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摘摘摘 要要要

对于一个给定的模范畴ModΛ, 可以考虑此范畴中的几乎可

裂序列(又称Auslander-Reiten序列), 并建立相应的Auslander-

Reiten公式, 此公式给出了几乎可裂序列中始端和末端的对应

关系. 人们统称这些结论为经典Auslander-Reiten理论. 该理论

已经拓展到三角范畴的研究中. 特别的, 通过Brown表示定理可

以证明紧生成三角范畴中的Auslander-Reiten三角的存在性已

经被人们所熟知, 但人们对其Auslander-Reiten三角的始端和末

端的对应关系还知之甚少.

该论文研究了一类具体的紧生成三角范畴, 即由各分支

均为内射Λ-模的复形所构成的同伦范畴K(InjΛ). 我们建立

了该范畴中的Auslander-Reiten公式, 从而给出了该范畴中

的Auslander-Reiten三角两端的复形之间准确的对应关系. 这

一结论的意义不仅在于同伦范畴K(InjΛ)本身,还在于它包含了

模范畴中Auslander-Reiten理论. 具体地说, 该公式包含了模范

畴中经典的Auslander-Reiten公式作为其特例; 设M为一有限表

示的不可分解非投射Λ-模,考虑在K(InjΛ)中以该模的内射分解

为末端的Auslander-Reiten三角, 我们可以导出模范畴中以M为

末端的几乎可裂序列. 实际上, 上述观点给出了一种新的计算

模范畴中几乎可裂序列的方法.
我们还提出了另一种计算K(InjΛ)中的Auslander-Reiten三

角的方法: 这一方法主要是通过把Happel嵌入函子提升到同伦
范畴K(InjΛ)中, 然后构造该函子的右伴随函子. 另外, 我们研
究了一类与K(InjΛ)有密切联系的范畴, 复形范畴C(InjΛ). 这
是一个正合范畴. 结合在K(InjΛ)中的所得到地相关结论, 我们
给出了该范畴中几乎可裂conflation存在性定理.

关关关键键键词词词: 三角范畴,紧生成, Auslander-Reiten三角, Auslander-
Reiten公式, 正合范畴, 几乎可裂conflation.
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Abstract

Given a module category ModΛ, one considers its almost split sequences

(or Auslander-Reiten sequences), and an Auslander-Reiten formula can be

established, which describes the relationship for the two end terms of an al-

most split sequence. These results are called the classical Auslander-Reiten

theory. The corresponding Auslander-Reiten theory for triangulated cate-

gories has been developed. A remarkable fact is that one can use the Brown

representability theorem to show the existence of Auslander-Reiten triangles

in a compactly generated triangulated category. However, in general, there

is not much known about what the relationship between the two end terms

of an Auslander-Reiten triangle should be.

In this thesis, a class of compactly generated triangulated categories

K(InjΛ), the homotopy categories of complexes of injective Λ-modules, are

investigated. The Auslander-Reiten formula for complexes is established,

which tells precisely what the correspondence between the two end terms of

its Auslander-Reiten triangles is. The significance of this result not only lies

in the homotopy category K(InjΛ) itself, but also lies in the fact that it con-

tains all information in module category in the following sense: it contains

as a special case the classical Auslander-Reiten formula for modules; and the

Auslander-Reiten triangle ending in the injective resolution of a finitely pre-

sented indecomposable non-projective module induces the classical almost

split sequence in module category. In fact, a simple recipe for computing

almost split sequences in the category ModΛ is provided which seems to be

new.

Another method for computing Auslander-Reiten triangles in K(InjΛ) is

provided, which is based on an extension of Happel’s embedding functor to

the homotopy category K(InjΛ), and a construction of its right adjoint. We

also consider the category C(InjΛ) of complexes of injective Λ-modules. This

is an exact category, which is in a close relation to the homotopy category

K(InjΛ). By applying the results we have obtained in K(InjΛ), the existence

theorem of almost split conflations in C(InjΛ) is deduced.

Key Words: triangulated category, compactly generated, Auslander-Reiten

triangle, Auslander-Reiten formula, exact category, almost split conflation.
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Chapter 1

Introduction

1.1 Background

Auslander-Reiten theory is one of the most important techniques for the

investigation of categories which appear in representation theory. It was first

established by Auslander and Reiten in the early seventies when they studied

the finitely generated module category of an artin algebra.

Let Λ be an artin algebra over a commutative artinian ring k. An exact

sequence of finitely generated Λ-modules 0 → A
f−→ B

g−→ C → 0 is called an

almost split sequence if:

( i) it is not split;

( ii) every map M → C which is not a split epimorphism factors through g;

(iii) every map A → N which is not a split monomorphism factors through

f .

Many people prefer to call such a sequence an Auslander-Reiten sequence.

The famous existence theorem [7] says that if C is an indecomposable

module which is not projective, then there is an almost split sequence 0 →
A → B → C → 0 and any two such sequences are isomorphic; if A is an

indecomposable Λ-module which is not injective, then there is an almost split

sequence 0 → A → B → C → 0 which is unique up to isomorphism. Thus

the almost split sequence is an invariant of the indecomposable Λ-modules

A and C.

Two fairly different existence proofs were given originally for artin alge-

bras. One uses the hint about what the correspondence between the end
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terms should be. The classical Auslander-Reiten formula

DExt1
Λ(M,N) ∼= HomΛ(N,DTrM),

was given, and it has been shown that a nonzero element in the End(C)-

socle of Ext1
Λ(C, DTrC) is an almost split sequence [7]. The other proof was

given by showing that the simple functors from modΛ to abelian groups are

finitely presented, and 0 → A
f−→ B

g−→ C → 0 is an almost split sequence if

and only if 0 → (−, A) → (−, B) → (−, C) → Coker(−, g) → 0 is a minimal

projective resolution of the simple functor Coker(−, g), see [6, 2] for details.

The existence theorem was extended to more general types of rings soon.

Auslander himself first studied the existence theorem for a noetherian algebra

over a complete local noetherian ring [1], and extended the finitely generated

module category to the whole module category (note that an almost split

sequence in the finitely generated module category of a ring is not necessary

to be an almost split sequence in the whole module category anymore, see

[60] for the counterexamples). The method he used is quite similar to the first

one in the case of artin algebras. In 1978, he extended the existence theorem

to an arbitrary ring finally through the functorial approach [2]. The notion

of almost split sequences makes sense in any subcategories of an abelian

category closed under extension, and the existence of almost split sequences

in such subcategories of module categories was studied by Auslander and

Smalø [11].

A series of important concepts were introduced following almost split se-

quences, which helped people to investigate the indecomposable modules in a

global way. Irreducible morphisms were used to study the relations between

two indecomposable modules, and to produce new classes of indecompos-

able modules from the old ones. Preprojective and preinjective modules

were discussed to classify the indecomposable modules into some partitions.

Ringel considered the Auslander-Reiten quiver in the mid seventies as a de-

vice to study all left and right almost split morphisms simultaneously, which

confirms the fundamental role that Auslander-Reiten theory plays in the

representation theory of artin algebras now. Much of the early work on

hereditary algebras and self-injective algebras of finite representation type

was concerned with describing their Auslander-Reiten quivers [56, 55]. The

language of Auslander-Reiten theory leads to an easier criteria for algebras to

be of finite representation type and a new description of Nakayama algebras,

see [8, 10, 52] for more applications.
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People tried to extend further the existence of almost split sequences,

the central part of Auslander-Reiten theory, to cases other than the module

categories. Similar results were found in modular group representations, the

theory of orders and model theory of modules, see [4]. It was also related to

algebraic geometry. For example, the existence of almost split sequences for

vector bundles on Gorenstein projective curves and for coherent sheaves over

nonsingular projective curves were proved in [3] and [5]. Recently, Jørgensen

[30] proved that almost split sequences frequently exist in categories of quasi-

coherent sheaves on schemes.

The Auslander-Reiten theory for complexes was initiated by Happel. In

[23, 24], he introduced the notion of Auslander-Reiten triangles in triangu-

lated categories, and characterized their existence in the bounded derived

category Db(modΛ) of an artin algebra. Since triangulated categories pro-

vide the natural setting for the investigation of several homological or rep-

resentation theoretic problems not only in representation theory but also in

algebraic geometry and algebraic topology, this developments provide strong

motivation to consider Auslander-Reiten theory in more general triangulated

categories. Krause proved in [36] the existence of Auslander-Reiten triangles

in compactly generated triangulated categories, by using the Brown repre-

sentability theorem. This is a big progress because lots of important triangu-

lated categories are compactly generated, such as the homotopy category of

spectra, the derived category of quasi-coherent sheaves over a quasi-compact

separated scheme, and the unbounded derived category over a ring. More

applications in algebraic topology was given by Jørgensen [29]. For instance,

the existence of Auslander-Reiten triangles characterizes Poincaré duality

spaces, and the Auslander-Reiten quiver is a sufficient invariant to distin-

guish spheres of different dimension apart.

Serre duality is an important property studied in algebraic geometry. It

first appeared on cohomology groups. Bondal and Kapranov reformulated

this duality in an elegant way in [16] and related the existence of Serre duality

to the representability of cohomology functors. Let T be a k-linear triangu-

lated category with finite-dimentional Hom’s. Then T satisfies Serre duality

if it has a so-called Serre functor. The latter is by definition an additive

functor F : T → T such that there are isomorphisms

HomT (X,Y ) ∼= DHomT (Y, FX)

which are natural in X, Y . Here D = Homk(−, k). They proved that a tri-
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angulated category of finite type over k which is right and left-saturated has

a Serre functor. More authors noticed the analogy between the Auslander-

Reiten formula and Serre duality. It was pointed out by Reiten and van

den Bergh that a triangulated category (finite over k, Krull-Schmidt) has

Aulsander-Reiten triangles if and only if it has a Serre functor [53], and this

result has been extended to a more general case by Beligiannis [15]. The Serre

duality formula turned out to be equivalent to the Auslander-Reiten formula

for Frobenius algebras [46] and further for self-injective algebras [47]. The

proof of the existence of Auslander-Reiten triangles in compact generated

triangulated categories also lies on such duality [36].

The notion of almost split conflations in exact categories are consider in

[21] (almost split exact pairs in the terminology of [18]), which is a natural

generalization of Auslander-Reiten sequences in abelian categories. Recently,

a proof for the existence of almost split conflations in the exact category of

complexes of fixed size has been provided in [13]. Beligiannis [14] presented

a unified way to prove the existence of almost split morphisms, almost split

sequences and almost split triangles in abstract homotopy categories.

1.2 Main results

This section is devoted to elaborating on the main results in the thesis. Most

results appear in [43] and [44].

Let us consider the following embeddings:

ModΛ ↪→ Db(ModΛ) ↪→ K(InjΛ).

For the first embedding, we identify a Λ-module with the complex concen-

trated in degree zero. While for the second embedding, we use the injective

resolution functor i, see Appendix B.

We would like to develop the Auslander-Reiten theory (i.e., the Auslander-

Reiten formula and the existence of Auslander-Reiten triangles) in certen

triangulated category consisting of complexes, which should be an analogy

to the classical Auslander-Reiten theory in the module category.

The first step was partly done by Happel. He studied the case when Λ is

a finite dimensional algebra over a field k, and proved that for each bounded

complexes X, Y , with X the form (P i)i∈Z, where all P i are finitely generated
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projective Λ-modules, there is an isomorphism

DHomDb(ModΛ)(X,Y ) ∼= HomDb(ModΛ)(Y, tX)

where tX ∼= (P i ⊗Λ DΛ)i∈Z. The existence theorem [23, 24] says that there

exists an Auslander-Reiten triangle X → Y → Z → X[1] for each inde-

composable Z ∈ Db(modΛ) if Λ has finite global dimension. The inverse

statement was pointed out to be also true by himself in [25] several yeas

later. These results can be generalized to the case of artin algebras without

difficulty.

Observe that if an artin algebra Λ is of infinite global dimension, then

the bounded derived category Db(modΛ) does not have enough Auslander-

Reiten triangles. This make the “analogy” of Auslander-Reiten theory in

Db(modΛ) and Auslander-Reiten theory in the module category fail. For this

reason, we choose to study certain “completion” of Db(modΛ), the category

K(InjΛ) of complexes of injective Λ-modules up to homotopy, which has much

nicer properties, and on which we will somehow build up the the pursued

“analogy”.

Now let k be a commutative noetherian ring which is complete and lo-

cal, and we fix a noetherian k-algebra Λ. Let D be the functor Homk(−, E),

where m denotes the unique maximal ideal of k and E is an injective envelope

E(k/m). Note that the assumptions on Λ imply that K(InjΛ) is compactly

generated as a triangulated category. The injective resolutions of all finitely

generated modules generate the full subcategory of compact objects, which

therefore is equivalent to the bounded derived category Db(modΛ) of the cat-

egory modΛ of finitely generated Λ-modules. In this sense, we view K(InjΛ)

as the “completion” of Db(modΛ), as we promised above.

The analogy between the Auslander-Reiten formula and Serre duality

lead us to combine this duality with Auslander-Reiten triangles. There is

the following common setting for proving such duality formulas. Let T be a

k-linear triangulated category which is compactly generated. Then one can

apply Brown’s representability theorem and has for any compact object X a

representing object tX such that

DHomT (X,−) ∼= HomT (−, tX).

Here we take for T the category K(InjΛ). Then we can prove that tX =

pX⊗Λ DΛ, where pX denotes the projective resolution of X. Our first main

theorem states that

5



Theorem A Let X and Y be complexes of injective Λ-modules. Suppose that

Xn = 0 for n ¿ 0, that HnX is finitely generated over Λ for all n, and that

HnX = 0 for n À 0. Then we have an isomorphism

DHomK(InjΛ)(X,Y ) ∼= HomK(InjΛ)(Y,pX ⊗Λ DΛ)

which is natural in X and Y .

