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Introduction

Classical lattice spin systems have their origin in the description of the ferromagnetism of a solid. Em-
pirical observations show that an electron is a spin-% particle and that in a magnetic field its direction
is quantised so that it orients either parallel or antiparallel to the field. One observes two phenomena:
The interaction energy of parallel spins is smaller than the interaction energy of antiparallel ones.
This makes the system tend towards a uniform parallel configuration. As temperature increases, the
system tends to disorder. One observes a phase transition from ferromagnetism to paramagnetism:
At low temperature the spins are parallel, at high temperature one has thermal noise. It was observed
by E. Ising in his 1924 doctoral thesis [Is25] that a one-dimensional Ising chain with nearest neighbour
interaction has no phase transition. Since that time this model attracts attention due to its applicabil-
ity in many branches of science. It can be used to explain phenomena where individual elements (e.g.,
atoms, animals, protein folds, biological membrane, social behaviour, etc.) modify their behaviour so
as to conform to the behaviour of other individuals in their vicinity. Abstractly speaking, a (classical)
lattice spin system consists of a discrete space, the position space, where on each point a classical spin
variable is attached. The spin variable can have very different interpretations, say as the charge of a
particle, say as the number of particles present at the point, the species of particles, or as a classical
spin variable with possible values “spin up” and “spin down”. The position space may be interpreted
as the locations of the atoms of a solid, with or even without a regular alignment structure. This
setting allows to treat spin systems, lattice gas models, and alloy models from the same mathemat-
ical point of view. The particles interact with each other via a symmetric pair potential which is
isotropic, i.e. it only depends on the distance of the particles, not on their absolute positions. If
only the members of the same species interact, we have a Potts model [Po52]. A generalisation of
the Ising model is the class of M-vector models which was introduced by H. E. Stanley in [St68a]. It
allows to model one-component fluids, binary alloys, mixture processes, A-transition in a Bose fluid,
as well as ferromagnetism. An important parameter of an interaction is its range. While interactions
with finite range are well-understood, even in one dimensional systems there are still open problems
concerning long-range interactions. Roughly speaking, the faster the interaction decays, the easier is
its mathematical treatment. However, many physically interesting interactions do not decay fast, for
instance, the van der Waals potential or the Coulomb potential decay like the inverse of a polynomial.
Exponentially decaying interactions are studied since M. Kac’s 1966 paper [Ka66].

We interpret the sum of all interactions energies between a finite number of particles as the energy
of a subconfiguration. After averaging over all possible configurations with the Boltzmann factor
as weight we obtain the main object of statistical mechanics, the partition function. The partition
function is an interesting object since many properties of the system, such as the total energy, free
energy, entropy, and pressure, can be expressed in terms of the partition function and its derivatives.
We are interested in the thermodynamic limit, i. e., we let tend the number of particles to infinity,
and study the properties of the sequence of partition functions.

One method to investigate the physical system is the use of so called transfer operators. The transfer
operator method consists in finding a linear operator, called the transfer operator, such that certain
asymptotic properties of the partition functions can be expressed in terms of the spectrum of the
operator. For interactions with finite range this method has been invented by H. Kramers and G.

Figure 1: Phase transition: Disordered configuration (high temperature), ordered configuration (low
temperature)



Wannier [KrWa41], E. Montroll [M41], and E. Ising [Is25], the operator is called a transfer matrix. For
long range interactions D. Ruelle [Ru68], H. Araki [A69], G. Gallavotti and S. Miracle-Sole [GaMS70]
introduced the transfer operator approach. The Ruelle-Perron-Frobenius theorem states that the
Ruelle transfer operator has a positive leading eigenvalue, a corresponding positive eigenfunction, and
a positive eigenmeasure. The leading eigenvalue has a physical interpretation, since its logarithm is
closely related to the free energy. The leading eigenfunction of the Ruelle transfer operator together
with the eigenmeasure determine the equilibrium state of the system.

In works of D. Mayer, K. Viswanathan, B. Moritz, and J. Hilgert [May76], [Vi76], [MayVi77],
[ViMay77], [May80a], [Mo89], [HiMay02], [HiMay04], there are several examples of interactions known
for which a so called dynamical trace formula holds, i.e., there exists a trace class operator, nowadays
called the Ruelle-Mayer transfer operator, such that the partition functions can be expressed in terms
of the traces of the powers of the transfer operator. As soon as an operator is found satisfying such a
dynamical trace formula, the problem of computing the partition function is shifted to the functional
analytic problem consisting in the determination of the spectrum.

