH∗(~Xδ ,Er) associated with ~Xδ on Er:

LH∗r(P,Λ)' KH∗(~Xδ ,Er).

Proof. Direct consequence of result ∂Λ = ∑i(Xi − δi id) ⊗ eYi proved in
Theorem 24.
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In order to study the Poisson cohomology group LH .r(R,Λ) of the quadratic
Poisson tensor Λ over the formal cochain space R, we introduce a long cohomol-
ogy exact sequence.

Let S pr be a complementary vector subspace of R pr in P pr: P pr = R pr⊕
S pr. Space S = ⊕∞

r=0 ⊕n
p=0 S pr can easily be promoted into the category of

differential spaces. Indeed, denote by pR and pS the projections of P onto R
and S respectively, and set for any s ∈S ,

φs = pR∂Λs, ∂̃Λs = pS ∂Λs.

Proposition 38. (i) The endomorphism ∂̃Λ ∈ EndRS is a differential on S , which
has weight (1,0) with respect to the bigrading of S , i.e. ∂̃Λ : S pr →S p+1,r.
(ii) The linear map φ ∈ HomR(S ,R) is an anti-homomorphism of differential
spaces from (S , ∂̃Λ) into (R,∂Λ). Its weight with respect to the bidegree is (1,0),
i.e. φ : S pr →R p+1,r.
(iii) The sequence 0 → R

i→ P
pS→ S → 0 is a short exact sequence of homo-

morphisms of differential spaces, which preserve the bidegree. It induces an exact
triangle in cohomology, whose connecting homomorphism φ] is canonically im-
plemented by φ . If LH pr(S , Λ̃) denotes the degree (p,r) term of the cohomology
space of the complex (S , ∂̃Λ), we have φ] : LH pr(S , Λ̃)→ LH p+1,r(R,Λ).
(iv) The sequence

0→ LH0r(R,Λ)
i]→ . . .

φ]→ LH pr(R,Λ)
i]→ LH pr(P,Λ)

(pS )]→ LH pr(S , Λ̃)
φ]→ LH p+1,r(R,Λ)

i]→ . . .
φ]→ LHnr(R,Λ)

i]→ LHnr(P,Λ)
(pS )]→ LHnr(S , Λ̃)→ 0

is a long exact cohomology sequence of vector space homomorphisms.
(v) If kerpr φ] and imp+1,r φ] denote the kernel and the image of the restricted map
φ] : LH pr(S , Λ̃)→ LH p+1,r(R,Λ), we have

LH pr(R,Λ)' LH p−1,r(S , Λ̃)/kerp−1,r φ]⊕LH pr(P,Λ)/kerpr φ]. (6.8)

Proof. Statements (i) and (ii) are direct consequences of equation ∂ 2
Λ = 0.

For (iii), we only need check that linear map φ] coincides with the connecting
homomorphism, what is obvious. Eventually, assertion (v) is a corollary of
exactness of the long cohomology sequence.
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We now identify the S -cohomology with a relative cohomology. Several con-
cepts of relative cohomology can be met in literature. Below, we use the following
definition.

Definition 44. Let V be a vector space endowed with a differential ∂ , and let W
be a ∂ -closed subspace of V . Denote by ∂ the differential canonically induced by
∂ on the quotient space V/W. The cohomology of the differential space (V/W,∂ )
is called the relative cohomology of (V,W,∂ ). It is denoted by H(V,W,∂ ).

Proposition 39. The cohomology induced by ∂Λ on S (i.e. the cohomology of
differential space (S , ∂̃Λ)) coincides with the relative cohomology of (P,R,Λ)
(i.e. the cohomology of space (P/R,∂ Λ)):

LH(S , Λ̃)' LH(P,R,Λ).

Proof. It suffices to note that the vector space isomorphism ψ : P/
R 3 [π]→ pS π ∈S intertwines the differentials ∂ Λ on P/R and ∂̃Λ on S .

Remark. In view of this proposition it is clear that S -cohomology is independent
of the chosen splitting P = R⊕S .

Theorem 26. The Poisson cohomology groups of a SRMI Poisson tensor Λ, over
the space R of cochains with coefficients in the formal power series, are given by

LH pr(R,Λ)' LH pr(P,Λ)/kerpr φ]⊕LH p−1,r(P,R,Λ)/kerp−1,r φ],

where the above-introduced notations have been used.

Proof. Reformulation of Equation (6.8) and Proposition 39.

Remark.This theorem reduces computation of the formal Poisson coho-
mology groups LH pr(R,Λ), basically to the Koszul cohomology groups
LH pr(P,Λ) ' KH p(~Xδ ,Er) associated to the afore-detailed operators ~Xδ on
Er = S rRn∗ induced by the considered SRMI tensor, and to the relative coho-
mology groups LH p−1,r(P,R,Λ). It thus highlights the link between Poisson
and Koszul cohomology. Let us mention that the authors of [MP06] showed,
via explicit computations in R3, that P-cohomology (now identified as Koszul
cohomology) and S -cohomology (or relative cohomology) are less intricate than
Poisson cohomology.