The significance of this formula not only lies in the homotopy category

itself, but also lies in its containing all information in module category, that

is, the classical Auslander-Reiten formula for modules can be deduced from

this formula as a consequence.

Combining this formula with the existence theorem Krause obtained in

[36] for compactly generated triangulated categories, we know that there is

an Auslander-Reiten triangle

(pZ ⊗Λ DΛ)[−1] → Y → Z → pZ ⊗Λ DΛ.

in K(InjΛ) for each indecomposable compact object Z.

In particular, an Auslander-Reiten triangle ending in the injective reso-

lution of a finitely presented indecomposable non-projective module induces

the classical almost split sequence in module category as the following result

indicates. The theorem above provides a simple recipe for computing almost

split sequences in the category ModΛ of Λ-modules which seems to be new.

Theorem B Let N be a finitely presented Λ-module which is indecomposable

and non-projective. Then there exists an Auslander-Reiten triangle

(pN ⊗Λ DΛ)[−1]
α−→ Y

β−→ iN
γ−→ pN ⊗Λ DΛ

in K(InjΛ) which the 0-th cocycle functor Z0 sends to an almost split sequence

0 → DTrN
Z0α−−→ Z0Y

Z0β−−→ N → 0

in the category of Λ-modules.

There is another method for computing Auslander-Reiten triangles in

K(InjΛ), which is based on an extension of Happel’s embedding functor

Db(modΛ) −→ modΛ̂

and a construction of its right adjoint. For the definition of repetitive algebra

see Appendix D. More precisely, we have our third main result.
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Theorem C The composite

ModΛ̂
∼−→ Kac(InjΛ̂)

HomΛ̂(Λ,−)−−−−−−→ K(InjΛ)

has a fully faithful left adjoint

K(InjΛ) → Kac(InjΛ̂)
∼−→ ModΛ̂

which extends Happel’s functor

Db(modΛ)
−⊗ΛΛ−−−→ Db(modΛ̂) → modΛ̂.

Here, Kac(InjΛ̂) denotes the full subcategory of K(InjΛ̂) formed by all acyclic

complexes.

Let us explain how to use the adjoint above to reduce the computation of

Auslander-Reiten triangles in K(InjΛ) to the problem of computing almost

split sequences in modΛ̂. Suppose that Λ is an artin algebra, and we fix

an indecomposable compact object Z in K(InjΛ). Applying the embedding

functor to this object we obtain an indecomposable non-projective Λ̂-module

Z ′. We are familiar with almost split sequences in the module category modΛ̂,

and hence we know Auslander-Reiten triangles well in its stable category

modΛ̂. Assume that X ′ → Y ′ → Z ′ → X ′[1] is an Auslander-Reiten triangle

in modΛ̂. Then applying the adjoint functor above to this triangle, we can

prove that its image is the coproduct of an Auslander-Reiten triangle X →
Y → Z → X[1] in K(InjΛ) and a trivial triangle W

id−→ W → 0 → W [1].

Our last main theorem concerns on Auslander-Reiten conflations in the

exact category C(InjΛ). Note that the homotopy category can be considered

as the quotient of the category of complexes

C(InjΛ) −→ K(InjΛ).

We intend to lift the Aulsander-Reiten theory we have obtained in the ho-

motopy category K(InjΛ) to the category C(InjΛ).

There are two ways one can provide such a lifting, as the following com-

mutative diagram shows.

AR-formula in K(InjΛ) //

²²

AR-triangles in K(InjΛ)

²²
AR-formula in C(InjΛ) // almost split conflations in C(InjΛ)

7



The Auslander-Reiten formula in K(InjΛ) guarantees the existence of

Auslander-Reiten triangles. In one way, we use the existence theorem in

K(InjΛ) directly, and describe the case in C(InjΛ) by studying the rela-

tion between almost split conflations in a Frobenius category and Auslander-

Reiten triangles in its stable category. We show that an almost split confla-

tion corresponds to an Auslander-Reiten triangle under the canonical map,

the the inverse is also true if we restrict the end terms to a proper subcate-

gory.

In another way, we define a map τ and deduce the Auslander-Reiten

formula in C(InjΛ) from the Auslander-Reiten formula in K(InjΛ). Using

this formula, we prove the existence of almost split conflations directly, with

τ the Auslander-Reiten translation.

The existence theorem in C(InjΛ) says that

Theorem D Let Z be a non-projective indecomposable object in C+,b(injΛ).

Then there exists an almost split conflation in C(InjΛ) ending in Z.

In particular, we note that in this case, the right term of an almost split

conflation is not necessary to be a compact object. The compact objects in

C(InjΛ) equals the full subcategory Cb(injΛ).

1.3 Organization

We begin in section 2 by recalling the definitions of triangulated category

and exact category, and give some elementary properties for each. We still

review some basic results about almost split sequences in a module category.

In section 3 we devote ourselves to constructing an Auslander-Reiten

formula for a class of triangulated categories K(InjΛ), the homotopy category

of complexes of injective Λ-modules. The key that the formula holds lies in

the fact that K(InjΛ) is compactly generated, so the Brown representability

theorem can be applied here. In subsection 3 we study some properties of

Auslander-Reiten translation in this category, and point out that the formula

we get contains as a special case the classical Auslander Reiten formula for

modules.

In section 4, we provide two different methods to compute Auslander-

Reiten triangles in K(InjΛ). In one way, the construction of Auslander-

Reiten formula uniquely determines the Auslander-Reiten triangles, and more-

8



over the almost split sequences in a module category can even be induced

from them. In another way, the computation of Auslander-Reiten triangles

can be deduced to computing almost split sequences in the module category

of a repetitive algebra, by considering the right adjoint of Happel’s functor.

We end the thesis in section 5 by lifting the Auslander-Reiten theory we

have got in K(InjΛ) to the category C(InjΛ). Some properties of C(InjΛ) are

investigated, including its indecomposable objects and compact objects, and

the existence theorem of almost split conflations in this category is deduced.

9



Chapter 2

Preliminaries

The purpose of this chapter is to make preparations for the following chapters.

In the first section, we recall the concept of a triangulated category. We pay

more attention to a class of triangulated categories K(A). They can be also

viewed as the stable category of Frobenius categories C(A), which we discuss

in the next section. In the last section, we collect some results about almost

split sequences in a module category ModΛ. These results inspire us to find

the corresponding results in K(InjΛ) and lift them to C(InjΛ) further. Most

proofs for the properties of triangulated categories we state here can be found

in [26, 57, 58, 28, 31, 59, 50]. For more material about exact categories, we

refer to [51, 21, 18] and [32, Appendix A.]. While the book [9] is very helpful

to learn almost split sequences for artin algebras comprehensively.

2.1 Triangulated categories

Let T be an additive category with an autoequivalence Σ: T → T . A triangle

in T is a sequence (α, β, γ) of maps

X
α−→ Y

β−→ Z
γ−→ ΣX

and a morphism between two triangles (α, β, γ) and (α′, β′, γ′) is a triple

(φ1, φ2, φ3) of maps in T making the following diagram commutative.

X

φ1

²²

α // Y

φ2

²²

β // Z

φ3

²²

γ // ΣX

Σφ1

²²
X ′ α′ // Y ′ β′ // Z ′ γ′ // ΣX ′

The category T is called triangulated if it is equipped with a class of distin-

guished triangles (called exact triangles) satisfying the following conditions.
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TR1 A triangle isomorphic to an exact triangle is exact. For each object X,

the triangle 0 → X
id−→ X → 0 is exact. Each map α fits into an exact

triangle (α, β, γ).

TR2 A triangle (α, β, γ) is exact if and only if (β, γ,−Σα) is exact.

TR3 Given two exact triangles (α, β, γ) and (α′, β′, γ′), each pair of maps

φ1 and φ2 satisfying φ2 ◦α = α′ ◦φ1 can be completed to a morphism

X

φ1

²²

α // Y

φ2

²²

β // Z

φ3

²²

γ // ΣX

Σφ1

²²
X ′ α′ // Y ′ β′ // Z ′ γ′ // ΣX ′

of triangles.

TR4 Given exact triangles (α1, α2, α3), (β1, β2, β3) and (γ1, γ2, γ3) with γ1 =

β1 ◦α1, there exists an exact triangle (δ1, δ2, δ3) making the following

diagram commutative.

X
α1 // Y

β1

²²

α2 // U

δ1
²²

α3 // ΣX

X
γ1 // Z

β2

²²

γ2 // V

δ2
²²

γ3 // ΣX

Σα1

²²
W

β3

²²

W

δ3
²²

β3 // ΣY

ΣY
Σα2 // ΣU

The functor Σ in T is called the suspension functor.

Remark. Let (φ1, φ2, φ3) be a morphism between exact triangles. If two

maps from {φ1, φ2, φ3} are isomorphisms, then so is the third. Thus each

map X
α−→ Y can determine uniquely an exact triangle X

α−→ Y → Z → ΣX.

Let T be a triangulated category. A non-empty full subcategory U is a

triangulated subcategory if the following conditions hold.

TS1 ΣnX ∈ U for all X ∈ U and n ∈ Z.

TS2 Let X → Y → Z → ΣX be an exact triangle in T . If two objects from

{X,Y, Z} belong to U , then so does the third.
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An exact functor T → S between triangulated categories is a pair

(F, η) consisting of a (covariant) additive functor F : T → S and a nat-

ural isomorphism η : F ◦ΣT → ΣS ◦F such that for every exact triangle

X → Y → Z → ΣX in T the triangle

FX
Fα−→ FY

Fβ−→ FZ
ηX ◦Fγ−−−−→ Σ(FX)

is exact in S.

Example 2.1.1. Let A be an additive category. Denote by C(A) the category

of cochain complexes

· · · → Xn−1 dn−1−−−→ Xn dn−→ Xn+1 → · · ·

over A. A cochain complex X is called left bounded if Xn = 0 for n ¿ 0.

Dually, X is called right bounded if Xn = 0 for n À 0. If X is both left

bounded and right bounded, then we call it a bounded complex. The bounded,

left bounded, and right bounded complexes form full subcategories of C(A)

that are denoted by Cb(A), C+(A) and C−(A), respectively. The are all

additive categories.

The homotopy category K(A) is defined as follows: its objects are all

cochain complexes over A, and the morphisms between two objects are classes

of morphisms of complexes modulo null-homotopic morphisms, i.e., it is the

quotient of C(A). This category has been proved to be a triangulated category,

and the suspension functor Σ is just the shift functor, i.e., ΣX = X[1] where

X[1]n = Xn+1 and differential dn
X[1] = −dn+1

X . The exact triangles in K(A)

are those triangles with the form

X
α−→ Y → cone(α) → X[1]

where cone(α) is the complex with cone(α)n = Xn+1
∐

Y n and differential[
−dn+1

X 0

−αn+1 dn
Y

]
. We call such a complex the mapping cone of α. Denote by

Kb(A), K+(A) and K−(A) the image of this quotient restricted to Cb(A),

C+(A) and C−(A), respectively. They are all triangulated subcategories of

K(A).

Derived categories are a special class of triangulated categories that peo-

ple investigate. Let us recall some relevant notions first. Let S be a collection

of morphisms in a category C. A localization of C with respect to S is a cat-

egory S−1C, together with a functor Q : C → S−1C such that

12



L1 Qs is an isomorphism in S−1C for every s ∈ S.

L2 Any functor F : C → D such that Fs is an isomorphism for all s ∈ S

factors uniquely through Q.

Ignoring set-theoretic problems, one can show that such a localization always

exists, see [59, 10.3.3].

Now suppose that A is an abelian category. Then one defines, for each

cochain complex X over A and each n ∈ Z, the n-th cohomology group of X

to be

HnX = Kerdn/Imdn−1.

A map φ : X → Y between complexes induces a map Hn : HnX → HnY

in each degree, and φ is a quasi-isomorphism if Hnφ is an isomorphism for

all n ∈ Z. The derived category D(A) of A is defined to be the localiza-

tion S−1K(A) of the homotopy category K(A) at the collection S of quasi-

isomorphisms. This means that the objects of D(A) are all complexes over

A, and morphisms in D(A) between two complexes are given by paths com-

posed of morphisms of complexes and formal inverses of quasi-isomorphisms,

modulo a suitable equivalence relation. Sometimes the morphism in D(A)

can be realized as the morphism in K(A). For example, we have

Proposition 2.1.2. If I is a left bounded cochain complex with injective

components, then

HomD(A)(X, I) ∼= HomK(A)(X, I)

for every complex X. Dually, if P is a right bounded cochain complex with

projectives components, then

HomD(A)(P,X) ∼= HomK(A)(P,X).

Note that D(A) is still a triangulated category, and the canonical functor

K(A) → D(A) is an exact functor. We write Db(A), D+(A) and D−(A) for

the full subcategories of D(A) corresponding to Kb(A), K+(A) and K−(A).

It can be proved that they are all triangulated subcategories of D(A). More-

over, they are equivalent to certain subcategories of the homotopy category.

Denote by K+,b(A) the full subcategory of K(A) formed by the complex X

which is left bounded and HnX = 0 for n À 0. The subcategory K−,b(A) is

defined dually.

13



Theorem 2.1.3. Let A be an abelian category with enough injectives, and

denote by I the full subcategory formed by all injectives. Then the canonical

functor K(A) → D(A) induces equivalences

D+(A) ∼= K+(I), Db(A) ∼= K+,b(I).