The properties of the partition function are also studied by using a method from number theory.
Putting the partition function as coefficients of a generating function one obtains a formal power
series which converges under weak assumptions in a neighbourhood of zero. This function is called
the dynamical zeta function and has been introduced by D. Ruelle [Ru76]. As in number theory one
studies the analytic properties of zeta which imply, using Wiener-Tauber type arguments, conclusions
on the mean behaviour of the coefficients. For this reasoning one needs the existence of a meromorphic
continuation of zeta beyond the first pole. With methods similar to proof of the classical prime number
theorem, W. Parry and M. Pollicott obtained prime orbit theorems on the distribution of prime orbits,
see [PaP090]. If there exists a transfer operator which satisfies a dynamical trace formula, then this
leads to a representation of Ruelle’s zeta as a quotient of Fredholm determinants of the transfer
operator and hence to a meromorphic continuation of zeta to the entire complex plane. From this
spectral interpretation of zeta J. Hilgert and D. Mayer obtained in [HiMay02] and [HiMay04] the
existence of infinitely many equally spaced (“trivial”) and infinitely many non-trivial zeros and poles
along lines in the complex plane, which is a phenomenon also known from number theoretical zeta
functions.

Spin chains, i.e., one-dimensional spin systems, with exponentially decaying Ising interaction have
been firstly studied in [Ka66] by M. Kac via the transfer operator method. He, and in similar form
also M. Gutzwiller [Gu82], introduced integral operators acting on the space of square-integrable
functions on the real line. This Kac-Gutzwiller transfer operator satisfies a dynamical trace formula.
D. Mayer derived in [May80a] his transfer operator for the same interaction. His transfer operator acts
on a Banach space of holomorphic functions and also satisfies a (similar) dynamical trace formula.
In [Mo89] it was shown that the spectra of both operators (almost) coincide. In [HiMay02] and
[HiMay04] there was found a way how one explicitly relates the two operators. This construction uses
essentially the Bargmann transform which provides a unitary isomorphism between the both spaces.
Motivated by these results we ask which is the class of interactions for which a dynamical trace formula
holds. We analyse the known examples of Ruelle-Mayer transfer operators and determine what they
have in common. We introduce a family of Ising type interactions which contains all the known
Ising interactions with finite-range, superexponentially, exponentially, or polynomial-exponentially
decaying distance function. We give some new examples, for instance Ruelle-Mayer transfer operators
for M-vector models and Potts models, and new distance functions. We can formulate a general frame
work for the construction of the Ruelle-Mayer transfer operator associated to interactions belonging
to this class and prove a dynamical trace formula. For this class of interactions we investigate the
dynamical zeta function and show its meromorphic continuation to the entire complex plane. Using the
Bargmann transform we compute the Kac-Gutzwiller transfer operator for polynomial-exponentially
decaying interactions and also for finite range interactions explicitly and study its properties.

The main contributions of this dissertation are

(i) A unification of all known examples of Ising interactions admitting a Ruelle-Mayer transfer
operator which satisfies a dynamical trace formula,

(ii) Generalisations in view of the interaction: Ising type interactions, the possible spin values, and
a (slightly) weaker decay of the distance function,

(iii) A concise treatment of the dynamical zeta function, in particular in the presence of a dynamical
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trace formula, including a proof of an Euler product expansion and meromorphic extension to
the entire complex plane, and

(iv) A direct construction of the Kac-Gutzwiller transfer operator associated to a Ruelle-Mayer
transfer operator, both for full shifts and matrix subshifts.

Our treatment is based on Hilbert space techniques and Schatten class operators, instead of Banach
space techniques and nuclear operators used for instance in the work of D. Mayer. The Hilbert space
techniques simplify many arguments concerning values of traces or determinants.

We will now explain our main results in detail and give an outline of this dissertation afterwards.

Theorem 2.13.8. Let ' C C be a bounded set, interpreted as spin values, and (FN,Ng,T) a one-
sided one-dimensional full shift. Let ¢ be a two-body Ising type interaction with potential ¢ € Cy(F)
and distance function d € Dgp) for some p < oo, say d(k) = (B¥"w|w),2y, and interaction matriz
r € Cp(F X F) with r(x,y) = Zi\il si(x) t;(y) with s;, t; € Co(F). Let Ay be the standard observable.
Then there exists an index ng € N depending on B such that for all n > ng the Ruelle-Mayer transfer
operator Mg : F(((*’N)M) — F(((*?N)M) acting via

(Mpf) (=, o) = /F exp(Ba(o) + ﬁf s1(0) alw)) £ (t1(0)0 + Ban, ..., tar(0)o + Baag ) di(o)
=1

satisfies the dynamical trace formula ZZNU (BA@)) = Zf?o‘bn} (B) = det(1 — B™)M trace (Mp)". O

Before giving an outline of the proof we will explain this result and the notations. We begin with the
prerequisites of the theorem, define the left hand side of the dynamical trace formula, i.e., the (dynam-

ical) partition function Z??U‘bn} (8) (ZﬁNU (BA(4)), respectively), and show afterwards a generalisation
of this result.