The remark concerning the comparative simplicity of the P-cohomology can
be easily understood.
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Observe that any SRMI Poisson tensor Λ = ∑i< j α i jYi j, α i j ∈ R, with Yi =
∑r `ir∂r and `ir ∈ Rn∗, reads, locally in {D := det` 6= 0} ⊂ {Λ 6= 0} ⊂ Rn,

Λ = ∑
i< j

α i j∂sis j (α i j ∈ R),

where (s1, . . . ,sn) are local coordinates. As the Yi mutually commute, the state-
ment is a direct consequence of the “straightening theorem for vector fields”. For
instance, for structure Λ = 2aY23 +bY31 +aY12, where Y1 = x∂1 + y∂2, Y2 = x∂2−
y∂1, Y3 = z∂3, and D = (x2 + y2)z, see Theorem 22, the local (non-polynomial)
coordinate transformation

x = es cosθ ,y = es sinθ ,z =−e−t

leads to Y1 = ∂s,Y2 = ∂θ ,Y3 = ∂t , and Λ = 2a∂θ t +b∂ts +a∂sθ .
Hence, locally in a dense open subset of Rn, there are coordinate sys-

tems or bases in which tensor Λ has constant coefficients. The P-cohomology
LH∗r(P,Λ) however, is the Poisson cohomology in the extended space P∗r =
D−1⊕n

p=0 S rRn∗⊗∧p
n〈~Y 〉, which admits the global basis~Y = (Y1, . . . ,Yn) in which

structure Λ has constant coefficients. This is what makes P-cohomology particu-
larly convenient.

6.4 Koszul cohomology in a finite-dimensional vector
space

In view of the above remark regarding the basic ingredients of Poisson cohomology
of SRMI tensors ofRn, we take in this section an interest in the Koszul cohomology
space KH∗(~Xλ ,E) associated to operators ~Xλ := (X1−λ1 id, . . . ,Xn−λn id) made
up of commuting linear transformations ~X := (X1, . . . ,Xn) of a finite-dimensional
real vector space E and a point ~λ := (λ1, . . . ,λn) ∈ Rn. However, Koszul coho-
mology is known to be closely connected with Spectral Theory—a fundamental
principle of multivariate operator theory is that all essential spectral properties of
operators ~X in a complex space should be understood in terms of properties of
the Koszul complex induced by ~Xλ , ~λ ∈ Cn—so that the natural framework for
investigations on Koszul cohomology is the complex setting.

Proposition 40. Let (E,∂ ) be a differential space over R, and denote by (EC,∂C)
its complexification. The complexification HC(E,∂ ) of the cohomology space of
(E,∂ ) and the cohomology H(EC,∂C) of differential space (EC,∂C), are canoni-
cally isomorphic:

H(EC,∂C)' HC(E,∂ ).
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Proof. Obvious.

Proposition 41. If ~X ∈ EndR(E) are commutingR-linear transformations of a real
vector space E, and if ~XC ∈ EndC(EC) are the commuting corresponding com-
plexified C-linear transformations of the complexification EC of E, the following
isomorphism of complex vector spaces holds:

KH∗(~XC,EC)' KH∗C(~X ,E).

Proof. In view of Proposition 40, it suffices to check that the complex
K∗(~XC,EC) is effectively the complexification of the complex K∗(~X ,E).

This proposition allows deducing our subject for investigation, the Koszul
cohomology KH∗(~Xλ ,E) (where ~λ is a point of Rn and where ~X is an n-tuple
of commuting R-linear operators of a finite-dimensional vector space E over R),
from its more natural counterpart over the field of complex numbers.

Below, we use the concept of joint spectrum σ(~X) of commuting bounded
linear operators ~X = (X1, . . . ,Xn) on a complex vector space E. There are a number
of definitions of such spectra in the literature; the considered spaces E are normed
spaces, Banach spaces, or Hilbert spaces. Here we investigate Koszul cohomology
in finite dimension and need the following characterizations of the elements of the
joint spectrum σ(~X) (for a proof, we refer the reader to [BR02]):

Proposition 42. Let ~X = (X1, . . . ,Xn) be an n-tuple of commuting operators on
a finite-dimensional complex vector space E. Then the following statements are
equivalent for any fixed~λ = (λ1, . . . ,λn) ∈ Cn:

(a) ~λ ∈ σ(~X)

(b) There exists a basis in E with respect to which the matrices representing the X j

are all upper-triangular, and there exists an index q (1 ≤ q ≤ dimE), such
that λ j is the (q,q) entry of the matrix representing X j, for j ∈ {1, . . . ,n}

(c) There exists an index q as in Item (b) for every basis in E with respect to which
the matrices representing the X j are all upper-triangular

(d) There exists a nonzero vector x such that X jx = λ jx, ∀ j ∈ {1, . . . ,n}
(e) There do not exist Yj in the subalgebra of EndC(E) generated by id and ~X,

such that
n

∑
j=1

Yj(X j−λ j id) = id
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In the following, we supply some results regarding Koszul cohomology spaces.
We use the same notations as above.

Proposition 43. Let ∧ = ∧n〈~η〉 be the exterior algebra on n generators ~η over a
field F of characteristic 0, and let~h be dual generators, i.e. ihk η` = ∂k`. We then
have the homotopy formula

eη`
ihk + ihk eη`

= δk` id,

where ihk and eη`
are the creation and annihilation operators, respectively.

Proof. Obvious.