Dually, let A be an abelian category with enough projectives, and denote by

P the full subcategory formed by all projectives. Then

D−(A) ∼= K−(P), Db(A) ∼= K−,b(P).

One of the main motivations for introducing the derived category is the

fact that the maps in D(A) provide all homological information on the object

in A. We mention a fundamental formula, which says that

Extn
A(A,B)

∼−→ HomD(A)(A, ΣnB),

where A, B in A and n ∈ Z. Here, we use the convention that Extn
A(−,−)

vanishes for n < 0.

2.2 Exact categories

Let C be an additive category. A pair (α, β) of composable morphisms X
α−→

Y
β−→ Z in C is called exact if α is the kernel of β and β is the cokernel of α.

Let E be a class of exact pairs X
α−→ Y

β−→ Z which is closed under

isomorphisms. The morphisms α and β appearing in a pair (α, β) in E are

called an inflation and a deflation of E , respectively, and the pair (α, β) is

called a conflation. The class E is said to be an exact structure on C and

(C, E) an exact category if the following axioms are satisfied:

E1 The composition of two deflations is a deflation.

E2 For each f in C(Z ′, Z) and each deflation β in C(Y, Z), there is some

Y ′ in C, and f ′ in C(Y ′, Y ) and a deflation β′ in C(Y ′, Z ′) such that

β ◦ f ′ = f ◦ β′.

E3 Identities are deflations. If β ◦ γ is a deflation, then so is β.

E3op Identities are inflations. If γ ◦α is a deflation, then so is α.

14



This set of axioms is proved to be equivalent to the following one (see

[18, Appendix]):

Ex0 The identity morphism of the zero object, id0, is a deflation.

Ex1 The composition of two deflations is a deflation.

Ex1op The composition of two inflations is a inflation.

Ex2 For each f in C(Z ′, Z) and each deflation β in C(Y, Z), there is a pull-

back diagram

Y ′

f ′
²²

β′ // Z ′

f

²²
Y

β // Z

where β′ is a deflation.

Ex2op For each f in C(X,X ′) and each inflation α in C(X,Y ), there is a

pushout diagram

X

f
²²

α // Y

f ′
²²

X ′ α′ // Y ′

where α′ is an inflation.

Given an exact category (C, E), we may define two quotient categories.

An object I of C is called E-injective if each conflation I → Y → Z in

E splits. The E-projective objects are defined dually. We denote by C the

stable module category of C modulo injectives. The objects of this category

are the same as those of C, and for any two objects X, Y , the morphism set

is the the quotient

HomC(X,Y ) = HomC(X,Y ) = HomC(X,Y )/{X → I → Y | I is E-injective}.

The element in this set is written as f̄ , where f ∈ HomC(X,Y ). Analogously,

the stable module category C modulo projectives is defined.

An exact category (C, E) is said to have enough injectives, if for each

X ∈ C there is an inflation X → IX with injective IX. If C also has

enough projectives (i.e. for each X ∈ C there is a deflation PX → X with

projective PX), and the classes of projectives and injectives coincide, we call

C a Frobenius category. In this case, the quotient C = C is called the stable

category of C.
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Happel proved in [23] that the stable category C of a Frobenius category

C is a triangulated category, and the exact triangle X
ᾱ−→ Y

β̄−→ Z
γ̄−→ ΣX in

C can be obtained by the commutative diagram

X
α // Y

²²

β // Z

γ

²²
X // IX // ΣX

where the two rows are conflations of C.

Example 2.2.1. Let A be an abelian category. Then it is an exact category,

with all exact sequences the exact structure. In particular, a module cate-

gory is an exact category. Moreover, a full additive subcategory closed under

extension is an exact category.

Example 2.2.2. ([33, Example 4.3, Example 5.3]) Let A be an additive

category. Consider the category of cochain complex C(A). Endow C(A)

with the class of all pairs X
α−→ Y

β−→ Z such that Xn αn−→ Y n βn−→ Zn is split

for each n ∈ Z, i.e., there is a commutative diagram

Xn αn
// Y n

²²

βn
// Zn

Xn
[ 1
0 ]

// Xn
∐

Zn [ 0 1 ] // Zn.

Then C(A) is an exact category.

Furthermore, we define

(IX)n = Xn qXn+1, dn
IX =

[
0 1

0 0

]
, αn =

[
1

dn
X

]
,

(ΣX)n = Xn+1, dn
ΣX = −dn+1

X , βn =
[
−dn

X 1
]
.

It is easy to see that

X
α−→ IX

β−→ ΣX

is a conflation with IX an E-injective. Note that the inflation α splits if and

only if X is homotopic to zero. Thus, a complex is E-injective in C(A) if and

only if it is homotopic to zero, i.e., the identity morphism of the complex is

null homotopic. Since the complexes IX, with X ∈ C(A), are also projective,

C(A) is a Frobenius category. Moreover, its stable category coincides with

its homotopy category K(A), which hence is a triangulated category, and the

triangulated structure coincides with the one we discussed in Example 2.1.1.
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2.3 Almost split sequences in module cate-

gories

In this subsection, we collect some notions and elementary results about

Auslander-Reiten sequences in module categories. These serve as the back-

ground and the main motivation for the work in this thesis.

Let A be an additive category. A morphism f : A → B in A is called a

section if there exists a morphism f ′ : B → A such that f ′ ◦ f = idA. Dually,

g : B → C is called a retraction if there exists a morphism g′ : C → B such

that g ◦ g′ = idC . A morphism f : A → B in A is left almost split, if f is not

a section and if every map A → N which is not a section factors through

f . Dually, g : B → C is right almost split, if g is not a retraction and if

every map M → C which is not a retraction factors through g. We say that

A has left almost split morphisms if for all indecomposable A there exist

left almost split morphisms staring from A, and say that A has right almost

split morphisms if for all indecomposable C there exist right almost split

morphisms ending in C. If A has both left and right almost split morphisms,

we say that A has almost split morphisms.

A morphism f : A → B in A is left minimal if every endomorphism

φ : B → B satisfying φ ◦ f = f is an isomorphism. Dually, g : B → C is

right minimal if every endomorphism φ : B → B satisfying g ◦φ = g is an

isomorphism. We say that f is minimal left almost split, if it is both left

minimal and left almost split; and g is minimal right almost split, if it is

both right minimal and right almost split.

If A is moreover an abelian category, then a section is also called a split

monomorphism, and a retraction is also called a split epimorphism. A short

exact sequence ε : 0 → A
f−→ B

g−→ C → 0 in A is said to be split if f is a split

monomorphism, or equivalently, if g is a split epimorphism.

Proposition 2.3.1. The following statements are equivalent for an exact

sequence ε : 0 → A
f−→ B

g−→ C → 0 in A.

1. f is left almost split and β is right almost split.

2. The ring EndA(C) is local and f is left almost split.

3. The ring EndA(A) is local and g is right almost split.

4. f is minimal left almost split.
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5. g is minimal right almost split.

Definition 2.3.2. A short exact sequence ε in A is called an almost split

sequence (or Auslander-Reiten sequence), if it satisfies one of the equivalent

conditions above.

An abelian category A is said to has almost split sequences if

( i ) A has almost split morphisms;

(ii ) for any indecomposable non-injective A, there is an almost split se-

quence starting from A;

(iii) for any indecomposable non-projective C, there is an almost split se-

quence ending in C.

Note that both of the end terms are indecomposable for an almost split

sequence, and an almost split sequence is unique determined by its end terms

in some sense.

Proposition 2.3.3. The following are equivalent for two almost split se-

quences 0 → A → B → C → 0 and 0 → A′ → B′ → C ′ → 0 in A.

1. The sequences are isomorphic in the sense that there is a commutative

diagram

0 // A //

o
²²

B //

o
²²

C //

o
²²

0

0 // A′ // B′ // C ′ // 0

with the vertical morphisms isomorphisms.

2. A ∼= A′.

3. C ∼= C ′.

Hence given an almost split sequence 0 → A → B → C → 0, then A is

determined by C up to isomorphism, and we write it as τC. Similarly, we

write C as τ−A. The operators τ and τ− are called the Auslander-Reiten

translation and cotranslation of A, respectively.

The most interesting case we deal with is when A is a module cate-

gory. Let k be a commutative noetherian ring which is complete and local.
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We fix a noetherian k-algebra Λ, i.e., a k-algebra which is finitely gener-

ated as a module over k. We denote by ModΛ the category of (right) Λ-

modules, NoethΛ and ArtΛ the full subcategories of ModΛ consisting of the

the noetherian and artin Λ-modules, respectively. Note that the assumptions

on Λ imply that NoethΛ is equal to modΛ, the category of finitely generated

Λ-modules. In particularly, if Λ is artinian rather than noetherian, then we

have NoethΛ = ArtΛ = modΛ. Also, from the assumptions we know that ev-

ery finitely generated Λ-module decomposes essentially uniquely into a finite

coproduct of indecomposable modules with local endomorphism rings.

In addition, we fix an injective envelope E = I(k/m), where m denotes

the unique maximal ideal of k. We obtain a functor

D = Homk(−, E) : Modk −→ Modk

which induces a functor between ModΛ and ModΛop. Moreover, this functor

restricts to a duality D : NoethΛ → ArtΛop, which induces further a duality

NoethΛop → ArtΛ (recall the stable categories we mentioned in the previous

section).

Let us continue with some definitions before introducing the main results.

Recall that a projective presentation of a module M is an exact sequence

P1
δ1−→ P0

δ0−→ M → 0 with P0 and P1 projective Λ-modules. Moreover, if

P0 is a projective cover of M and P1 is a projective cover of Kerδ0, then

we call this presentation a minimal projective presentation of M (note that

the assumptions on Λ guarantee that every finitely generated module has a

projective cover). A Λ-module M is finitely presented if it admits a projective

presentation

P1 → P0 → M → 0

such that P0 and P1 are finitely generated. Since Λ is an a noetherian algebra,

the finitely presented Λ-modules coincide with finitely generated Λ-modules.

The transpose TrM relative to this presentation is the Λop-module which is

defined by the exactness of the induced sequence

HomΛ(P0, Λ) → HomΛ(P1, Λ) → TrM → 0.

Note that the presentation of M is minimal if and only if the correspond-

ing presentation of TrM is minimal. The construction of the transpose

is natural up to maps factoring through a projective and hence induces

a duality modΛ → modΛop. Since mod = Noeth, we get a composite

DTr: modΛ → ArtΛ which is an equivalence with inverse TrD.
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Auslander and Reiten established the existence of almost split sequences

in ModΛ with DTr the Auslander-Reiten translation.

Theorem 2.3.4 (Auslander/Reiten).

1. Let C be an indecomposable non-projective module in modΛ. Then

there is an almost split sequence 0 → DTrC → B → C → 0 in the

category of Λ-modules.

2. Let A be an indecomposable non-injective module in ArtΛ. Then there

is an almost split sequence 0 → A → B → TrDA → 0 in the category

of Λ-modules.

This conclusion was originally proved by using the following classical

Auslander-Reiten formula.

Theorem 2.3.5 (Auslander/Reiten). Let M and N be Λ-modules and

suppose that M is finitely presented. Then we have an isomorphism

DExt1
Λ(M,N) ∼= HomΛ(N,DTrM).

Remark. The existence of almost split sequences in module category was first

investigated by Auslander and Reiten in [7] when Λ is an artin algebra, and

stronger results were obtained in that case. The classical Auslander-Reiten

formula was constructed, and the category modΛ was proved to has almost

split sequences. These results were further extended to the whole module

category over a noetherian algebra over a complete local noetherian ring [1],

and the proof is similar to the case of an artin algebra. In 1978, Auslander

generalized his results in [2] to the case of an arbitrary ring with a functorial

method. The Auslander-Reiten formula holds for arbitrary ring, see [39] for

a short proof.
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Chapter 3

The Auslander-Reiten formula

We begin this chapter by reviewing some properties of the triangulated cate-

gory K(InjΛ). In particular, we point out that K(InjΛ) is compact generated.

The Auslander-Reiten formula for complexes of modules is presented, which

contains as a special case the classical Auslander-Reiten formula for modules.

3.1 The homotopy category of injectives

Throughout this chapter, we fix a noetherian algebra Λ over a commutative

noetherian ring k. We consider the category ModΛ of (right) Λ-modules and

the following full subcategories:

modΛ = the finitely presented Λ-modules,

InjΛ = the injective Λ-modules,

ProjΛ = the projective Λ-modules,

projΛ = the finitely generated projective Λ-modules.

We recall some basic properties of the homotopy category K(InjΛ). Note

that all these properties can be extended to a more general case, see [42,

Section 2].

Recall that an object X in an additive category is compact if every map

X → ∐
i∈I Yi factors through

∐
i∈J Yi for some finite J ⊆ I. Let A be

an additive category with arbitrary coproducts, then we write Ac for the

subcategory of A which is formed by all compact objects. In particular, for a

triangulated category T , the subcategory T c is still a triangulated category
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[50, Lemma 4.1.4]. The following equivalent statements are well-known, see

for example [49, Lemma 3.2].

Lemma 3.1.1. Let T be a triangulated category with arbitrary coproducts,

and T0 be a set of compact objects in T . Then the following are equivalent.

1. An object Y ∈ T is zero provided that HomT (ΣnX,Y ) = 0 for all

X ∈ T0 and n ∈ Z.

2. The category T coincides with its smallest triangulated full subcategory

which contains T0 and is closed under taking coproducts.

A triangulated category satisfies one of the equivalent conditions above

is called compactly generated. One of the reasons that people pay more

attention to the category K(InjΛ) is that it is compactly generated. Recall

that the translation functor Σ is just the shift functor in this case.