A one-sided one-dimensional shift is one of the most studied examples of lattice spin systems. It is
defined as follows: Let F' be a Hausdorff space F' equipped with a finite Borel measure. We interpret
F' as the space of possible spin values. We consider as underlying position space the positive integers
N. Let 7 : FN — FN (7€); := &1 be the left shift on the space of F-valued sequences. Then
Nog x FN — FN_ n. ¢ := ¢ defines a semigroup action, i. e., a time-discrete dynamical system. If
Q c FYis a closed non-empty T-invariant subspace, then € carries also an Ny-action via this formula
and is called a subshift of FN. We will first consider the full shift FN. Later we generalise our result
to a family of subshifts, the matrix subshift, and prove a similar theorem for it.

The particles interact with each other via a two-body interaction ¢ = (¢a), indexed by all finite
subsets A C N, of the form

(1) én: FY = C, &r = da(én) = —d(li —j])r(&.&) , ifA={i,j}, & = (&.&), (i #j),
0 , otherwise,

where r : F' x F' — C is a continuous bounded symmetric function, called the interaction matrix,
q € Cy(F) is a potential, and the distance function d : N — C belongs to (a subspace of) ¢!N.

A detailed analysis of the examples given in [May76], [Vi76], [MayVi77], [ViMay77], [May80a], [Mo89],
[HiMay02], [HiMay04], i. e., all examples where a dynamical trace formula has been known before,
yields that the distance function d can be written as

d(k) = <Bk_1v | w>H0

for vectors v, w in a (separable) Hilbert space (Ho, < | >) and a trace class operator B : Hy — Hop
with operator norm ||B|| < 1. This leads to our class of distance functions.

Definition 2.7.1. We define the subspaces D?’) C 'N (for p € [1,00[) as follows: d € Dgp) if and
only if there exist a bounded linear operator B : Hy — Ho on a Hilbert space Hy belonging to the
Schatten class S,(Ho) with spectral radius pspec(B) less than one and vectors v, w € H such that

d:N—C, kv dk) := B ojw)y,.

We call (B, v, w) a generating triple for d and B a generator. O



Our class includes the following subclasses of examples:

Example 2.7.7. (i) Finite range (Section 2.5): There exists pp € N, the range of d, such that

d(k) =0 for all k > po.

(ii) Superexponential (Section 2.9): Let v > 0, § > 1 and
d:N—=C, ks a(k) exp(—y k%),
where a : N — C is of lower order! in the sense that 11:1010 a(k) exp(—e; k%) =0 for all 1, €3 > 0.
(iii) Polynomial-exponential (Section 2.11):
d:N—=C, k— \p(k),
where p € C[z] is a polynomial and A € C with 0 < |A| < 1 is the decay rate.

iv) Suitable infinite superpositions of exponentially decaying terms D?*® D) (Section 2.10):
g 1 1

o0

i=1
where A € /PN and ¢ : N — C such that ¢\ : N — C, n — ¢, A, belongs to IN.

We will see that (i) and (iii) correspond to generators B which are finite-rank operators, (i) and (ii)

have nilpotent generators, and that the generators corresponding to (iii) are invertible. Since Dgp )

is a complex vector space, every linear combination belongs again to D?’ ), Every generator can be

decomposed into the direct sum of its Jordan blocks. Since we require a generator to belong to the
Schatten class S,(Ho), the occurring blocks belong either to (i), (ii), or to (iii). In the newly defined
classes of part (iv) we collect the distance functions with an invertible semi-simple generator. O

We show that if a distance function belongs to Dgp ), then it has at least exponential decay at infinity,

i.e. limsup,_ o {/|d(k)| < 1, which for instance excludes the distance functions d(k) = k= (for some
a > 0), e.g. the Coulomb and the van der Waals potential.
We say that a symmetric function r € Cp(F x F) is of Ising type if it admits a decomposition

M
r(z,y) = Zsi(w)ti(y)

i=1
for some continuous bounded functions s;, t; : F' — C. In particular, we are interested in the case of
F being a bounded subset of the complex numbers C and r of the form r(z,y) = xy which is usually
called the Ising model. Stanley’s M-vector model [St68a] also belongs to this class of interaction
matrices. If the space F' of spin values is compact, one has an approximation property: The space of
Ising type interaction matrices is dense. If F' is a finite set, which is the most studied case, then every
interaction matrix is of Ising type. Hence the famous M-states Potts model can be studied from the
same mathematical point of view as the Ising model.
Next we explain the left hand side of the dynamical trace formula, the (dynamical) partition function,
Z?T0¢n} (8) and Z‘;NO (BA(4)) respectively. We first introduce the dynamical partition function, which
is of natural interest from the mathematical point of view. For any continuous bounded function
A : FN — C we define the dynamical partition function via

20 (A) = /F exp(nz_:l A(Tk(m))) dv(z1) ... dv(zn).
k=0

Notice that the argument 22;01 A(T* (@1 7)) of the exponential in the integrand is (n-times) the
average of the observable A along the closed 7-orbit through ZT7 -~ @, := (X1, .., Tn, T1, .oy Ty - 2)-