Proposition 44. Let ~X ∈ End×n
F (E) (resp. ~Y ∈ End×n

F (E) ) be n commuting linear
operators ~X (resp. ~Y ) on a vector space E over F. We denote by K = ∑` X`⊗eη`

(resp. κ = ∑k Yk ⊗ ihk) the corresponding Koszul cohomology (resp. homology)
operator. The following homotopy-type result holds:

K κ +κK =

(
∑̀Y`X`

)
⊗ id+∑

k`
[X`,Yk]⊗ eη`

ihk .

Proof. Direct consequence of Proposition 43.

Proposition 45. Let ~X ∈ End×n
C (E) be n commuting endomorphisms of a finite-

dimensional complex vector space E, and let~λ ∈ Cn. Consider a splitting

E = E1⊕E2

and denote by i j : E j → E (resp. p j : E → E j ) the injection of E j into E (resp. the
projection of E onto E j ).

If E1 is stable under the action of the operators X`, i.e. p2 X` i1 = 0, and if
~λ is not in the joint spectrum σ(~X2) of the commuting operators X`2 = p2 X` i2 ∈
EndC(E2), then any cocycle C ∈ E ⊗∧ of the Koszul complex K∗(~Xλ ,E), where
~Xλ = ~X−~λ idE , is cohomologous to a cocycle C1 ∈ E1⊗∧, with ∧= ∧n〈~η〉.

Proof. Observe first that if q(~X) ∈ C[X1, . . . ,Xn] ⊂ EndC(E) denotes a poly-
nomial in the X`, the compound map q(~X)2 = p2q(~X)i2 coincides with the (same)
polynomial q(~X2) ∈ EndC(E2) in the X`2 (?). Indeed, due to stability of E1, we
have

p2 X`Xk i2 = p2 X` i1 p1 Xk i2 + p2 X` i2 p2 Xk i2 = X`2Xk2.

This entails in particular that the X`2 commute.
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As~λ /∈ σ(~X2), Item (e) in Proposition 42 implies that there are n operators ~Y2
in the subalgebra of EndC(E2) generated by idE2 and ~X2, such that

∑̀Y`2(X`2−λ` idE2) = idE2 . (6.9)

Hence, for any `, Y`2 = Q`(~X2) is a polynomial in the Xk2. Set now Y` = Q`(~X) ∈
EndC(E).

If applied to operators ~Xλ and~Y , Proposition 44 implies that

(
∑̀Y`(X`−λ` idE)

)
⊗ id∧+∑

k`
[X`−λ` idE ,Yk]⊗ eη`

ihk = K κ +κK ,

where K (resp. κ) is the Koszul cohomology (resp. homology) operator associ-
ated with ~Xλ (resp. ~Y ) on E. As Yk is a polynomial in the commuting endomor-
phisms X`, the second term on the LHS of the preceding equation vanishes. Hence,
when evaluating both sides on a cocycle C = e⊗w of cochain complex K∗(~Xλ ,E),
we get (

Q(~X)(e)
)

w = K κ(e⊗w),

where Q(~X) = ∑`Y`(X`−λ` idE) = ∑` Q`(~X)(X`−λ` idE) is a polynomial in the
X`. Up to factor w, the LHS reads

Q(~X)(e) = p1Q(~X)i1 p1(e)+ p2Q(~X)i1 p1(e)+ p1Q(~X)i2 p2(e)+ p2Q(~X)i2 p2(e),

where the second term of the RHS vanishes, in view of the stability of E1, and
where the last term coincides with p2(e), in view of Remark (?) and Equation
(6.9). Eventually, cocycle C = e⊗w is cohomologous to cocycle

C1 = C−K κC =
(

p1(e)− p1Q(~X)i1 p1(e)− p1Q(~X)i2 p2(e)
)
⊗w ∈ E1⊗∧.

The preceding proposition allows in particular recovering the following well-
known result:

Corollary 6. Consider n commuting endomorphisms ~X ∈ End×n
C (E) of a finite-

dimensional complex vector space E, and a point ~λ ∈ Cn. Set ker~Xλ :=
∩n

`=1 ker(X`− λ` id). If dim(ker~Xλ ) = 0, the Koszul cohomology KH∗(~Xλ ,E) is
trivial, and vice versa.
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Proof. It suffices to note that, due to Proposition 42, the dimensional assump-
tion means that ~λ /∈ σ(~X), and to apply the preceding proposition with E1 = 0.
Conversely, if there exists x∈ ker~Xλ \{0}, then K~Xλ

x = ∑n
`=1(X`−λ` id)(x) η` = 0,

so that x is a nonbounding 0-cocycle.

The next consequence of Proposition 45 shows that the Koszul cohomology
KH∗(~Xλ ,E) is—roughly spoken—made up by joint eigenvectors with eigenvalues
λ`.

Consider n commuting endomorphisms ~X =: ~X (1) ∈ End×n
C (E) of a finite-

dimensional complex vector space E =: E(1) =: F(1), and a point ~λ ∈ Cn. For
any a ∈ {2,3, . . .}, if ker(a−1) := ker~X (a−1)

λ and E(a) := E(a−1)/ker(a−1), the

X (a)
` :=

(
X (a−1)

`

)]
,

` ∈ {1, . . . ,n}, defined recursively by X (a)
` =

(
X (a−1)

`

)]
: E(a) 3 [e(a−1)] →

[X (a−1)
` e(a−1)] ∈ E(a), are again n commuting (well-defined) operators on a finite-

dimensional complex vector space. We iterate this procedure finitely many times,
thus obtaining operators X (a)

` , a∈ {1, . . . ,s+1}, until ker(s+1) = ker~X (s+1)
λ = 0, or,

equivalently,
~λ /∈ σ(~X (s+1)).