Lemma 3.1.2. Let M be a Λ-module, and denote by iM its injective resolu-

tion. Let X be a complex of Λ-modules with injective components. Then the

map M → iM induces a bijection

HomK(InjΛ)(iM,X) −→ HomK(ModΛ)(M,X) (3.1.1)

Therefore, iM is a compact object in K(InjΛ) if M is finitely generated.

Proof. Complete the map M → iM to an exact triangle

cone(i)[−1] → M
i−→ iM → cone(i).

Using the cohomological functor HomK(ModΛ)(−, X) to this triangle (recall

that an additive functor from a triangulated category T to an abelian cate-

gory A is called cohomological if it sends each exact triangle in T to an exact

sequence in A), we obtain an exact sequence

HomK(ModΛ)(cone(i), X) −→ HomK(ModΛ)(iM,X)
HomK(ModΛ)(i,X)−−−−−−−−−−→

HomK(ModΛ)(M,X) −→ HomK(ModΛ)(cone(i)[−1], X).

Note that

HomK(ModΛ)(cone(i), X) = 0

since cone(i) is acyclic and left bounded, and all components of X are injec-

tive. Thus HomK(ModΛ)(i, X) is an isomorphism.
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Now assume that M is finitely generated, then M is a compact object

in ModΛ. Moreover, it is compact in C(ModΛ) and further in K(ModΛ).

The isomorphism (3.1.1) shows that HomK(InjΛ)(iM,−) preserves coproducts,

hence iM is compact in K(InjΛ).

Lemma 3.1.3. Let X be a non-zero object in K(InjΛ). Then there exists a

finitely generated Λ-module M such that HomK(ModΛ)(M [n], X) 6= 0 for some

n ∈ Z.

Proof. Suppose first that HnX 6= 0 for some n. Then there exists a non-zero

map f : Λ → HnX, since Λ is a generator in the module category. The map

f can be lifted to g because Λ is projective.

Λ
∃g

zz
f

²²
ZnX // HnX // 0

Thus we obtain a chain map φ : Λ[−n] → X, and f is non-zero guarantees

that φ is non-zero in K(InjΛ).

Now suppose that HnX = 0 for all n. We can choose n such that ZnX

is non-injective. Otherwise, X is the sum of complexes with the form · · · →
0 → ZnX

id−→ ZnX → 0 → · · · , which are zero objects in K(InjΛ). Using

Baer’s Lemma, we know there exists a right ideal a of Λ and a Λ-module

homomorphism h : a → ZnX such that h can not be lifted to Λ → ZnX.

This homomorphism induces a chain map a[−n] → X which is non-zero in

K(InjΛ), and a is finitely generated since Λ is noetherian.

Proposition 3.1.4. Denote by Kc(InjΛ) the full subcategory of K(InjΛ)

formed by the compact objects.

1. The triangulated category K(InjΛ) is compactly generated.

2. The canonical functor K(ModΛ) → D(ModΛ) induces an equivalence

Kc(InjΛ)
∼−→ Db(modΛ)

Proof. It follows from Lemma 3.1.2 and 3.1.3 that K(InjΛ) is compactly

generated. Here we can set T0 = {iM | M ∈ modΛ}. A standard argu-

ment shows that Kc(InjΛ) equals the thick subcategory of K(InjΛ) which is

generated by the injective resolutions of finite generated Λ-module; see [48,
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Lemma 2.2]. The equivalence K+(InjΛ) → D+(ModΛ) restricts to an equiv-

alence K+,b(InjΛ) → Db(ModΛ) (see Theorem 2.1.3) and identifies Kc(InjΛ)

with Db(modΛ).

Remark. From the above proposition we know that an object in K(InjΛ) is

compact if and only if it is isomorphic to a complex X satisfying

( i ) Xn = 0 for n ¿ 0,

(ii ) HnX is finitely generated over Λ for all n, and

(iii) HnX = 0 for n À 0.

3.2 The Auslander-Reiten formula for com-

plexes

Given a pair of complexes X,Y of modules over Λ or Λop, we denote by

HomΛ(X,Y ) and X⊗Λ Y the total Hom and the total tensor product respec-

tively, which are complexes of k-modules.

Let us consider the following commutative diagram

D−(ModΛ) K−(ProjΛ)
∼oo

Kc(InjΛ) ∼ //
²²

²²

Db(modΛ)
OO

OO

²²

²²

K−,b(projΛ)
∼oo

OO

OO

K+(InjΛ)
∼ // D+(ModΛ)

in which all horizontal functors are obtained by restricting the localization

functor K(ModΛ) → D(ModΛ) to appropriate subcategories. We denote by

π : Kc(InjΛ) −→ K−,b(projΛ)

the composite of the equivalence Kc(InjΛ) → Db(modΛ) with a quasi-inverse

of the equivalence K−,b(projΛ) → Db(modΛ). Note that πX ∼= pX, where

pX denotes the projective resolution of X (see Appendix B).

The following isomorphism is the basis for all results we obtain in this

thesis. Recall that D = Homk(−, E) where E is the injective envelope E =

I(k/m).
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Theorem 3.2.1. Let X and Y be complexes of injective Λ-modules, and

suppose that X is compact in K(InjΛ). Then we have an isomorphism

DHomK(InjΛ)(X,Y ) ∼= HomK(InjΛ)(Y, (πX)⊗Λ DΛ) (3.2.1)

which is natural in X and Y .

To prove the theorem, we need several lemmas.

Lemma 3.2.2. Let X,X ′ be objects in a k-linear compactly generated tri-

angulated category T , and suppose that X is compact. If there is a natural

isomorphism

DHomT (X,Y ) ∼= HomT (Y, X ′)

for all compact Y ∈ T , then DHomT (X,−) ∼= HomT (−, X ′).

Proof. We shall use Theorem 1.8 in [35], which states the following equivalent

conditions for an object W in T .

(1) The object HW = HomT (−,W )|T c is injective in the category ModT c

of contravariant additive functors T c → Ab.

(2) The map HomT (V, W ) → HomModT c(HV , HW ) sending φ to Hφ is bi-

jective for all V in T .

Here, T c denotes the full subcategory of compact objects in T .

We apply Brown’s representability theorem (see Appendix A) and obtain

an object X ′′ such that

DHomT (X,−) ∼= HomT (−, X ′′),

since X is compact. Note that HomT c(X,−) is a projective object in the

category of covariant additive functors T c → Ab, by Yoneda’s lemma. Hence

both X ′ and X ′′ satisfy condition (1). We have an isomorphism

HX′ = HomT (−, X ′)|T c ∼= DHomT (X,−)|T c ∼= HomT (−, X ′′)|T c = HX′′ ,

and (2) implies that this isomorphism is induced by an isomorphism X ′ → X ′′

in T . We conclude that

DHomT (X,−) ∼= HomT (−, X ′).
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Lemma 3.2.3. Let X,Y be complexes in C(ModΛ). Then we have in

C(Modk) a natural map

Y ⊗Λ HomΛ(X, Λ) −→ HomΛ(X,Y ), (3.2.2)

which is an isomorphism if X ∈ C−(projΛ) and Y ∈ C+(ModΛ).

Proof. Given Λ-modules M and N , we have a map

Φ: N ⊗Λ HomΛ(M, Λ) −→ HomΛ(M,N)

which is defined by

Φ(n⊗ φ)(m) = nφ(m).

This map is an isomorphism if M is finitely generated projective and extends

to an isomorphism of complexes provided that X and Y are bounded in the

appropriate direction.

Lemma 3.2.4. Let M,N be Λ-modules and suppose that M is finitely pre-

sented. Then there is an isomorphism

M ⊗Λ DN ∼= DHomΛ(M,N). (3.2.3)

Proof. Define a map

Ψ: M ⊗Λ Homk(N,E) −→ Homk(HomΛ(M,N), E)

m⊗ f 7→ (g 7→ (f ◦ g)(m)).

It is easy to see that Ψ is an isomorphism when M = Λ and further M = Λn.

For an arbitrary M , consider its presentation Λn → Λm → M → 0. Note

that both −⊗Λ Homk(N,E) and Homk(HomΛ(−, N), E) are right exact, we

have the following commutative diagram

Λn ⊗Λ DN //

²²

Λm ⊗Λ DN //

²²

M ⊗Λ DN //

Ψ
²²

0

DHomΛ(Λn, N) // DHomΛ(Λm, N) // DHomΛ(M,N) // 0

with the exact rows. We finish the proof by using Five Lemma.

We also need some well-known results here, see [26] or [59] for the proofs.
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Lemma 3.2.5. Let X,Y be complexes of Λ-modules. Then we have an iso-

morphism

HnHomΛ(X,Y ) ∼= HomK(ModΛ)(X,Y [n]).

In particular,

H0HomΛ(X,Y ) ∼= HomK(ModΛ)(X,Y ). (3.2.4)

Lemma 3.2.6. Let X be a complex of Λ-module. Given an injective Λ-

module I and a projective Λ-module P , we have isomorphisms

HomK(ModΛ)(X, I) ∼= HomΛ(H0X, I), (3.2.5)

HomK(ModΛ)(P,X) ∼= HomΛ(P,H0X).

Proof of Theorem 3.2.1. We use the fact that K(InjΛ) is compactly gener-

ated. Therefore by Lemma 3.2.2 it is sufficient to verify the isomorphism

for every compact object Y . Thus we suppose that Y n = 0 for n ¿ 0,

and in particular Y ∼= iY in K(InjΛ) (see Appendix B, and note that

Y ∈ K+(InjΛ) ⊆ Kinj(ModΛ)). We obtain the following sequence of iso-

morphisms, where short arguments are added on the right hand side.

DHomK(InjΛ)(X,Y ) ∼= Homk(HomK(InjΛ)(X, iY ), E) Y compact

∼= Homk(HomD(ModΛ)(X,Y ), E) adjunction

∼= Homk(HomK(ModΛ)(πX, Y ), E) adjunction

∼= Homk(H
0HomΛ(πX, Y ), E) from (3.2.4)

∼= HomK(Modk)(HomΛ(πX, Y ), E) from (3.2.5)

∼= H0Homk(HomΛ(πX, Y ), E) from (3.2.4)

∼= H0Homk(Y ⊗Λ HomΛ(πX, Λ), E) from (3.2.2)

∼= H0HomΛ(Y, Homk(HomΛ(πX, Λ), E)) adjunction

∼= H0HomΛ(Y, (πX)⊗Λ Homk(Λ, E)) from (3.2.3)

∼= HomK(InjΛ)(Y, (πX)⊗Λ DΛ) from (3.2.4)

This isomorphism completes the proof.

3.3 The Auslander-Reiten translation

In this section, we investigate the properties of the Auslander-Reiten trans-

lation for complexes of Λ-modules. The Auslander-Reiten translation DTr
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for modules is obtained from the translation for complexes. In particular, we

deduce the classical Auslander-Reiten formula.

Denote by t the composite of functors

t : K(InjΛ)
can−−→ D(ModΛ)

p−→ K(ProjΛ)
−⊗ΛDΛ−−−−→ K(InjΛ)

The the isomorphism (3.2.1) can be rewritten as

DHomK(InjΛ)(X,Y ) ∼= HomK(InjΛ)(Y, tX) (3.3.1)

We have more properties about t.

Proposition 3.3.1. The functor t has the following properties.

1. t is exact and preserves all coproducts.

2. For compact objects X,Y in K(InjΛ), the natural map

HomK(InjΛ)(X,Y ) −→ HomK(InjΛ)(tX, tY )

is bijective.

3. t admits a right adjoint which is i ◦HomΛ(DΛ,−).

Proof. The property 1 is clear. Now we observe that for each pair X,Y of

compact objects, the k-module HomK(InjΛ)(X,Y ) is finitely generated. Using

the isomorphism (3.3.1) twice, we have

HomK(InjΛ)(X,Y ) ∼= D2HomK(InjΛ)(X,Y )

∼= DHomK(InjΛ)(Y, tX)

∼= HomK(InjΛ)(tX, tY ).

To prove 3, let X,Y be objects in K(InjΛ). Then we have

HomK(ModΛ)(pX ⊗Λ DΛ, Y ) ∼= HomK(ModΛ)(pX, HomΛ(DΛ, Y ))

∼= HomD(ModΛ)(X, HomΛ(DΛ, Y ))

∼= HomK(ModΛ)(X, i ◦HomΛ(DΛ, Y )).

Thus t and i ◦HomΛ(DΛ,−) form an adjoint pair.

Denote by a the composite of functors

a : ModΛ
inc−→ D(ModΛ)

i−→ K(InjΛ)
t−→ K(InjΛ)

Z−1−−→ ModΛ

Recall that Z−1 is the −1-th cocycle functor. We can also get some properties

about a.
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Proposition 3.3.2. The functor a has the following properties.

1. aM ∼= DTrM for every finitely presented Λ-module M .

2. a preserves all coproducts.

3. a annihilates all projective Λ-modules and induces a functor ModΛ →
ModΛ.

4. Each exact sequence 0 → L → M → N → 0 of Λ-modules induces a

sequence

0 → aL → aM → aN → L⊗Λ DΛ → M ⊗Λ DΛ → N ⊗Λ DΛ → 0

of Λ-modules which is exact.

Proof. 1. The functor t sends an injective resolution iM of M to pM⊗ΛDΛ.

Using (3.2.3), we have

pM ⊗Λ DΛ ∼= DHomΛ(pM, Λ).