IThe decay estimate can be weakend, cp. Corollary 2.9.3.
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In terms of statistical physics this sum is interpreted as the interaction energy of z1,...,z, and the
dynamical partition function ZZNO (A) is the normalisation factor of the Gibbs-Boltzmann distribu-
tion exp( Y h—y A(TH (@ Tm))) dv(a1) ... dv(z,). Of particular interest is the so called standard
observable

(2) A(¢) Q_)(C 5'_)q£1 +ZT€1361 ’L_l)a
=2

where r : F' x F — C is the interaction matrix, ¢ € Cy(F) is the potential, and d : N — C is the
distance function of a two-body interaction ¢ (1). The observable A4 is interpreted as the sum of
two-body interactions of the particle at position one and the particles sitting at the rest of the half
lattice. There is a second interpretation of the argument of the exponential in the integrand of the
dynamical partition function ZZNU (A(g)): Think of n particles aligned on a circle and count the sum
of all possible interactions. Take this sum as the energy of the n-particle configuration. In analogy
to Boltzmann’s distribution we include a parameter § = 1/kT, the so called inverse temperature, by

}(ﬁ) with

periodic boundary condition and two-body interaction ¢ = (¢a) (1) to be the normalisation factor of
the corresponding Boltzmann distribution. In Corollary 1.11.3 we show that for one-dimensional spin
systems the both notions of partition function coincide, ZzNO (BA@)) = ?10 3 }(5), which gives an
interpretation from dynamical systems to the partition function and substantiates our interest in the
observable A ).

For every irreducible aperiodic measurable function A : F' x F' — {0, 1}, which we call the transition
matrix, the set Q = {€ € FN|A(&,&41) = 1 Vi € N} is a closed shift-invariant subset of F, we
call a matrix subshift of FN. In the case of a finite alphabet, then A can be viewed as a matrix and
Q, is often called a subshift of finite type. One considers matrix subshifts if certain configurations
are not permitted by nearest neighbour exclusion rules like “Particles of type X don’t like to sit close
to particles of type Y” or “Particles of type Z only occur separately”. Matrix subshifts are used in
coding: Suppose we are given a trajectory on some space which is partitioned into a family of pieces,
each labelled by a different symbol. Following the orbit of a point one obtains a symbolic coding by
writing down the symbols of the pieces the orbit meets. This process is meant to be some kind of
data reduction. Then the following questions arise: Can one recover the original trajectories from the
symbolic coding? Is there a description of the space of symbolic trajectories? For the last purpose one
may use matrix subshifts. Note that a finer partitioning tends to result in less reduction of data and
more information on the system, but needs more symbols which may cause mathematical problems.
We obtain from Theorem 2.13.8 together with a certain tensoring trick the following dynamical trace
formula.

Theorem 3.2.6. Let (Q4, F,N,Np, 7) be a one-sided one-dimensional matrix subshift. Let ¢ be a
two-body Ising type interaction with potential ¢ € Cp(F') and distance function d € Dgp ) for some finite
p, say d(k) = (B*~1v|w)2y, and interaction matrix r € Cy(F x F) with r(x,y) = ZZZ1 si(x) ti(y) with
84, t; € Cy(F). Let A4y be the standard observable (2). Then there exists an index ng € N depending

on B such that for all n > ng the iterates M7 € End(L*(F, V)QF((PN)M)) of the Ruelle-Mayer
transfer operator

replacing A by 8 A(g). In (1.7.1) we define the (usual) physical partition function zb {1

.....

(Mﬁf)(x;zla“azf\/f):LAamexp(ﬁq +ﬁzsl Zl|w) fo;ti(o)v+Bzy, .., tar(0)v+Bzy) duv(o)

satisfy the dynamical trace formula ZZ 0 (BA@)) = Z?lo ¢ }(ﬁ) = det(1 — B™)M trace (Mp)". O

A consequence of the above Theorems 2.13.8 and 3.2.6 is the result 4.4.4 on the associated dynamical
zeta function which we will explain after sketching their proofs.

The PROOF of Theorems 2.13.8 and 3.2.6 is done in steps: First we have to show that a certain power
of the Ruelle-Mayer transfer operator is trace class, then we have to find an expression for the traces.
Finally we compare both sides of the dynamical trace formula and show that they are equal.