In the following, we identify the operators X (a)
` with their models that arise

from the choices of supplementary subspaces F(a) of ker(a−1) in E(a−1) ' F(a−1),
a ∈ {2, . . . ,s + 1}, so that E(a) ' F(a) ⊂ E(a−1) ' F(a−1). If we denote by
ia : F(a) → F(a−1) the inclusion and by pa : F(a−1) → F(a) the canonical projection,
the isomorphism E(a) ' F(a) is E(a) 3 [ f (a−1)] ↔ pa f (a−1) ∈ F(a), and operator
X (a)

` , viewed as endomorphism of F(a), reads

X (a)
` = paX (a−1)

` ia, (6.10)

since for any f (a) ∈ F(a), we have X (a)
` f (a) = X (a)

` [ f (a)] = [X (a−1)
` f (a)] =

paX (a−1)
` ia f (a).

Corollary 7. Let~λ ∈Cn be a point in Cn, and let ~X = ~X (1) ∈ End×n
C (E) be n com-

muting endomorphisms of a finite-dimensional complex vector space E = F(1).
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Denote by ~X (a) ∈ End×n
C (F(a)), a ∈ {2, . . . ,s}, the above-depicted “reduced” op-

erators on supplementary spaces F(a), and denote by ∧ = ∧n〈~η〉 the Grassmann
algebra with n generators ~η .

Any cocycle
C ∈ E⊗∧

of the Koszul complex K∗(~Xλ ,E) is cohomologous to a cocycle

C1 ∈
(

ker~X (1)
λ ⊕ ker~X (2)

λ ⊕ . . .⊕ ker~X (s)
λ

)
⊗∧.

Proof. It suffices to apply Proposition 45 to the obvious splitting

E = E1⊕E2 :=

(
s⊕

a=1

ker(a)

)
⊕F(s+1).

Indeed, the operators ~X2 considered in Proposition 45 read X`2 =
ps+1 . . . p2X`i2 . . . is+1 = X (s+1)

` , where we used the afore-introduced nota-
tions ia and pa. Hence, the spectral condition~λ /∈ σ(~X2) is satisfied by definition
of s, see above. Moreover, if k(a) ∈ ker(a) ⊂ F(a), a ∈ {1, . . . ,s}, we have

X` k(a) = X` i2 . . . ia k(a) = pa . . . p2 X` i2 . . . ia k(a) +
a

∑
b=2

πb pb−1 . . . p2 X` i2 . . . ia k(a).

(6.11)
Mapping πb : F(b−1) → ker(b−1) is the second projection associated with the de-
composition F(b−1) = F(b)⊕ ker(b−1), so that idF(b−1) = pb +πb. In order to derive
Equation (6.11), we utilized this upshot for b ∈ {2, . . . ,a}. The first term of the
RHS of Equation (6.11) is X (a)

` k(a) = λ` k(a) ∈ ker(a), and the terms characterized
by index b are elements of the spaces ker(b−1). Hence, space E1 = ⊕s

a=1 ker(a) is
stable under the action of the X` and Proposition 45 is applicable.

Corollary 8. On the conditions of Corollary 7, if for any ` ∈ {1, . . . ,n}, the kernel
and the image of the transformation X`−λ` id are supplementary in E, then any
cocycle C ∈ E⊗∧ of the Koszul complex K∗(~Xλ ,E) is cohomologous to a cocycle
C1 ∈ ker~Xλ ⊗∧.

Proof. It suffices to prove that s = 1. If s 6= 1, there is a nonzero vector x ∈
ker~X (2)

λ ⊂ F(2). Then, for any k, ` ∈ {1, . . . ,n}, (Xk−λk id)(X`−λ` id)x = (Xk−
λk id)(p2X`i2x + π2X`i2x−λ`x) = (Xk−λk id)(π2X`i2x) = 0, as π2X`i2x ∈ ker~Xλ .
Hence, for every `, we have (X`−λ` id)x∈ ker~Xλ ∩ im(X`−λ` id) = 0. Eventually,
x ∈ (ker~Xλ )∩F(2) = 0, a contradiction.
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6.5 Koszul cohomology associated with Poisson cohomol-
ogy

We now come back to the Koszul cohomology implemented by a SRMI tensor of
Rn. Let us recall that we deal with a SRMI tensor

Λ = ∑
j<k

α jkYjk (α jk ∈ R),

where the Yj are n commuting linear vector fields that verify Y1...n 6= 0. The
main building block of the Poisson cohomology of such a tensor has been iden-
tified as the Koszul cohomology space KH∗(~Xδ ,Er) associated to the operators
~Xδ = (X1− δ1 id, . . . ,Xn− δn id), X j = ∑k α jkYk, αk j = −α jk, δ j = divX j on the
spaces Er = S rRn∗, r ∈ N. We already pointed out that this cohomology can be
deduced from its complex counterpart KH∗(~XCδ ,ECr ) (see Proposition 41), which
is tightly related with joint eigenvectors and the joint spectrum of ~XC or ~XCδ (see
Corollaries 6 and 7). In this section, we further investigate the Koszul cohomology
space KH∗(~XCδ ,ECr ). In particular, we reduce the computation of this central part
of the Poisson cohomology space LH∗r(R,Λ) to essentially a problem of linear
algebra, and give a description of the spectrum of the transformations ~XCδ .