This implies

Z−1(pM ⊗Λ DΛ) ∼= DTrM. (3.3.2)

2. First observe that
∐

i(iMi) ∼= i(
∐

i Mi) for every family of Λ-modules

Mi, since Λ is noetherian. Clearly, t and Z−1 preserve coproducts. Thus a

preserves coproducts.

3. We have t(iΛ) = DΛ and therefore aΛ = 0 in ModΛ. Thus a annihi-

lates all projectives since it preserves coproducts.

4. An exact sequence 0 → L → M → N → 0 induces an exact triangle

pL → pM → pN → (pL)[1]. This triangle can be represented by a sequence

0 → pL → pM → pN → 0 of complexes which is split exact in each degree.

Now apply −⊗Λ DΛ and use the Snake Lemma.

We are now in the position to deduce the classical Auslander-Reiten for-

mula for modules [7] from the formula for complexes.

Corollary 3.3.3 (Auslander/Reiten). Let M and N be Λ-modules and

suppose that M is finitely presented. Then we have an isomorphism

DExt1
Λ(M,N) ∼= HomΛ(N,DTrM). (3.3.3)
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Proof. Let iM and iN be injective resolutions of M and N , respectively. We

apply the Auslander-Reiten formula (3.2.1) and the formula (3.3.2) for the

Auslander-Reiten translate. Thus we have

DExt1
Λ(M,N) ∼= DHomD(ModΛ)(M,N [1])

∼= DHomD(ModΛ)(iM, iN [1])

∼= DHomK(InjΛ)(iM, (iN)[1])

∼= HomK(InjΛ)(iN, (pM ⊗Λ DΛ)[−1])

∼= HomK(ModΛ)(N, (pM ⊗Λ DΛ)[−1]),

where the last isomorphism comes from Lemma 3.1.2. Now consider the

following composite of maps

HomC(ModΛ)(N, (pM ⊗Λ DΛ)[−1]) −→ HomΛ(N,DTrM) −→HomΛ(N,DTrM)

φ 7→ Z0φ 7→Z0φ

Note that DTrM = Z−1(pM ⊗Λ DΛ) = Z0(pM ⊗Λ DΛ)[−1]), so the map

is clearly surjective. Furthermore, since pM ⊗Λ DΛ is the complex with

injective component, this composite induces a map

Ψ: HomK(ModΛ)(N, (pM ⊗Λ DΛ)[−1]) −→ HomΛ(N,DTrM)

which is still surjective. Next we show that Ψ is also an injective map. This

is clear, since a map N → DTrM factoring through an injective module N ′

comes from an element in DExt1
Λ(M,N ′) which vanishes, by the preceding

isomorphisms we obtained.

Remark. This corollary also implies that the classical Auslander-Reiten for-

mula for modules could be extended to a formula for a more general class of

abelian categories, see [43] for details.
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Chapter 4

Auslander-Reiten triangles

In this chapter, two different approaches to produce Auslander-Reiten trian-

gles in the category K(InjΛ) are presented, both of which are close related

to the computation of almost split sequences for modules. One is by using

Auslander-Reiten formula for complexes we have got in the previous section,

and we show in addition that almost split sequences for modules over Λ can

be obtained from Auslander-Reiten triangles in K(InjΛ). The other is based

on the construction of a right adjoint for the fully faithful functor

K(InjΛ) → ModΛ̂

which is proved to preserve Auslander-Reiten triangles. Hence the computa-

tion of Auslander-Reiten triangles in K(InjΛ) can be deduced to the problem

of computing almost split sequences for modules over Λ̂.

4.1 An application of the Auslander-Reiten

formula

Happel first introduced Auslander-Reiten triangles in [23, 25] and studied

their existence in the derived category Db(modΛ). The definition of an

Auslander-Reiten triangle is analogous to the definition of an almost split

sequence.

Definition 4.1.1. An exact triangle X
α−→ Y

β−→ Z
γ−→ X[1] in a triangulated

category is called an Auslander-Reiten triangle, if α is left almost split and

β is right almost split.

There are some equivalent descriptions about this definition.
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Lemma 4.1.2. Let ε : X
α−→ Y

β−→ Z
γ−→ ΣX be an exact triangle and suppose

that β is right almost split. Then the following are equivalent:

1. The endomorphism ring End(X) is local.

2. β is right minimal.

3. ε is an Auslander-Reiten triangle.

We say that a triangulated category T has right Auslander-Reiten trian-

gles if for all indecomposable Z ∈ T there is an Auslander-Reiten triangle

ending in Z. Existence of left Auslander-Reiten triangles is defined in a sim-

ilar way, and we say that T has Auslander-Reiten triangles if it has both

right and left Auslander-Reiten triangles. Some people also prefers to say

that T has Auslander-Reiten triangles if it has only right Auslander-Reiten

triangles.

Happel proved that the derived category Db(modΛ) has right Auslander-

Reiten triangles when Λ is an artin algebra with finite global dimension.

Later the existence result was generalized to compactly generated trian-

gulated categories by Krause in [36]. For completeness we include a brief

proof here. We introduce a lemma first, whose proof can be found in [24].

Lemma 4.1.3. Let T be a triangulated category and (α, β, γ) be an exact

triangle. Then the following are equivalent:

1. γ = 0.

2. α is a section.

3. β is a retraction.

Theorem 4.1.4 (Theorem 2.2 in [36]). Let T be a triangulated category

which is compactly generated. Let Z be a compact object in T and suppose

that Γ = EndT (Z) is local. Then there exists an AR-triangle

tZ[−1]
α−→ Y

β−→ Z
γ−→ tZ,

where tZ is the object in T such that

HomΓ(HomT (Z,−), I) ∼= HomT (−, tZ). (4.1.1)
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In addition, we denote by µ : Γ/radΓ → I an injective envelope in the cate-

gory of Γ-modules, and γ is the map which corresponds under (4.1.1) to the

canonical map

HomT (Z, Z)
π−→ Γ/radΓ

µ−→ I.

Proof. The map γ corresponds, by definition, under (4.1.1) to a non-zero

map. Hence γ 6= 0 and β is not a retraction, by Lemma 4.1.3. Let φ : Y ′ → Z

be a map in T which is not a retraction. It follows that the image of the

induced map

HomT (Z, φ) : HomT (Z, Y ′) −→ HomT (Z, Z)

is contained in the radical of EndT (Z). Therefore the composition with

µ ◦ π is zero. However, µ ◦ π ◦HomT (Z, φ) corresponds under (4.1.1) to the

map γ ◦φ, and this implies γ ◦φ = 0. Thus φ factors through β, and β is

right almost split. Applying Lemma 4.1.2, it is sufficient to show that the

endomorphism ring of tZ[−1] is local. This ring is isomorphic to EndT (tZ),

and applying the isomorphism twice we obtain

EndT (tZ) ∼= HomΓ(HomT (Z, tZ), I) ∼= HomΓ(HomΓ(HomT (Z, Z), I), I) ∼= EndΓ(I).

The injective Γ-module I is indecomposable since Γ/radΓ is simple, and

therefore EndΓ(I) is local.

In the case of K(InjΛ), given a compact object Z in K(InjΛ) which is

indecomposable, then Γ = EndK(InjΛ)(Z) is local, by using the fact that Λ

is a noetherian algebra. Let I = E(Γ/radΓ) and observe that the functor

HomΓ(−, I) is isomorphic to D = Homk(−, E). Applying formula (3.2.1) to

the above theorem, we can easily get

Proposition 4.1.5. Let Z be a compact object in K(InjΛ) which is indecom-

posable. Then there exists an Auslander-Reiten triangle

(pZ ⊗Λ DΛ)[−1]
α−→ Y

β−→ Z
γ−→ pZ ⊗Λ DΛ. (4.1.2)

A remarkable consequence of the above result is that it yields a simple

recipe for the construction of almost split sequences in the module category.

Precisely, an Auslander-Reiten triangle ending in the injective resolution of a

finitely presented indecomposable non-projective module induces an almost

split sequence as follows.
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Theorem 4.1.6. Let N be a finitely presented Λ-module which is indecom-

posable and non-projective. Then there exists an Auslander-Reiten triangle

(pN ⊗Λ DΛ)[−1]
α−→ Y

β−→ iN
γ−→ pN ⊗Λ DΛ

in K(InjΛ) which the functor Z0 sends to an almost split sequence

0 → DTrN
Z0α−−→ Z0Y

Z0β−−→ N → 0

in the category of Λ-modules.

Proof. The Auslander-Reiten triangle for iN is obtained from the triangle

(4.1.2) by taking Z = iN . Assume that the projective resolution pN is

minimal. Using the fact that K(InjΛ) is the stable category of the Frobenius

category C(InjΛ), we may take a proper Y such that

0 → (pN ⊗Λ DΛ)[−1]
α−→ Y

β−→ iN → 0

is a sequence of chain maps which is split exact in each degree.

The functor Z0 takes this sequence to an exact sequence

0 → Z0(pN ⊗Λ DΛ)[−1]
Z0α−−→ Z0Y

Z0β−−→ N. (4.1.3)

It is clear that Z0β is not a retraction, otherwise the right inverse of Z0β

can be lifted to the right inverse of β, contrary to the fact that β is right

almost split. Observe also that Z0 induces a bijection HomK(InjΛ)(iM, iN) →
HomΛ(M,N) for all M . Using this bijection twice, and combining again the

fact that β is right almost split, we know that every map M → N which

is not a retraction factors through Z0β. Thus Z0β is right almost split. In

particular, Z0β is an epimorphism since N is non-projective.

We complete the proof by considering the left term of (4.1.3). Applying

(3.3.2) we know that

Z0(pN ⊗Λ DΛ)[−1] ∼= DTrN.

This module is indecomposable and has a local endomorphism ring. Here

we use the fact that N is indecomposable and that the resolution pN is

minimal.

Remark. There is an analogue of Theorem 4.1.6 for a projective module N .

In this case, we have DTrN = 0 and Z0β is the right almost split map ending

in N .
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Note that the computation of almost split sequences is a classical problem

in representation theory; see for instance [20] or [9]. In particular, the middle

term is considered to be mysterious. However, we get the following

Corollary 4.1.7. Let N be a finitely presented Λ-module which is indecom-

posable and non-projective. Denote by

P1
δ1−→ P0 → N → 0 and 0 → N → I0 δ0−→ I1

a minimal projective presentation and an injective presentation of N respec-

tively. Choose a non-zero k-linear map EndΛ(N) → E annihilating the radi-

cal of EndΛ(N), and extend it to a k-linear map φ : HomΛ(P0, I
0) → E. Let

φ̄ denote the image of φ under the isomorphism

DHomΛ(P0, I
0) ∼= HomΛ(I0, P0 ⊗Λ DΛ).

Then we have a commutative diagram with exact rows and columns

0

²²

0

²²

0

²²
0 // L

α //

²²

M
β //

²²

N //

²²

0

0 // P1 ⊗Λ DΛ
[ 1
0 ]

//

δ1⊗1

²²

(P1 ⊗Λ DΛ)q I0 [ 0 1 ] //
[

δ1⊗1 φ̄
0 δ0

]

²²

I0 //

δ0

²²

0

0 // P0 ⊗Λ DΛ
[ 1
0 ]

// (P0 ⊗Λ DΛ)q I1 [ 0 1 ] // I1 // 0

such that the upper row is an almost split sequence in the category of Λ-

modules.

Example 4.1.8. Let k be a field and Λ = k[x]/(x2). Let iS denote the

injective resolution of the unique simple Λ-module S = k[x]/(x). The corre-

sponding Auslander-Reiten triangle in K(InjΛ) has the form

pS[−1]
α−→ Y

β−→ iS
γ−→ pS,

where γ denotes an arbitrary non-zero map. Viewing Λ as a complex con-

centrated in degree zero, the corresponding Auslander-Reiten triangle has the

form

Λ[−1]
α−→ Y

β−→ Λ
γ−→ Λ,

where γ denotes the map induced by multiplication with x.
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4.2 An adjoint of Happel’s functor

In this section we assume that Λ is an artin k-algebra, that is, Λ is finitely

generated as a module over a commutative artinian ring k. We denote by Λ̂

its repetitive algebra, see Appendix D. We first extend Happel’s functor

Db(modΛ) −→ modΛ̂

to a functor which is defined on unbounded complexes, and we also give a

right adjoint. In the rest part of this section, this adjoint is used to reduce

the computation of Auslander-Reiten triangles in K(InjΛ) to the problem of

computing almost split sequences in ModΛ̂.

Note that projective and injective modules over Λ̂ coincide. We denote

by Kac(InjΛ̂) the full subcategory of K(InjΛ̂) which is formed by all acyclic

complexes. The following description of the stable category ModΛ̂ is well-

known; see for instance [42, Proposition 7.2].

Lemma 4.2.1. The functor Z0 : Kac(InjΛ̂) → ModΛ̂ is an equivalence of

triangulated categories.

We consider the algebra homomorphism

φ : Λ̂ −→ Λ, (xij) 7→ x00,

and we view Λ as a bimodule ΛΛΛ̂ via φ. Let us explain the following diagram.

modΛ
−⊗ΛΛ //

inc

²²

modΛ̂

inc
²²

can // modΛ̂

Db(modΛ)
−⊗ΛΛ // Db(modΛ̂) // modΛ̂

Kc(InjΛ)
F c

1 //

inc

²²

o
OO

Kc(InjΛ̂)
F c

2 //

inc
²²

o
OO

Kc
ac(InjΛ̂)

inc
²²

Z0 o
OO

K(InjΛ)
F1 //

inc

²²

K(InjΛ̂)
HomΛ̂(Λ,−)

oo

inc
²²

F2 //
Kac(InjΛ̂)

inc
oo

K(ModΛ)

jΛ

OO

−⊗ΛΛ //
K(ModΛ̂)

jΛ̂

OO

HomΛ̂(Λ,−)
oo

The top squares show the construction of Happel’s functor Db(modΛ) →
modΛ̂ for which we refer to [25, Subsection 2.5]. Note that Λ̂ is a self-injective
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algebra, and Db(modΛ̂) → modΛ̂ is the loclalization sequence Kb(projΛ̂) →
Db(modΛ̂) → modΛ̂ as constructed in [54].