For the first step we decompose the Ruelle-Mayer transfer operator as an integral of operators and
show that each of them is trace class. Then we use the following folklore theorem for which we give
a proof in Appendix A.
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Theorem A.7.6. Let (M,)yev be a measurable family of trace class operators on a separable Hilbert
space ‘H such that [, [ Myl|s, (x) dy < co. Then the linear operator M : H — H, Mf:= [, M, fdy
is a trace class operator with

trace M = / trace M, dy
Y O

Each summand in the decomposition of the Ruelle-Mayer transfer operator is a (generalised) compo-
sition operator, by which we mean an operator acting on a space of functions via

(T1)(z) = ¢(2) (f o ¥)(2),

where ¢ is a scalar-valued map and 1 is a self-map of the domain where the functions are defined
on. Composition operators and their spectral properties are well-studied in the literature, see for
instance [Sh93]. A classical result is the Atiyah-Bott fixed point formula (see [AtBo67], [May80a])
which can be stated as follows:

Theorem 2.4.2. Let U C C* be an open bounded complex domain. Let ¢: U — Cand ¢ : U - U
be holomorphic functions with continuous extensions to the closure U of U and, moreover, ¢)(U) C U.
Then 1 has a unique fixed point z* € U and the generalised composition operator

T:A>(U) = A*(U), (Tf)(2) = ¢(2) (f o ¥)(2)
is nuclear of order zero with trace given by the Atiyah-Bott type fixed point formula

o)
race ax @) I'= G gy
o

Here, A>(U) denotes the space of holomorphic functions on U which are continuous on U, which
is a Banach space with respect to the supremum norm. Mainly for two arguments we need to work
with Hilbert space techniques and the Schatten ideals S,(Ho) instead of Banach spaces and nuclear
operators. The first one is Theorem A.7.6 above which is not known to us in a Banach space setting.
The other occurs in our treatment of dynamical zeta functions in Chapter 4.

For these reasons the Atiyah-Bott theorem has to be transfered to a Hilbert space setting. This will
be done in Appendix B. It turns out that the Fock space F(C?) is suitable for our purposes. The
Fock space is defined as the space of entire functions on C? which are square-integrable with respect
to a normalised Gaussian measure. We prove the following result which considers the special case of
composing with an affine map.

Theorem B.3.4. Let b € C¢ B € Gl(d;C) with operator norm ||B|| < 1, and ¢ : C¢ — C an entire
function which can be estimated by |¢(z)| < cexp(a|/z]|) for all z. Let T be the composition operator
acting via

(Tf)(2) = ¢(2) f(Bz +b)
both on the Fock space F(C?) and the spaces A% (B(0;7)) for all balls B(0;7) := {2z € C¢||z|| < 7}

with sufficiently large radius r > %. Then T : F(C%) — F(C?) is a trace class operator with the
Atiyah-Bott trace formula

o((1—B)"'b)
trace go(p(0;r)) T = trace z(cayT = “det(1-B)
O

The previous result can be interpreted in such a way that all eigenfunctions of T': A>(B(0;7)) —
A>(B(0;7)) corresponding to non-zero eigenvalues belong to the smaller space F(C%), in particular
the eigenfunctions extend to the entire space and fulfill a growth condition. This idea can be expanded
to a proof of B.3.4.

In our case concerning the Ruelle-Mayer transfer operator the multiplication part of the composition
operator is given by the function ¢ : /2N — C, z +— exp(Bo(z|w)). For this particular choice the
previous theorem also holds true on the Fock space F(¢2N) in infinitely many variables. This space
can be characterised equivalently (Thm. A.4.8) either as the unique Hilbert space with reproducing
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kernel k(z,w) = exp(m(z|w)) or as the projective limit of the Hilbert spaces F(C?). It seems this
equivalence has not been noticed before and will be proved in Appendix A which also contains a little
introduction to reproducing kernel Hilbert spaces.

In Theorem 2.7.6 we consider the one-sided one-dimensional full shift with the pure two-body Ising
interaction with the distance function d € D) for some p < oo (2.7.1) given as d(k) = (B*1v|w)ey.
We will show that the Ruelle-Mayer transfer operator

Mg : F(I*°N) — F(£°N), (Mpf)(z) = /Fexp(ﬁa<z|w)) flov+Bz)dv(o)

satisfies the dynamical trace formula ZZNO (BA(g)) = det(l — B")trace (Mp)". Then the case of a
general Ising type interaction is obtained by a superposition principle. By tensoring with L?(F,dv)
our Theorem 2.13.8 will be extended to matrix subshifts.

To prove the fact that the trace of the Ruelle-Mayer transfer operator equals the partition function
we use a general principle due to D. Mayer for which we give a representation theoretic interpretation.
Let B be a Banach space and B’ its dual, v € B, w’ € B’, and B : B — B a bounded linear operator
with spectral radius pspec(B) < 1. Define a distance function via d(k) := (B¥~1v, w’)z g for all k € N.
Then d belongs to /!N and

o0
T (N = B, £ ) &B
k=1
defines a bounded linear operator which satisfies 7 , (0 V §) = ov + Brp ,(§) for all o € C, £ € £*°N.
Here (0 V &) denotes the sequence (0,&1,&2,...). In representation theoretic terms the linear mapping
B,y : {°N — B intertwines the Ny-representations

ai : No x 2N — (N, a;(n,§) := (7')"(§)

and
as:Nog x B— B, as(n,z) :=B"z,

where 7/ : /N — (N, £ — (0V€) is the dual operator of the left shift 7 : /!N — (N, (7€); := &41.
Note that B generates the semigroup (B™),en, which explains our notion “generating triple” in the
context of our class of distance functions. Moreover, if the alphabet F' is a bounded subset of C, then
the configuration space FN is a bounded subset of /*°N and the standard observable Ag) (2) can be
expressed as
A(¢) (U v 5) = Q(U) + U<7T]B,v(§)a w/>B,B’-