When dealing with commuting operators on a finite-dimensional complex vec-
tor space, it is natural to use an upper-triangular representation of these transfor-
mations. The following theorem shows that, for our endomorphisms ~XCδ of the
space ECr = S rCn∗ (see below), which has the possibly high (complex) dimen-
sion N = (r +n−1)!/[r!(n−1)!] (if e.g. r = 10 and n = 3, this dimension equals
N = 66), the problem of finding such a representation ~XCδ ∈ gl(N,C)×n (we denote
the operators and their representation by the same symbol) reduces to the quest for
an upper-triangular representation ~a ∈ gl(n,C)×n of some commuting transforma-
tions ~a of Cn. More precisely, the a j, j ∈ {1, . . . ,n}, are the commuting matrices
a j = (J1)−1Yj ∈ gl(n,R) that correspond to the commuting linear vector fields Yj.

Proposition 46. Any basis of Cn, in which the commuting operators ~a have an
upper-triangular representation, naturally induces a basis of ECr = S rCn∗, in
which all the transformations ~XCδ are upper-triangular.

Let us first mention that in the sequel the use of super- and subscripts is
dictated by esthetic criteria and not at all by contra- or covariance.
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Proof. In the following, we denote by x = (x1, . . . ,xn) (resp. z = (z1, . . . ,zn))
the points of Rn (resp. Cn) as well as their coordinates in the canonical basis
(e1, . . . ,en). As usual, we set Yk = ∑m `km∂xm = ∑mp amp

k xp∂xm and use notations as

xβ = xβ1
1 . . .xβn

n , β ∈ Nn.
The complexification ECr of

Er = S rRn∗ = {P ∈C∞(Rn) : P(x) = ∑
|β |=r

rβ xβ (x ∈ Rn,rβ ∈ R)}

is

Er⊕ iEr ' ECr 'S rCn∗ = {P ∈C∞(Cn) : P(z) = ∑
|β |=r

cβ zβ (z ∈ Cn,cβ ∈ C)}.

It is also easily seen that the complexification YCk ∈ EndC(ECr ) of Yk ∈ EndR(Er) is
the holomorphic vector field

YCk = ∑
mp

amp
k zp∂zm ∈ Vect10(Cn)

of Cn.
It is well-known that the n commuting matrices a j = (J1)−1Yj ∈ gl(n,R)

can be reduced simultaneously to upper-triangular matrices by a unitary matrix
U ∈ U(n,C). Consider any matrix U ∈ GL(n,C) (resp. any basis (e′1, . . . ,e

′
n) of

Cn), such that the b j = U−1a jU ∈ gl(n,C) are upper-triangular (resp. in which the
transformations ~a are all upper-triangular). Denote by z = (z1, . . . ,zn) the compo-
nents of the vectors z = ∑ j z je′j ∈Cn in the basis (e′1, . . . ,e

′
n), and let (ε ′1, . . . ,ε ′n) be

the dual basis of this new basis. If viewed as a basis of the space ECr of degree r
homogeneous polynomials of Cn, the induced basis ε ′j1 ∨ . . .∨ ε ′jr , j1 ≤ . . .≤ jr, of
the space S rCn∗ of symmetric covariant r-tensors of Cn reads zβ , β ∈Nn, |β |= r.

In order to find the matrices of the operators ~XCδ in this “natural” basis zβ ,

β ∈ Nn, |β | = r of ECr , we range the vectors zβ according to the lexicographic

order ≺ and perform the coordinate change z = Uz,∂z = ∂̃zz
−1

∂z in the first order
linear differential operators (X j−δ j id)C. We get

(X j−δ j id)C = ∑
k

α jk ∑
m≤p

bmp
k zp∂zm −δ j idC

= ∑
km

α jkbmm
k

(
zm∂zm − idC

)
+∑

k
∑

m<p
α jkbmp

k zp∂zm ,
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since δ j = divX j = ∑km α jkamm
k = ∑km α jkbmm

k . As the image of vector zβ by oper-
ator (X j−δ j id)C is

(X j−δ j id)Czβ = ∑
km

α jkbmm
k (βm−1)zβ +∑

k
∑

m<p
α jkbmp

k βm zβ−em+ep , (6.12)

where zβ−em+ep ≺ zβ , the matrices of the commuting operators (X j − δ j id)C,
j ∈ {1, . . . ,n}, in the basis zβ , β ∈ Nn, |β | = r, of space ECr , are all upper-
triangular.

The next theorem provides a description of the joint spectrum σr(~XCδ ) of the
operators ~XCδ ∈ End×n

C (ECr ).

Let B ∈ gl(n,C) be the matrix B jk = bkk
j made up by the diagonals of the ma-

trices b j, see above.

Theorem 27. The joint spectrum σr(~XCδ ) of the commuting operators ~XCδ ∈
End×n

C (ECr ) on the finite-dimensional complex vector space ECr , is given by

σr(~XCδ ) = {αBI : I ∈ (N∪{−1})n, |I|= r−n} ⊂ Cn,

where |I|= ∑ j I j denotes the length of I.

Proof. Direct consequence of Proposition 42 and Equation (6.12).