The bimodule ΛΛΛ̂ induces an adjoint pair of functors between K(ModΛ)

and K(ModΛ̂). Moreover, the projectiveness of Λ as Λ-module implies that

HomΛ̂(Λ,−) takes injective Λ̂-modules to injective Λ-modules. Thus we get

an induced functor K(InjΛ̂) → K(InjΛ). This functor preserves products

and has therefore a left adjoint F1, by Brown’s representability theorem (see

Appendix A). A left adjoint preserves compactness if the right adjoint pre-

serves coproducts; see [49, Theorem 5.1]. Clearly, HomΛ̂(Λ,−) preserves

coproducts since Λ is finitely generated over Λ̂. Thus F1 induces a functor

F c
1 , restricted to compact objects.

The inclusion K(InjΛ) → K(ModΛ) preserves products and has therefore

a left adjoint jΛ, by Brown’s representability theorem (see Appendix A). Note

that jΛM = iM is an injective resolution for every Λ-module M . We have

the same for Λ̂, of course. Thus we have

F1 ◦ jΛ = jΛ̂ ◦(−⊗Λ Λ).

It follows that F1 takes the injective resolution of a Λ-module M to the

injective resolution of the Λ̂-module M ⊗Λ Λ. This shows that F c
1 coincides

with − ⊗Λ Λ when one passes to the derived category Db(modΛ) via the

canonical equivalence Kc(InjΛ) → Db(modΛ).

The inclusion Kac(InjΛ̂) → K(InjΛ̂) has a left adjoint F2. This is be-

cause the sequence Kac(InjΛ̂)
inc−→ K(InjΛ̂)

Q−→ D(ModΛ̂) is a colocaliza-

tion sequence, where Q is the canonical functor K(InjΛ̂)
inc−→ K(ModΛ̂)

can−−→
D(ModΛ̂) (see [42, Theorem 4.2]). This left adjoint admits an explicit de-

scription. For instance, it takes the injective resolution iM of a Λ̂-module

M to the mapping cone of the canonical map pM → iM , which is a com-

plete resolution of M . The functor F2 preserves compactness and induces

therefore a functor F c
2 , because its right adjoint preserves coproducts [49,

Theorem 5.1].

The following lemma shows that the composite functor F2 ◦F1 is fully

faithful.

Lemma 4.2.2. Let S and T be two triangulated categories with arbitrary

coproducts, and suppose that S is compactly generated. Let F : S → T be

an exact functor which admits a right adjoint G : T → S. If F preserves

compactness, and the restriction of F to Sc is fully faithful, then F is fully

faithful.
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Proof. Fix an object X ∈ Sc and define a full subcategory of S

SX := {Y ∈ S | HomS(X,Y ) ∼= HomT (FX,FY )}.

By the Five Lemma, this subcategory is a triangulated subcategory which

contains Sc and is closed under coproducts. Hence it coincides with S, since

S is compactly generated.

Now fix an object Y ∈ S and define a full subcategory of S

SY := {X ∈ S | HomS(X,Y ) ∼= HomT (FX,FY )}.

The same argument shows that SY = S. Thus we complete the proof.

We summarizes our construction with the following theorem.

Theorem 4.2.3. The composite

ModΛ̂
∼−→ Kac(InjΛ̂)

HomΛ̂(Λ,−)−−−−−−→ K(InjΛ)

has a fully faithful left adjoint

K(InjΛ)
F2 ◦F1−−−−→ Kac(InjΛ̂)

∼−→ ModΛ̂

which extends Happel’s functor

Db(modΛ)
−⊗ΛΛ−−−→ Db(modΛ̂) → modΛ̂.

The following result explains how to use the adjoint above to reduce

the computation of Auslander-Reiten triangles in K(InjΛ) to the problem of

computing almost split sequences in modΛ̂.

Proposition 4.2.4. Let F : S → T be a fully faithful exact functor between

triangulated categories which admits a right adjoint G : T → S. Suppose

XS
αS−→ YS

βS−→ ZS
γS−→ XS [1] and XT

αT−→ YT
βT−→ ZT

γT−→ XT [1]

are Auslander-Reiten triangles in S and T respectively, where ZT = FZS .

Then

GXT
GαT−−→ GYT

GβT−−→ GZT
GγT−−→ GXT [1]

is the coproduct of XS
αS−→ YS

βS−→ ZS
γS−→ XS [1] and a triangle W

id−→ W →
0 → W [1].
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Proof. We have a natural isomorphism IdS ∼= G ◦F which we view as an

identification. In particular, G induces a bijection

HomT (FX, Y ) → HomS((G ◦F )X,GY ) (4.2.1)

for all X ∈ S and Y ∈ T . Next we observe that for any exact triangle

X
α−→ Y

β−→ Z
γ−→ X[1], the map β is a retraction if and only if γ = 0, see

Lemma 4.1.3.

The map FβS is not a retraction since FγS 6= 0. Thus FβS factors

through βT , and G(FβS) = βS factors through GβT . We obtain the following

commutative diagram.

XS
αS //

φ

²²

YS
βS //

ψ

²²

ZS
γS // XS [1]

φ[1]
²²

GXT
GαT // GYT

GβT // GZT
GγT // GXS [1]

On the other hand, GβT is not a retraction since the bijection (4.2.1) im-

plies GγT 6= 0. Thus GβT factors through βS , and we obtain the following

commutative diagram.

GXT
GαT //

φ′

²²

GYT
GβT //

ψ′

²²

GZT
GγT // GXT [1]

φ′[1]
²²

XS
αS // YS

βS // ZS
γS // XS [1]

We have βS ◦(ψ′ ◦ψ) = βS , and this implies that ψ′ ◦ψ is an isomorphism,

since βS is right minimal. In particular, GYT = YS qW for some object W .

It follows that

GXT
GαT−−→ GYT

GβT−−→ GZT
γT−→ GXT [1]

is the coproduct of XS
αS−→ YS

βS−→ ZS
γS−→ XS [1] and the triangle W

id−→ W →
0 → W [1].

Now suppose that Λ is an artin algebra. We fix an indecomposable com-

pact object Z in K(InjΛ), and we want to compute the Auslander-Reiten

triangle X → Y → Z → X[1]. We apply Happel’s functor

H : Kc(InjΛ)
∼−→ Db(modΛ) → modΛ̂

and obtain an indecomposable non-projective Λ̂-module Z ′ = HZ. For in-

stance, if Z = iN is the injective resolution of an indecomposable Λ-module
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N , then HiN = N where N is viewed as a Λ̂-module via the canoni-

cal algebra homomorphism Λ̂ → Λ. Now take the almost split sequence

0 → DTrZ ′ → Y ′ → Z ′ → 0 in ModΛ̂. This gives rise to an Auslander-

Reiten triangle DTrZ ′ → Y ′ → Z ′ → DTrZ ′[1] in ModΛ̂. We apply the

composite

ModΛ̂
sim−−→ Kac(InjΛ̂)

HomΛ̂(Λ,−)−−−−−−→ K(InjΛ).

It follows from Proposition 4.2.4 that the result is a coproduct of the Auslander-

Reiten triangle X → Y → Z → X[1] and a split exact triangle.
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Chapter 5

Almost split conflations

Throughout this chapter we fix an artin k-algebra Λ. In the previous chapter,

Auslander-Reiten triangles in K(InjΛ) are investigated. In this chapter, we

continue this work and lift the existence theorem to C(InjΛ), in which the

corresponding notions are almost split conflations. There are two ways to

provide such a lifting, as the following commutative diagram shows.

AR-formula in K(InjΛ) //

²²

AR-triangles in K(InjΛ)

²²
AR-formula in C(InjΛ) // almost split conflations in C(InjΛ)

In proposition 4.1.5, we use the Auslander-Reiten formula in K(InjΛ) to dis-

cuss the existence of Auslander-Reiten triangles. In section 2, we use the

existence theorem in K(InjΛ) directly, and describe the case of C(InjΛ) by

studying the relation between almost split conflations in a Frobenius category

and Auslander-Reiten triangles in its stable category. While in section 3, we

propose another method. A map τ is defined and an Auslander-Reiten for-

mula in C(InjΛ) is deduced from the Auslander-Reiten formula in K(InjΛ).

Using this formula, the existence of almost split conflations can be proved

directly, with τ the Auslander-Reiten translation.

5.1 The category of complexes for injectives

This section is devoted to emphasizing some properties of the category C(InjΛ)

for the later use.

Denote by A the additive category InjΛ or ProjΛ. We have discussed in

Example 2.2.2 that (C(A), E), the category of cochain complexes in A, is an

41



exact category, where E be the class of composable morphisms X
α−→ Y

β−→ Z

such that for each n ∈ Z, the sequence 0 → Xn αn−→ Y n βn−→ Zn → 0 is split

exact. Moreover, it is a Frobenius category, and the stable category coincides

with its homotopy category K(A).

For A ∈ A, consider the complex Ji(A) = (Js, ds) with Js = 0 if s 6= i,

s 6= i + 1, J i = J i+1 = A, di = idA. It is not difficult to prove that all

the indecomposable E-projectives in C(A) are the complexes Ji(A) with A

indecomposable.

A complex X in some additive category is called homotopically minimal,

if every map φ : X → X of complexes is an isomorphism provided that

φ is an isomorphism up to homotopy. From Appendix C we know that

every complex in C(A) has a decomposition X = X ′ ∐ X ′′, such that X ′ is

homotopically minimal, and X ′′ is null homotopic. Moreover, X ′ is unique

up to isomorphism. Denote by CP(A) the full subcategory of C(A) whose

objects are the X in C(A) with X = X ′. Then we have the following useful

lemma.

Lemma 5.1.1. Let X be an object in CP(A). Then EndC(A)(X) is a local

ring if and only if EndK(A)(X) is a local ring.

Proof. Use that X is homotopically minimal.

5.1.1 Indecomposable objects in C+,b(injΛ)

It is well known that the bounded derived category Db(modΛ) is a Krull-

Schmidt category (see [12, Corollary 2.10], and note that if Λ is an artin

algebra, then Db(modΛ) has split idempotents implies that Db(modΛ) is

Krull-Schmidt). Using the equivalence K+,b(injΛ) ∼= Db(modΛ), an object Z

in K+,b(injΛ) is indecomposable if and only if EndK(InjΛ)(Z) is a local ring.

Furthermore, we have

Proposition 5.1.2. Let Z be an object in C+,b(injΛ). Then Z is indecom-

posable if and only if EndC(InjΛ)(Z) is a local ring.

Proof. The sufficiency is obvious. For the necessity, if Z is E-projective, then

Z = Ji(I) with I indecomposable, so EndC(InjΛ)(Z) ∼= EndΛ(I) is a local

ring. If Z is not an E-projective, then Z is homotopically minimal. We claim

that Z is indecomposable in K+,b(injΛ). Otherwise, there are two non-zero

objects Z1, Z2 in K+,b(injΛ), and an isomorphism Z ∼= Z1

∐
Z2 in K+,b(injΛ),
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where Z1 can be written as Z ′
1

∐
Z ′′

1 with Z ′
1 homotopically minimal and Z ′′

1

null homotopy. Similarly, Z2 can be written as Z ′
2

∐
Z ′′

2 . Hence Z ∼= Z ′
1

∐
Z ′

2

in C+,b(injΛ), a contradiction. Therefore EndC(InjΛ)(Z) is a local ring since

EndK(InjΛ)(Z) is a local ring.

5.1.2 Compact objects

Let A be an additive category with arbitrary coproducts. Denote by Ac and

Cc(A) the full subcategory of A and C(A) formed by all compact objects,

respectively. We study the category Cc(A), and the compact objects in

C(InjΛ) can be described explicitly as an immediate consequence.

Proposition 5.1.3.

Cc(A) = Cb(Ac).

Proof. On one hand, let X be a bounded complex with compact components

and f : X → ∐
i∈I Yi be a chain map, then f s : Xs → ∐

i∈I Y s
i factors through

a finite subsum
∐

i∈Js
Y s

i . Hence f factors through the subsum indexed by

the union of the Js with Xs 6= 0, which implies that X is compact in C(A).

On the other hand, If X = (Xs, ds) is a compact object in C(A), then

the morphism ι : X → ∐+∞
i=−∞ Ji(X

i+1) which is given by

X : · · · // Xn

[ 1
dn ]

²²

dn
// Xn+1

[
1

dn+1

]

²²

// · · ·

∐+∞
i=−∞ Ji(X

i+1) : · · · // Xn
∐

Xn+1
[ 0 1
0 0 ]

// Xn+1
∐

Xn+2 // · · ·
factors through a finite subsum. Hence only finitely many X i are non-zero.

This complete the proof that X is bounded.

Next we show that Xs ∈ Ac for each s. In fact, for any morphism

f : Xs → ∐
i∈I Ai, we may consider the following chain map

X : · · · // Xs−1

fds−1

²²

ds−1
// Xs

f

²²

ds
// Xs+1

²²

// · · ·

∐
i Js−1(Ai) : 0 //

∐
i∈I Ai

id //
∐

i∈I Ai
// 0 // 0

Again note that X is compact in C(A), we know f factors through finite

subsum.