We can show that under certain assumptions every distance function allowing this approach belongs
to one of our classes D?). Let

Lsag, : Co(FY) = Co(FY), (Lpa, (&) = /F exp(BAw) (o0 V&) floV &) du(o)

be the Ruelle transfer operator associated to the standard observable A4 and Cr, , : Cp(B) —
Cyo(EFN), frfo R, the composition operator associated to mg,. Then the previous considerations
imply that (formally)

£5A(¢) o Cﬂm,u = CFB,v o Mﬁ'

This shows the relation between the Ruelle-Mayer transfer operator Mg and the Ruelle operator.

The second main result of this dissertation concerns Ruelle’s dynamical zeta function. It is defined as
the formal power series in z € C

where 8 € C is a parameter, i.e., zeta is the generating function of the partition functions. One easily
shows that under weak assumptions zeta defines a holomorphic function in a neighbourhood of zero.
A natural question concerns the existence of a meromorphic continuation discussed for instance in
[MayVi77], [May80a]. We show the following result:
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Corollary 4.4.4. Let F C C be a bounded set and (Qa, F,N,Ng, 7) be a one-sided one-dimensional

matrix subshift. Let ¢ be a two-body Ising interaction with distance function d € Dgl) (2.7.1) of the
form d(k) = (B*~v|w) sy, and potential ¢ € Cp(F). Let Mg : L2(F,v)@F ((?N) — L*(F,v)&F (£2N),

(Mof)(@2) = [ B exp(Ba(o) + Botzfu) oo+ B ) dv(o)

be the Ruelle-Mayer transfer operator defined in Theorem 3.2.6. Then there exists ng € N depending
on B such that the dynamical zeta function satisfies

’nofl n
z "’bNU . o —1 [a]+1
Cr(zB) =exp( 3 S ZN(BAw)) Jim T deta, (1= 22 Mg) =",
n=1 aef{0,1}M
where ()\;)jen are the eigenvalues of B and A* := [[, A% The right hand side has an Euler product
expansion and a meromorphic continuation to C. O

Here, det,, (1 — Mg) denotes the regularised determinant of order ng, which exists, since by Theo-
rem 3.2.6 the operator (Mg)™ is trace class for all n > ng. Using the theory of regularised determi-
nants, which we briefly recall in Section A.1, we can locate the poles and zeros of the dynamical zeta
function.

Analogously, the same result holds for Ising type interactions (with rank M) when replacing the
sequence A = (\;)jen of eigenvalues of B : /2N — (2N by the sequence \,; of eigenvalues of the
M-fold direct sum By, : (2N)M — (£2N)M of B. Obviously, By has the same eigenvalues as B, but
with the M-fold multiplicity.

Concerning the PROOF of Corollary 4.4.4: Under our assumptions a dynamical trace formula holds.
Hence we have to study generating functions of a special kind. For v € N, z € C, and G belonging to
the Schatten class S, (H) let

n

gu(z,a,G) := exp (i % an, trace G")

be the generating function associated to the sequence a = (an)nen € CN. It is apparent, Prop. 4.2.1,
that g, (-, a,G) defines a holomorphic function in a neighbourhood of zero provided lim,, oo /|an]
is finite.

For the special choice a,, = 1 — A™ with 0 < |A| < 1 occurring for exponentially decaying interaction
it was shown by Moritz [Mo89] that ¢1(-,a,G) and hence zeta can be represented as a quotient of
Fredholm determinants. This results easily extends to the case where a,, = det(1 — A™) for a finite
rank operator A. To handle the case that the dynamical trace formula only holds for almost all n € N
we have to use the theory of regularised determinants. We obtain the following generalisation of the
result of Moritz:

Theorem 4.3.4. Let A € S;(Hy) be a trace class operator? with pspec(A) < 1 and a,, := det(1—A™).
Let (Aj)jen be the eigenvalues of A. Then for any G € S, (H)

gu(z7 a, G) — lim H detu(l o ZAO‘ G)(fl)\aHl _ 1?m1\/[*’00 HaE{O,l}M:\OAEl(Q) detu(l - ZAOL G) .
M=o efoay limar—oe [Taefo,130:1a1z00) detu(l — 227 G)

In particular, the generating function g,(-,a,G) extends to a meromorphic function on the entire

C-plane and has an Euler product expansion. o

As an immediate consequence we obtain the meromorphic continuation of the dynamical zeta function
to the entire z-plane:

Corollary 4.4.2. Suppose there is a transfer operator G € S,,,(H) which satisfies the dynamical trace
N

formula Z?lo.’.‘.i’n} = det(1 — A™) trace G™ for all n > ng, where A € S;(Hy) is a trace class operator

with pspec(A) < 1. Set a,, := det(1 — A™) and a = (an)nen. Then

’nofl

() =exp( 3 20 ) gu(2,0,€)

2Later, I realised that there is no assumption needed about the spectral radius.
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gives the meromorphic continuation to all of C. O

As an immediate consequence of Theorem 4.3.4 and Corollary 4.4.2 we obtain Corollary 4.4.4.