Remark. In Proposition 37, we showed that for all k, YkD = (divYk)D,
where D = det` ∈ En ⊂ ECn . It of course follows that for all j,
XCj D = X jD = (divX j)D = δ j idCD, so that ~0 = (0, . . . ,0) ∈ σn(~XCδ ). This
last upshot is immediately recovered from Theorem 27.

Set Kr(~XCδ ) = {I ∈ ker(αB) : I ∈ (N∪{−1})n , |I| = r− n}. Corollary 6 can
then be reformulated as follows.

Corollary 9. The Koszul cohomology KH∗(~XCδ ,ECr ) is acyclic if and only if
Kr(~XCδ ) =∅.

Proof. Indeed, KH∗(~XCδ ,ECr ) is trivial if and only if dim(ker~XCδ ) = 0, if and
only if~0 /∈ σr(~XCδ ), i.e. if and only if Kr(~XCδ ) =∅.

We now depict a convenient method that allows finding a basis of the space

ker~XC(1)
δ ⊕ ker~XC(2)

δ ⊕ . . .⊕ ker~XC(s)
δ ,
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which houses the Koszul cohomology KH∗(~XCδ ,ECr ), see Corollary 7.

In order to simplify notations, we systematically omit in the following
description superscript C. We write e.g. ~Xδ ,Er, . . . instead of ~XCδ ,ECr , . . .

Consider any basis (e1, . . . ,eN) of Er that generates an upper-triangular repre-
sentation T1, . . . ,Tn of the operators ~Xδ . The kernel ker~Xδ is then described by the
n triangular systems

T1Z = 0, . . . ,TnZ = 0, (6.13)

(each one) of N homogeneous linear equations in the N complex unknowns Z =
(Z1, . . . ,ZN).

As understood before,~0 ∈ σr(~Xδ ) if and only if at least one of the lines ~T q =
(T qq

1 , . . . ,T qq
n ), q ∈ {1, . . . ,N}, is~0 = (0, . . . ,0). We refer to the number µ of such

~0–lines ~T q1 , . . . ,~T qµ , q1 < .. . < qµ , as the multiplicity of~0 in the spectrum σr(~Xδ )
(in the considered basis (e1, . . . ,eN)). Of course, the general solution of System
(6.13) is a linear combination Z = ∑ j c jK j, c j ∈ C, of d = dim ker~Xδ independent
vectors K j ∈ CN . Let

k j = K1
j e1 + . . .+K

qν j
j eqν j

, j ∈ {1, . . . ,d}, (6.14)

be the corresponding basis of ker~Xδ . It can quite easily be seen—just “solve” Sys-
tem (6.13) and start imagining a configuration that leads to the maximal dimension
of the space of solutions—that d ≤ µ and that the components K

qν j
j 6= 0 of the

vectors k j with highest superscript correspond to~0–lines qν1 < .. . < qνd .
The N-tuple (k1, . . . ,kd ,e1, . . . , êqν1

, . . . , êqνd
, . . . ,eN) is a basis of Er,

since the determinant in the basis (e1, . . . ,eN) of the permuted N-tuple
(e1, . . . ,k1, . . . ,kd , . . . ,eN) equals K

qν1
1 . . .K

qνd
d 6= 0. Observe that the k j are joint

eigenvectors of the ~Xδ associated with eigenvalue 0. Moreover, in view of Equa-
tion (6.14), every vector eqν j

can be written in terms of “lower” vectors of the new
basis. Hence, the first d columns of the representative matrices T ′1, . . . ,T

′
n of the

operators ~Xδ in the new basis vanish, these matrices are again upper-triangular,
and the lines ~T q, q ∈ {1, . . . ,N}, are unchanged up to permutation. The matri-
ces T ′` + δ` id ∈ gl(N,C) correspond to the operators X`, ` ∈ {1, . . . ,n}, and their
lower right submatrices (T

′
` + δ` id)(2) ∈ gl(N− d,C) (resp. T ′(2)

` ) correspond to
the operators X (2)

` (resp. X (2)
` −δ` id(2)), see Equation (6.10) and Corollary 7.

In other words, in the basis (e1, . . . , êqν1
, . . . , êqνd

, . . . ,eN) of a space F(2)
r , see

Corollary 7, which is supplementary to ker~Xδ in Er, the operators ~X (2)
δ are repre-
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sented by upper-triangular matrices T ′(2)
1 , . . . ,T ′(2)

n . Thus, the above-detailed pro-
cedure can be iterated and the general solution of another packet of n (smaller)
triangular systems of linear equations

T ′(2)
1 Z = 0, . . . ,T ′(2)

n Z = 0, (6.15)

provides a basis k(2)
1 , . . . ,k(2)

d2
of ker~X (2)

δ , et cetera.

Remarks.

• The solutions of the triangular systems of homogeneous linear equations
(6.13), (6.15), ... generate a basis of the locus

ker~XC(1)
δ ⊕ ker~XC(2)

δ ⊕ . . .⊕ ker~XC(s)
δ

of the Koszul cohomology space KH∗(~XCδ ,ECr ).

• Observe that if the b` = U−1a`U have been computed, the upper-triangular
matrix representations T1, . . . ,Tn of the transformations ~XCδ in the corre-
sponding basis zβ , β ∈ Nn, |β | = r, of ECr are known, see Equation (6.12),
and explicit computations can actually be performed.