Corollary 5.1.4. Cc(InjΛ) = Cb(injΛ)

Remark. Observe that Cc(InjΛ) ( C+,b(injΛ), and comparing this with the

corresponding case in homotopy category Kc(InjΛ) ∼= K+,b(injΛ).
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5.2 Almost split conflations

In this section, we consider the existence of almost split conflations in C(InjΛ)

by studying its relation with the existence of Auslander-Reiten triangles in

K(InjΛ).

Definition 5.2.1. A conflation X
α−→ Y

β−→ Z in an exact category is called

an almost split conflation, if α is left almost split and β is right almost split.

Note that the end terms X and Z of an almost split conflation are in-

decomposable objects with local endomorphism rings. Moreover, each end

term determines an almost split conflation uniquely up to isomorphism.

We begin with some lemmas before stating the main theorem. Observe

that idempotents split in the category C(InjΛ).

Lemma 5.2.2.

1. Let Z be a complex in CP(InjΛ) with a local endomorphism ring. Then

a morphism β : Y → Z is a retraction in C(InjΛ) if and only if β̄ is a

retraction in K(InjΛ).

2. Let X be a complex in CP(InjΛ) with a local endomorphism ring. Then

a morphism α : X → Y is a section in C(InjΛ) if and only if ᾱ is a

section in K(InjΛ).

Proof. We only consider (1), and (2) can be proved dually. The necessity is

obvious. For the sufficiency, assume that β̄ is a retraction in K(InjΛ). Then

there is a morphism ρ : Z → Y such that β ◦ ρ = 1 + t ◦ s, where s : Z → P ,

t : P → Z and P is null homotopic. We claim that t ◦ s is not an isomorphism.

Otherwise, there is a morphism u satisfying u ◦ t ◦ s = idZ , hence s ◦u ◦ t is

an idempotent. Since all idempotents in C(InjΛ) split, we get that Z is a

summand of P , which contradicts our assumption. The endomorphism ring

EndC(InjΛ)(Z) is local implies that 1 + t ◦ s is an isomorphism. Hence ρ is the

right inverse of β, and β is a retraction.

Lemma 5.2.3. Let ε : X
α−→ Y

β−→ Z be a non-split conflation in C(InjΛ).

1. If EndC(InjΛ)(Z) is a local ring, then β is right almost split in C(InjΛ)

if and only if β̄ is right almost split in K(InjΛ).

2. If EndC(InjΛ)(X) is a local ring, then α is left almost split in C(InjΛ)

if and only if ᾱ is left almost split in K(InjΛ).
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Proof. We only consider (1), and (2) can be proved analogously. First we

know that Z is indecomposable, since its endomorphism ring is local. The

conflation ε is non-split implies that Z is a complex in CP(InjΛ). The ne-

cessity is easy, by using Lemma 5.2.2. For the sufficiency, assume that β̄ is

right almost split in K(InjΛ). Then β is not a retraction in C(InjΛ) since

β̄ is not a retraction in K(InjΛ). For any morphism v : W → Z in C(InjΛ)

which is not a retraction, then by Lemma 5.2.2 we know that v̄ is not a

retraction in K(InjΛ), either. Hence there is a morphism u : W → Y such

that v− β ◦u = g ◦ f , where f : W → Q, g : Q → Z and Q is null homotopic.

Note that Q is E-projective and β is a deflation, so g can be lifted to w.

Q
∃w
ÄÄ

g

²²
Y

β // Z

Hence v = β ◦u + g ◦ f = β(u + w ◦ f) and β is left almost split.

From Lemma 5.1.1 and 5.2.3, we get immediately that

Proposition 5.2.4. Let ε : X
α−→ Y

β−→ Z be an almost split conflation in

C(InjΛ). Then ε̄ : X
ᾱ−→ Y

β̄−→ Z
γ̄−→ X[1] is an AR-triangle in K(InjΛ). Con-

versely, let ε : X
α−→ Y

β−→ Z be a conflation in C(InjΛ) with X,Z ∈ CP(InjΛ).

If ε̄ is an AR-triangle in K(InjΛ), then ε is an almost split conflation in

C(InjΛ).

Lemma 5.2.5. Suppose P
∐

X
α−→ Y

β−→ Z
∐

Q is a conflation in C(InjΛ)

with P and Q null homotopic. Then it has the form:

η : P
∐

X

[
φ 0
0 α1
0 0

]

// Y1

∐
Y2

∐
Y3

[
0 β1 0
0 0 ψ

]

// Z
∐

Q

where φ and ψ are isomorphic and ε : X
α1−→ Y2

β1−→ Z is a conflation.

Proof. The proof is similar to [13, Lemma 9.2],

The following main theorem asserts the existence of almost split confla-

tions in C(InjΛ).

Theorem 5.2.6. Let Z be a non-projective indecomposable object in C+,b(injΛ).

Then there exists an almost split conflation in C(InjΛ) ending in Z.
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Proof. From Proposition 5.1.2 we know that Z is indecomposable and com-

pact in K(InjΛ). Hence by Proposition 4.1.5 there exists an Auslander-Reiten

triangle

θ̄ : X
ᾱ−→ Y

β̄−→ Z
γ̄−→ X[1].

By the definition of exact triangles in K(InjΛ), we can find a conflation

η : M
i−→ N

p−→ L in C(InjΛ) such that θ̄ is isomorphic to η̄ in K(InjΛ). From

Lemma 5.2.5, we can choose a proper η such that M,L ∈ CP(InjΛ). Hence

η is an almost split conflation in C(InjΛ), by proposition 5.2.4. Since Z is

isomorphic to L in K(InjΛ), and both Z and L are objects in CP(InjΛ), we

know that Z is isomorphic to L in C(InjΛ).

5.3 The Auslander-Reiten translation

In section 4.1, the classical Auslander-Reiten formula for modules was ex-

tended to the homotopy category K(InjΛ). In this section, we will define

a map τ in C(InjΛ), and give an analogous formula. Using this formula,

the existence of almost split conflations can be proved directly, with τ the

Auslander-Reiten translation.

Let X be a complex in C(InjΛ). From Appendix B we know that its

projective resolution pX can be decomposed as (pX)′
∐

(pX)′′, where (pX)′

is homotopically minimal, and (pX)′′ is null homotopic. Call (pX)′ the

minimal projective resolution of X. Applying the tensor functor −⊗Λ DΛ to

every component of (pX)′[−1], we obtain a new complex

τX = (pX)′ ⊗Λ DΛ[−1]

in C(InjΛ). The following proposition implies that τX is homotopically

minimal in C(InjΛ).

Lemma 5.3.1. Let X ∈ C(ProjΛ) be homotopically minimal. Then X ⊗Λ

DΛ is a homotopically minimal object in C(InjΛ).

Proof. Note that the tensor functor − ⊗Λ DΛ induces an equivalence from

ProjΛ to InjΛ, which can be extended to the equivalence on the categories

of complexes C(ProjΛ) ∼= C(InjΛ), hence induces further an equivalence

K(ProjΛ) ∼= K(InjΛ). Then the result is easy to prove.

Lemma 5.3.2. The map τ induces an endofunctor in K(InjΛ). Moreover,

the restriction of τ to Kc(InjΛ) is fully faithful.
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Proof. The functor induced by τ is the composite

K(InjΛ)
can−−→ D(ModΛ)

p−→ K(ProjΛ)
−⊗ΛDΛ−−−−→ K(InjΛ)

[−1]−−→ K(InjΛ)

In section 3.3 it has been proved that the restriction of τ to Kc(InjΛ) is fully

faithful.

Corollary 5.3.3. Let X be a non-projective indecomposable object in C+,b(injΛ).

Then τX is indecomposable.

Proof. Proposition 5.1.2 tells that the endomorphism ring EndC(InjΛ)(X) is

local, so is EndK(InjΛ)(X). Since X is a compact object in K(InjΛ), by

Lemma 5.3.2 we know that EndK(InjΛ)(τX) is a local ring. The object τX

is homotopically minimal implies that EndC(InjΛ)(τX) is a local ring, by

Lemma 5.1.1. Hence τX is indecomposable.

Given objects X and Z in C(InjΛ), we denote by Ext1
E(Z, X) the set of

all exact pairs X
α−→ Y

β−→ Z in E modulo the equivalence relation which is

defined in the following way. Two such pairs (α, β) and (α′, β′) are equivalent

if there exists a commutative diagram as below:

X
α // Y

²²

β // Z

X ′ α′ // Y ′ β′ // Z ′.

then Ext1
E(Z, X) becomes an abelian group under Baer sum. Recall again

that C(InjΛ) is a Frobenius category, so HomC(InjΛ)(Z, X) ∼= HomC(InjΛ)(Z, X) ∼=
HomK(InjΛ)(Z, X).

Lemma 5.3.4. For arbitrary X , Z ∈ C(InjΛ), there is an isomorphism

Ext1
E(Z, X) ∼= HomK(InjΛ)(Z, X[1])

which is natural in X and Z.

In section 3.3, we know that for X, Z in K(InjΛ) with Z compact, there

is a natural isomorphism

DHomK(InjΛ)(Z, X) ∼= HomK(InjΛ)(X, τZ[1]).

Combining this with the isomorphism in 5.3.4 we get immediately
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Proposition 5.3.5. Let X be an object in C(InjΛ) and Z be an object in

C+,b(injΛ). Then we have an isomorphism

ΦX : Ext1
E(X, τZ)

∼−→ DHomC(InjΛ)(Z, X)

which is natural in X and Z.

Theorem 5.3.6. Let Z be a non-projective indecomposable object in C+,b(injΛ).

Then there exists an almost split conflation

τZ → Y → Z

in C(InjΛ).

We introduce some lemmas before proving the theorem.

Lemma 5.3.7. Suppose that in an exact category (C, E) there is a commu-

tative diagram

X

f

²²

α // Y

g

²²

β // Z

h
²²

X ′ α′ // Y ′ β′ // Z ′

such that (α, β) and (α′, β′) are conflations in E. Then there exists a mor-

phism u : Y → X ′ such that uα = f if and only if there exists a morphism

v : Z → Y ′ such that β′v = h.

Lemma 5.3.8. Let ε : X
α−→ Y

β−→ Z be a conflation in (C(InjΛ), E), then the

following are equivalent:

1. ε is an almost split conflation.

2. β is right almost split and EndC(InjΛ)(X) is local.

Proof of Theorem 5.3.6. Take for X the object Z in Proposition 5.3.5, we

get an isomorphism

ΦZ : Ext1
E(Z, τZ)

∼−→ DHomC(InjΛ)(Z, Z)

Note that Γ = EndC(InjΛ)(Z) is a local ring, and finitely generated as a k-

module. Let f be a non-zero map in DHomC(InjΛ)(Z, Z) such that f vanishes

on radΓ. Denote by ηZ = Φ−1(f). We claim that η is the almost split

conflation.
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First, η is not split since it is non-zero. Let u : W → Z be an arbitrary

morphism which is not a retraction, then its composition with any morphism

from Z to W is in the radical of Γ, so DHomC(InjΛ)(Z, u)(f) = 0. Hence

ΦW Ext1
E(u, τZ)(η) = 0, by the naturalness of Φ. Since ΦW is an isomorphism,

Ext1
E(u, τZ)(η) = 0. Lemma 5.3.7 implies that there exists a morphism

v : W → Y such that u = βv, hence β is right almost split. Furthermore, in

the proof of Corollary 5.3.3, we have seen that EndC(InjΛ)(τZ) is a local ring.

Using Lemma 5.3.8 we finish the proof.
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Appendix A. Brown representability

The Brown representability theorem was first established by Brown [17] in

homotopy theory. It asserts that representation functors HomT (−, X) can be

characterized as the cohomological functors taking coproducts to products.

People followed him and generalized this theorem to triangulated categories

through various approaches. Neeman pointed out in his paper [49] that the

theorem holds for compactly generated triangulated categories. In his book

[50] he introduced the concept of a well generated triangulated category.

These categories naturally generalize compactly generated ones and they still

satisfy the Brown representability. Neeman’s result was improved by Krause

[38] to perfectly generated triangulated categories; in [37] he compared his

perfect generation with the well generation of Neeman.

Definition Let T be a triangulated category with arbitrary coproducts.

Then T is said to be perfectly generated, if there exists a set T0 of objects

satisfying:

PG1 An object X ∈ T is zero provided that HomT (ΣnS, X) = 0 for all

n ∈ Z and S ∈ T0.

PG2 Given a countable set of maps Xi → Yi in T such that the map

HomT (S, Xi) → HomT (S, Yi) is surjective for all i and S ∈ T0, the

induced map

HomT (S,
∐

i

Xi) → HomT (S,
∐

i

Yi)

is surjective for all S ∈ T0.

The category T is said to be well generated if the morphism set Xi → Yi

in condition [PG2] is an arbitrary set rather than a countable set, and in

addition, the following condition holds.

WG The objects in T0 are α-small for some cardinal α.

Recall that an object S is α-small if every map S → ∐
i∈I Xi in T factors

through
∐

i∈J Xi for some J ⊆ I with cardJ < α. When α = ℵ, we say T is

compactly generated.

The Brown representability theorem in Krause’s paper [38] says that
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Theorem A.1 Let T be a triangulated category with arbitrary coproducts,

and suppose that T is perfectly generated by a set of objects. Then a functor

F : T op → Ab is cohomological and sends all coproducts in T to products if

and only if F ∼= HomT (−, X) for some object X in T .

An immediate consequence of this theorem is

Corollary A.2 Let T be a perfectly generated triangulated category, and S
be an arbitrary triangulated category. Then an exact functor F : T → S
preserves all coproducts if and only if it has a right adjoint.