The third main part of this dissertation concerns so called Kac-Gutzwiller transfer operators. Due
to the correspondence between the Ruelle-Mayer transfer operator [May80a] and the Kac-Gutzwiller
transfer operator [Gu82] for the one-dimensional Ising model with exponentially decaying interaction
established in [HiMay02] and [HiMay04] we investigate the conjugates of Ruelle-Mayer transfer op-
erators under the Bargmann transform B : L?(R") — F(C") which provides a unitary isomorphism
between the space L?(R™) of square-integrable functions and the Fock space F(C"). Given a Ruelle-
Mayer transfer operator Mg : F(C") — F(C™) we call the conjugated integral operator B~1oMgo B
on L?(R") a Kac-Gutzwiller transfer operator. The Kac-Gutzwiller transfer operator for exponentially
decaying Ising interactions has been constructed by M. Gutzwiller using ad hoc methods which have
failed to work for other than this specific interaction. Our approach is applicable for all Ising type
interactions with a finite-rank generator and works both for full and for matrix subshifts. We will
compute the Kac-Gutzwiller transfer operator for polynomial-exponentially decaying interactions and
also for finite range interactions explicitly and study its properties. As a case in point for Ising type
interactions we consider the Potts model. We hope that our approach leads to better understanding
of this kind of transfer operators.

In order to compute the Kac-Gutzwiller operator we use again the decomposition of the Ruelle-
Araki-Mayer transfer operator into an integral over a family of generalised composition operators of
the following type: For any a, b € C*, A € Mat(n,n;C) with operator norm ||A|| < 1 we define a
composition operator Lqp A : F(C") — F(C") acting via

(Lapaf)(z) = e f(Az +b).

It turns out that the composition operators of this kind belong to the extended Fock oscillator semi-
group EQ, 7cn) which is well-understood due to its representation theoretic use. Via the Bargmann
transform B : L?(R") — F(C") the extended Fock oscillator semigroup is conjugate to the extended
oscillator semigroup E), which consists of integral operators on L?(R™) with (not necessarily cen-
tered) Gaussians as kernel. Since every operator of type L4 4 can be written as a product of a
composition operator (Cy f)(z) = f(Az), a translation (75 f)(z) = f(z —s), and a multiplication by an
exponential (Mexp, f)(2) = e?19) f(2), we study the conjugates of each constituent. [HiMay02] gives
the conjugates of translations and of multiplication operators B o 7.0 B~!, Bo Mexp, © B~ both
acting on F(C™). We also ask for the operators B~! omey,, 0 B, B~ o7_;0 B both acting on L*(R")
and obtain a similar result in Proposition 5.3.6. These two results will lead to an explicit description
of the extended Fock oscillator semigroup. This will be used to compute the Bargmann conjugate
Bl o Lypa0B of Lopa (Prop. 5.3.5). Then by general arguments we obtain the Kac-Gutzwiller
transfer operator, first for Ising interactions, then for Ising type and, using results from Chapter 3,
for matrix subshifts.

The OUTLINE of this dissertation is as follows:

In Chapter 1 we will provide some background material on the so called thermodynamical formalism for
lattice spin systems. In particular we turn our attention to lattice spin systems with periodic boundary
condition. For this we give a new definition which is independent of the particular semigroup which
acts. The main object of interest is the partition function and its thermodynamic limit, i.e., as the
number of particles tends to infinity. We will exploit all kinds of symmetries in order to simplify the
computation of the partititon function. For one-dimensional lattice spin systems such considerations
have led both to the invention of the Ruelle, the Ruelle-Mayer, and the Kac-Gutzwiller transfer
operator. Besides establishing the connection between the dynamical and the (physical) partition
function which is essentially needed for the construction of the Ruelle and the Ruelle-Mayer transfer
operator our results are meant as a preparation for other types of future transfer operators.

In Chapter 2 we review the concept of a transfer operator. We introduce Ruelle’s transfer operator
and state some of its properties, for instance, the Ruelle-Perron-Frobenius theorem which relates the
leading eigenvalue, the corresponding positive eigenfunction, and the positive eigenmeasure to physisal
quantities. The Ruelle transfer operator is in general far from being a trace class operator. Since we
are interested in dynamical trace formulas, we focus on the so called Ruelle-Mayer transfer operator.
It occurs by restricting the Ruelle operator to a suitable invariant subspace of C,(€2). We briefly recall



14

Ruelle’s concept of counting traces which suggests that a larger part of the spectrum of the Ruelle
transfer operator should be investigated than just its leading eigenvalue. We introduce the abstract
Ruelle-Mayer transfer operator and prove its trace formula. Then we turn our attention to Ising
two-body interactions and reformulate the known examples of Ruelle-Mayer transfer operators which
satisfy a dynamical trace formula in our setting. The remaining part of this chapter is devoted to the
proof of our main result Theorem 2.13.8.