• As the multiplicity of~0 in the spectrum of the endomorphisms ~XC(2)
δ is µ−d,

and as its multiplicity in the spectrum of the ~XC(s+1)
δ vanishes, by definition

of s, we get

µ = d +d2 + . . .+ds =
s

∑
j=1

dim ker~XC( j)
δ , (6.16)

with self-explaining notations. As the RHS of this equation is independent
of the considered basis, the concept of multiplicity of a point λ ∈ Cn in the
joint spectrum of commuting transformations of a finite-dimensional vector
space, makes sense. Although this result might be well-known, we could not
find it anywhere in literature.

Example 1. Consider structure Λ2 of the DHC, see Theorem 22, and assume that
a 6= 0,b = 0. It is easily checked that the matrix

U =




0 i√
2

−i√
2

0 1√
2

1√
2

1 0 0



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transforms the above-mentioned matrices a` simultaneously into upper-triangular
matrices b`. A short computation yields that the space K3t(~XCδ ), t ∈ N, contains
the unique point It = (t−1, t−1, t−1), so that the multiplicity µ of~0 in the joint
spectrum σ3t(~XCδ ) equals 1, see proof of Theorem 27. It follows that the Koszul
cohomology spaces KH∗(~XCδ ,EC3t) are not trivial, see Corollary 9. Furthermore,
since the matrices b` are in fact diagonal in this example, Equation (6.12) entails
that zt

1z
t
2z

t
3 belongs to the kernel ker3t ~XCδ of operators ~XCδ in space EC3t . If we take

into account Equation (6.16), we see that ker3t ~XCδ = Czt
1z

t
2z

t
3 and that the reduced

operators ~XC( j)
δ , j ∈ {2, . . . ,s}, do not exist, i.e. that s = 1. Hence, and since

the change to canonical coordinates is z = Uz, see proof of Proposition 46, the
cohomology space KH p(~XCδ ,EC3t), p ∈ {0,1,2,3}, t ∈ N, is located inside

zt
1z

t
2z

t
3

⊕

j1<...< jp

CYj1... jp = (z2
1 + z2

2)
tzt

3

⊕

j1<...< jp

CYj1... jp .

This rather easily obtained upshot is in accordance with the results of [MP06]
(modulo slight changes in definitions and notations [e.g. the roles of parameters a
and b are exchanged]).

Example 2. For structure Λ3 of the DHC and parameter value a = 0, depending
on the value of r, the multiplicity of ~0 in the spectrum σr(~XCδ ) equals 0 or 1—
and computations are similar to those of the preceding example—, except in the
case r = 3, which generates multiplicity 3. Since for Λ3 the matrices a` are lower-
triangular, a coordinate change z↔ z is not necessary and it can easily be seen that
we have s = 3 and

ker3 ~XCδ = Cz2
1z3,ker3 ~XC(2)

δ = Cz1z2z3,ker3 ~XC(3)
δ = Cz2

2z3.

The corresponding cohomological upshots are part of the computation of the
Poisson cohomology of Λ3 that we detail in the next section.

Remark. Remember that the operators Xi are defined by Xi = ∑ j α i jYj, with α ji =
−α i j. Hence, matrix α ∈ gl(n,R) is skew-symmetric, and detα vanishes for odd n.
Of course, the corresponding non-trivial linear combination ∑i ciα i∗ = 0, induces a
non-trivial combination ∑i ciXi = 0 of the Xi (and the Xi−δi id), which is significant
in computations. In the even dimensional (n = 2m,m ∈ {2,3, . . .}) maximal rank
(rkα = n) case, the Koszul cohomology KH∗(~XCδ ,ECr ) has the following simple
description. If (in even dimension n) detα 6= 0, then

⊕

r∈N
KH0(~XCδ ,ECr ) = CD ,
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where D denotes the complex clone of det`, and, for any r 6= n and any p ∈
{1, . . . ,n}, the cohomology space KH p(~XCδ ,ECr ) vanishes. We do not detail the
proof that is, roughly, along the lines of Proposition 37. If r = n, the situation is
more complicated and new elements of ker~XC(1)

δ ⊕ker~XC(2)
δ ⊕ . . .⊕ker~XC(s)

δ may
enter the play.

6.6 Cohomology spaces of structures Λ3 and Λ9

We already pointed out that the Poisson cohomology (or R-cohomology) of SRMI
tensors can be deduced from a Koszul cohomology (P-cohomology) and a relative
cohomology (S -cohomology), see Theorem 26, Theorem 25, and Proposition 39.

The involved Koszul cohomology has been studied in the last section. We
particularized our upshots by means of (pertinent) examples, see Examples 1 and
2, Section 6.5.

Within the cohomology computations of SRMI tensors of the DHC, S -
cohomology has so far been determined “by hand”. In the majority of cases, the
Poisson cohomology operator respects, in addition to the degrees p and r, a par-
tial polynomial degree k (e.g. the coboundary operator associated with Λ3 respects
the partial degree in x = x1,y = x2), so that we can decompose space S pr into
smaller spaces S p

kr (made up by the elements of S pr that have partial degree k),
see [MP06]. The cohomology operator of structure Λ9 however, does not respect
any additional degree. The S -cohomology of Λ9 is therefore quite intricate.