Proof. Let s be an object in S, and consider the functor HomS(F (−), s).

This functor is cohomological and sends all coproducts in T to products.

Hence, by above theorem, this functor is representable; there is a G(s) ∈ T
with

HomS(F (−), s) ∼= HomT (−, G(s)).

From [45, IV Corollary 2] we know that G extends to a functor, right adjoint

to F .

There is the dual concept of a perfectly cogenerated triangulated category,

and the dual Brown representability theorem. For convenience, we list them

here.

Definition Let T be a triangulated category with arbitrary products. Then

T is said to be perfectly cogenerated, if there exists a set T0 of objects satis-

fying:

PG1 An object X ∈ T is zero provided that HomT (X, ΣnS) = 0 for all

n ∈ Z and S ∈ T0.

PG2 Given a countable set of maps Xi → Yi in T such that the map

HomT (Yi, S) → HomT (Xi, S) is surjective for all i and S ∈ T0, the

induced map

HomT (
∏

i

Yi, S) → HomT (
∏

i

Xi, S)

is surjective for all S ∈ T0.

Theorem A.3 Let T be a triangulated category with arbitrary products, and

suppose that T is perfectly cogenerated by a set of objects. Then a functor
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F : T → Ab is cohomological and preserves all products if and only if F ∼=
HomT (X,−) for some object X in T .

Corollary A.4 Let T be a perfectly cogenerated triangulated category, and

S be an arbitrary triangulated category. Then an exact functor F : T → S
preserves all products if and only if it has a left adjoint.
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Appendix B. Resolution of complexes

Resolutions are used to replace a complex in some abelian category A
by another one which is quasi-isomorphic to the original one but easier to

handle. Depending on properties of A, injective and projective resolutions

are constructed via Brown representability. We refer to [40] for the detailed

proofs of all results in this appendix.

Injective resolutions. Let A be an abelian category. Suppose that A
has arbitrary products which are exact, that is, for every family of exact

sequences Xi → Yi → Zi in A, the sequence
∏

i Xi →
∏

i Yi →
∏

i Zi is

exact. Suppose in addition that A has an injective cogenerator which we

denote by U .

Denote by Kinj(A) the smallest full triangulated subcategory of K(A)

which is closed under taking products and contains all injective objects of A
(viewed as complexes concentrated in degree zero). Observe that Kinj(A) ⊆
K(InjA)

Lemma B.1 The triangulated category Kinj(A) is perfectly cogenerated by

U . Therefore the inclusion Kinj(A) ↪→ K(A) has a left adjoint i : K(A) →
Kinj(A).

Proposition B.2 Let A be an abelian category. Suppose that A has an

injective cogenerator and arbitrary products which are exact. Let X, Y be

complexes in A.

1. The natural map X → iX is a quasi-isomorphism and we have natural

isomorphisms

HomD(A)(X,Y ) ∼= HomD(A)(X, iY ) ∼= HomK(A)(X, iY )

2. The composite

Kinj(A)
inc→ K(A)

can→ D(A)

is an equivalence of triangulated categories.

Remark. The isomorphism in Proposition B.2 shows that the assignment

X 7→ iX induces a right adjoint for the canonical functor K(A) → D(A).

Example B.3 Given an associative ring Λ, the category ModΛ of Λ-modules

has exact products and an injective cogenerator. so the above results apply.
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Projective resolutions. Let A be an abelian category. Suppose that A
has arbitrary coproducts which are exact. Suppose in addition that A has a

projective generator which we denote by S.

Denote by Kproj(A) the smallest full triangulated subcategory of K(A)

which is closed under taking coproducts and contains all projective objects

of A. We also have Kproj(A) ⊆ K(ProjA)

Lemma B.4 The triangulated category Kproj(A) is perfectly generated by S.

Therefore the inclusion Kproj(A) ↪→ K(A) has a right adjoint p : K(A) →
Kproj(A).

Proposition B.5 Let A be an abelian category. Suppose that A has an

projective generator and arbitrary coproducts which are exact. Let X, Y be

complexes in A.

1. The natural map pX → X is a quasi-isomorphism and we have natural

isomorphisms

HomD(A)(X,Y ) ∼= HomD(A)(pX,Y ) ∼= HomK(A)(pX,Y )

2. The composite

Kproj(A)
inc→ K(A)

can→ D(A)

is an equivalence of triangulated categories.

Remark. The isomorphism in Proposition B.5 shows that the assignment

pX 7→ X induces a left adjoint for the canonical functor K(A) → D(A).

Example B.6 Any module category ModΛ has a projective generator and

exact coproducts. so the above results apply.
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Appendix C. Homotopically minimal com-
plexes

The results in this appendix is due to Krause [42, Appendix B].

A complex X in some additive category is called homotopically minimal,

if every map φ : X → X of complexes is an isomorphism provided that φ

is an isomorphism up to homotopy. In this appendix, we show that each

complex with injective components admits a decomposition X = X ′ ∐ X ′′

such that X ′ is homotopically minimal and X ′′ is null homotopic.

Let A be an abelian category, and suppose that A admits injective

envelopes. Given a complex X = (Xn, dn) in A with injective compo-

nents. For each n ∈ Z, let I(ZnX) be the injective envelope of ZnX,

then we get a decomposition Xn = V n
∐

I(ZnX). Note that the inclusion

dn(V n) ↪→ Bn+1X ↪→ Zn+1X ↪→ I(Zn+1X) splits, we get another decom-

position I(Zn+1X) = dn(V n)
∐

W n+1. Hence Xn = V n
∐

dn(V n)
∐

W n+1,

and the complex X can be written as

· · · // V n
∐

dn−1(V n−1)
∐

W n

[
0 0 0
1 0 δn

0 0 dn

]

// V n+1
∐

dn(V n)
∐

W n+1 // · · ·

where δn : W n → dn(V n) satisfies δndn−1 = 0.

From the following commutative diagram

· · · // V n
∐

dn−1(V n−1)
∐

W n

[
1 0 δn

0 1 0
0 0 1

]

²²

[
0 0 0
1 0 δn

0 0 dn

]

// V n+1
∐

dn(V n)
∐

W n+1

[
1 0 δn+1

0 1 0
0 0 1

]

²²

// · · ·

· · · // V n
∐

dn−1(V n−1)
∐

W n

[
0 0 0
1 0 0
0 0 dn

]

// V n+1
∐

dn(V n)
∐

W n+1 // · · ·

and note that the restriction of dn on V n is monomorphism, we know X is

isomorphic to the complex W
∐

(
∐

n∈ZX(n)), where

W = · · · // W n−1
dn−1|Wn−1 // W n

dn|Wn // W n+1 // · · ·

X(n) = · · · // 0 // V n ' // dn(V n) // 0 // · · ·
It is easy to see that W n = I(ZnW ) for each n ∈ Z.

Lemma C.1 Let A be an abelian category with injective envelopes. Then the

following are equivalent for a complex X in A with injective components.

1. The complex X is homotopically minimal.
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2. The complex X has no non-zero direct factor which is null homotopic.

3. The canonical map ZnX ↪→ Xn is an injective envelope.

Proof. (1) ⇒ (2) If X = X ′ ∐ X ′′ with X ′ null homotopic, then X ′ ∼= 0 in

the homotopy category. Denote by θ the composite of the projective map

X ³ X ′′ and the including may X ′′ ↪→ X. Then θ is an isomorphism

in the homotopy category. Since X is homotopically minimal, θ is also an

isomorphism in the category of complexes, which implies that X ′ is zero.

(2) ⇒ (3) Easy from the decomposition we get in the above discussion.

(3) ⇒ (1) Let φ : X → X be a chain map, and there is another chain map

ψ : X → X such that ψ ◦ φ and φ ◦ ψ are chain homotopic to the identity

idX . Then, we have a family of maps ρn : Xn → Xn−1 such that

idXn = (ψ ◦φ)n + dn−1 ◦ ρn + ρn+1 ◦ dn.

We claim that φ is a monomorphism. Let K = Ker(ψ ◦φ), and Ln = Kn ∩
ZnX. Then ρn identifies Ln with ρn(Ln), and ρn(Ln) ∩ Zn−1(X) = 0, since

(dn−1 ◦ ρn)Ln = Ln. The assumption on Zn−1X implies Ln = 0. The same

assumption on ZnX implies Kn = 0. This completes the proof that φ is a

monomorphism. Similarly we have that ψ is a monomorphism.

Next we show that φ is also an epimorphism. Consider the exact se-

quence 0 → X
φ−→ X → Cokerφ → 0. The sequence is split exact in

each degree because X has injective components. Hence it can be embed-

ded into an exact triangle X
φ−→ X → Cokerφ → ΣX in the homotopy

category. The map φ is isomorphic in K(InjA) implies that Cokerφ ∼= 0

in K(InjA), i.e. Cokerφ ∼= 0 is the sum of the complexes with the form

· · · // 0 // I
∼= // I // 0 // · · · . It follows that the sequence is also

split exact in the category of complexes. Let φ′ : X → X be a left inverse of

φ. Then Kerφ′ ∼= Cokerφ. On the other hand, φ′ is the inverse of φ in the

homotopy category and therefore Kerφ′ = 0 is a monomorphism by the first

part of our proof. Thus φ is an epimorphism.

Proposition C.2 Let A be an abelian category with injective envelopes. Then

every complex X in A with injective components has a decomposition X =

X ′ ∐ X ′′ such that X ′ is homotopically minimal and X ′′ is null homotopic.

Given a second decomposition X = Y ′ ∐ Y ′′ such that Y ′ is homotopically

minimal and Y ′′ is null homotopic, then X ′ is isomorphic to Y ′.
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Dually, we have the following two results.

Lemma C.3 Let A be an abelian category with projective covers. Then the

following are equivalent for a complex X in A with projective components.

1. The complex X is homotopically minimal.

2. The complex X has no non-zero direct factor which is null homotopic.

3. The canonical map Xn ³ Xn/BnX is a projective cover.

Proposition C.4 Let A be an abelian category with projective covers. Then

every complex X in A with projective components has a decomposition X =

X ′ ∐ X ′′ such that X ′ is homotopically minimal and X ′′ is null homotopic.

Given a second decomposition X = Y ′ ∐ Y ′′ such that Y ′ is homotopically

minimal and Y ′′ is null homotopic, then X ′ is isomorphic to Y ′.
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Appendix D. Repetitive algebras

Let Λ be an artin k-algebra. The repetitive algebra associated with Λ is

by definition the doubly infinite matrix algebra without identity,

Λ̂ =




...

... Λ 0
DΛ Λ

DΛ Λ

0 ... ...




in which matrices have only finitely many non-zero entries and the multipli-

cation is induced from the canonical maps Λ⊗ΛDΛ → DΛ , DΛ⊗ΛΛ → DΛ ,

and the zero map DΛ⊗Λ DΛ → 0. The notion of repetitive algebras was first

introduced in [27] in connection with trivial extension algebras, for details,

also see [24].

Let us recall the modules over a repetitive algebra. A Λ̂-module X is

a sequence X = (Xn, fn) of Λ-modules Xn and Λ-linear maps fn : Xn →
HomΛ(DΛ, Xn+1) satisfying HomΛ(DΛ, fn) ◦ fn−1 = 0 for all n ∈ Z. Some-

times we wrote (Xn, fn) as

· · ·Xn−1 fn−1

∼ Xn fn

∼ Xn+1 fn+1

∼ Xn+2 · · · .

A morphism φ : X = (Xn, fn) → Y = (Y n, gn) is a sequence φ = (φn) of

Λ-linear maps φn : Xn → Y n such that the following diagrams commute for

all n ∈ Z.

Xn

φn

²²

fn
// HomΛ(DΛ, Xn+1)

HomΛ(DΛ,φn+1)
²²

Y n
gn

// HomΛ(DΛ, Y n+1)

It is convenient to consider another equivalent description of Λ̂-modules,

by adjoint functors. Thus an Λ̂-module X can also be written as X =

(Xn, f̆n), where Xn are Λ-modules and f̆n are Λ-linear maps f̆n : Xn ⊗Λ

DΛ → Xn+1 such that f̆n+1 ◦(f̆n ⊗ 1) = 0. We also write (Xn, f̆n) as

· · ·Xn−1 f̆n−1

∼ Xn f̆n

∼ Xn+1 f̆n+1

∼ Xn+2 · · ·

A morphism φ : X = (Xn, f̆n) → Y = (Y n, ğn) is a sequence φ = (φn) of

Λ-linear maps φn : Xn → Y n such that the following diagrams commute for
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all n ∈ Z.

Xn ⊗Λ DΛ

φn⊗1
²²

f̆n
// Xn+1

φn+1

²²
Y n ⊗Λ DΛ

ğn
// Y n+1

We denote by ModΛ̂ the category of all Λ̂-modules, and by modΛ̂ the

category of all Λ̂-modules X = (Xn, fn) such that dimk(⊕nX
n) < ∞.

Note that the indecomposable projective Λ̂-modules are given by

X = · · · 0 ∼ Xn idXn∼ Xn+1 ∼ 0 · · ·

where Xn+1 is an indecomposable injective Λ-module, and Xn = HomΛ(DΛ, Xn+1)

(hence Xn is an indecomposable projective Λ-module). Of course, X is also

an indecomposable injective Λ̂-module.

Let us end this appendix with a well-known result.

Theorem D.1 Let Λ be an artin algebra with Λ̂ its repetitive algebra. Then

the categories ModΛ̂ and modΛ̂ are Frobenius categories. Moreover, the sta-

ble category ModΛ̂ is compactly generated and (ModΛ̂)c ' modΛ̂.
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