Theorem 26 leads to the following cohomological upshots for structures Λ3 and
Λ9. No proofs will be given (for a description of an application of the technique,
see [MP06]).

Theorem 28. If a 6= 0, the cohomology spaces of structure Λ3 are

LH0∗(R,Λ3) = R,

LH1∗(R,Λ3) = RY1 +RY2 +RY3,

LH2∗(R,Λ3) = RY23⊕RY31⊕R(2yz∂31 + y2∂12),

LH3∗(R,Λ3) = R∂123⊕Ry2z∂123,

where the Yi are those defined in Theorem 22.

Theorem 29. If a 6= 0, the cohomology spaces of structure Λ9 are

LH0∗(R,Λ9) = R,
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LH1∗(R,Λ9) = RY1 +RY2 +RY3,

LH3∗(R,Λ9) =⊕r∈NRzr∂123,

and
LH2∗(R,Λ9) =⊕r∈NH2

r ,

where

H2
0 = R∂23, H2

1 = RC0
1 , H2

3 = RC2
1 ,

H2
2 = Rx2∂23 +Rxz(∂23−2−1∂31)+R(xz∂12− z2∂23)

+R(yz∂12 +(−27a2x2−9axz+3ay2− z2)∂31),
H2

r+1 = RCr
1 +RCr

2, r ≥ 3,

with

Cr
1 = −a(xzr + ry2zr−1)∂12 +(9a2xyr +a(3r−1)(r +1)−1zr+1)∂23

+ayzr∂31

and

Cr
2 = (−a(r−2)y4zr−3 + y2zr−1)∂12

+(6a(r−1)−1xyzr−1−ay3zr−2− r−1yzr)∂31

+(9a2xy2zr−2−9ar−1xzr +3a(r−3)(r−1)−1y2zr−1

−3(r−1)r−1(r +1)−1zr+1)∂23,

where the Yi are those defined in Theorem 22 ( and where the terms that contain a
power of x, y, or z with a negative exponent are ignored ).

6.7 Cohomological phenomena

Let us outline the most important cohomological phenomena.

Consider a SRMI Poisson structure Λ = ∑i< j α i jYi j.

It is easily checked that the curl vector field of Λ, see Section 6.2, is given
by K(Λ) = ∑i δiYi, δi = divXi, Xi = ∑ j α i jYj. Consequently, K-exactness is (in
Rn, n≥ 3) equivalent with divergence-freeness. Note now that the 0–cohomology
space LH0∗(R,Λ) of Λ, or space Cas(Λ) of Casimirs of Λ, coincides with the
kernel ker~X , see Equation 6.5. Hence, in view of Proposition 37, for a K-exact
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tensor, Dp = (det`)p is a joint eigenvector of the Xi with eigenvalues pδi = 0, i.e.
Dp ∈ ker~X . It follows that, for K-exact SRMI Poisson tensors,

⊕p∈NRDp ⊂ LH0∗(R,Λ) = Cas(Λ).

As for the 1–cohomology space LH1∗(R,Λ), let us first remark that the stabi-
lizer gΛ, viewed as a Lie subalgebra of linear vector fields X 1

0 (Rn), is made up by
1-cocycles (by definition) that do not bound (degree argument), i.e.

gΛ ⊂ LH1∗(R,Λ).

Moreover, as Poisson cohomology is an associative graded commutative alge-
bra, the classes of the cocycles in

Cas(Λ)⊗∧pgΛ,

0≤ p≤ n, are “preferential” Poisson cohomology classes. Such classes massively
appear in the Poisson cohomology of SRMI tensors of the DHC, see [MP06], and
of twisted SRMI tensors, see Chapter 5.

However, two other types of classes systematically appear in Poisson cohomol-
ogy.

1. The classes of type I originate from P-cohomology. In fact, roughly spo-
ken, the locus ker~XC(1)

δ ⊕ker~XC(2)
δ ⊕ . . .⊕ker~XC(s)

δ of the Koszul cohomol-
ogy associated with the considered Poisson cohomology generates in some
cases nonbounding cocycles in R-cohomology. For instance, for structure
Λ7, the rational functions D′ γ

2 z−1, D′ = x2 + y2, γ ∈ 2N∗, induce the classes
D′ γ

2 z−1Y3, Y3 = z∂3, in space LH1∗(R,Λ7).

2. The classes of type II are due to S -cohomology. Indeed, let s be a cochain
in space S , which is supplementary to R in P . It happens that ∂Λs ∈R.
Then, ∂Λs—a coboundary of a cochain from the outside of R—is typically
a nonbounding cocycle in R.

We refer to these two types of cohomology classes as “singular classes”, since
some of their coefficients are polynomials on the singular locus of the considered
Poisson tensor.

Let us finally briefly comment on the impact of Poisson- and K-exactness on
the structure of Poisson cohomology. If tensor Λ, or part of this tensor, is Poisson-
exact, see Section 6.2, some elements of space ∧2gΛ may be bounding cocycles.
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For instance, part Y12 of structure Λ3 of the DHC is Poisson-exact and disappears
in the second cohomology space, see Theorem 28. Hence, Poisson-exactness im-
poverishes Poisson cohomology. In view of the above remark on Casimir functions
and the observations made in earlier works, we know that K-exactness significantly
enriches the cohomology. Therefore, richness of Poisson cohomology depends in
some sense on the distance of the Poisson tensor to Poisson- and K-exactness.
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