In Chapter 3 we define the Ruelle-Mayer transfer operator for matrix subshifts. The operator was
known in the case of a finite alphabet F. We eliminate this requirement and prove our second main
result Theorem 3.2.6. For this purpose we investigate the behaviour of the trace formula and the
spectral properties of the Ruelle-Mayer operator under a certain tensoring with the transition matrix
which is needed for the dynamical trace formula for matrix subshifts.

The main concern of Chapter 4 is the study of the dynamical zeta function in the presence of a
dynamical trace formula. We use the theory of regularised determinants for the study of the generating
functions of type gu(z,a,G) introduced above and finally prove the main result on the meromorphic
continuation of Ruelle’s zeta (Corollary 4.4.4).

In Chapter 5 we give, based on [Fo89], an introduction to the extended oscillator semigroup and its
Bargmann conjugate, the extended Fock oscillator semigroup. Given a Ruelle-Mayer transfer operator
the Bargmann transform leads to a corresponding Kac-Gutzwiller operator. We make use of the fact
that a Ruelle-Mayer transfer operator can be decomposed into an integral over a family of composition
operators each of them of type L, A as above which are contained as a small subsemigroup in the
extended Fock oscillator semigroup. We apply the conjugation formulas known in the literature to this
type of composition operators and obtain the corresponding Kac-Gutzwiller operator. By choosing
special generating triples for the distance function this integral operator on L?(R™) has a (relatively)
simple integral kernel which can be used to investigate the spectrum of the transfer operator in detail.
Appendix A contains background material from functional analysis. The first three sections recall the
definition of traces and (regularised) determinants based on [GoGoKr00]. First we give an introduction
to the axiomatic approach, then we study the Hilbert space setting, i. e., the trace class and the
Schatten classes as an example of embedded subalgebras. In Section A.2 we provide the (Hilbert space)
theory of regularised determinants as needed for the investigation of the dynamical zeta function. In
Section A.3 we briefly comment on the Banach space setting and mention exemplarily nuclear operators
and the Grothendieck 2/3-theorem.

For the investigation of the Ruelle-Mayer transfer operator we use the fact that the Fock space is a
reproducing kernel Hilbert space. In Section A.4 we give an introduction to reproducing kernel Hilbert
spaces, discuss the main examples, and focus then on the classification of Fock spaces. We end this
chapter with a proof of the folklore theorem A.7.6.

The main issue of Appendix B is the investigation of composition operators and their spectral proper-
ties. In particular we are interested in those cases in which the Atiyah-Bott fixed point formula 2.4.2
holds. This question is investigated both for finite-dimensional and infinite-dimensional complex do-
mains. Thus both appendices provide essential tools for the proof of the dynamical trace formula and
are of independent interest, too.

FUTURE PROSPECTS:

In Chapter 1 we introduce lattice spin systems over (possibly) high dimensional lattices. However, the
rest of this dissertation only concerns lattice dimension equal to one due to the fact that no reasonable
candidate generalising the Ruelle transfer operator is known. In order to pave the way towards higher
dimensional transfer operators we rewrite the partition function by emploiting symmetries which
might be useful for the direct construction of future Kac-Gutzwiller type transfer operators. Another
approach might be the investigation of the dynamical partition function which could be a suitable
replacement for the partition function in higher dimensions.

In Chapters 2 and 3 we study Ruelle-Mayer transfer operators for classes of interactions which have
a fast decay at infinity. It would be interesting to find other approaches which allow to treat slower
decaying interactions (or to show that those are not accessible via the transfer operator method). We
construct the Ruelle-Mayer transfer operator as an integral over a family of composition operators of a
special type. As long as distance functions with finite rank generator are concerned, these composition
operators L, form a small subsemigroup inside the extended Fock oscillator semigroup which
likewise consists of trace class operators. This motivates the hope that future transfer operators may
be built up from (a larger part of) the extended (Fock) oscillator semigroup.
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In Chapter 4 we prove the Euler product of the dynamical zeta function in the presence of a dynamical
trace formula and hence obtain a spectral interpretation of zeta’s zeros and poles. Using the Kac-
Gutzwiller transfer operator this offers the possibility to study zero statistics of the dynamical zeta
function as done for instance in [HiMay02], i.e., statistics like the average number of zeros in a certain
interval or the average spacing of two consecutive zeros.

The methods of Chapter 5 are restricted to distance functions with finite rank generator. Using
methods from probability theory one might be able to treat also arbitrary generators.

In Appendix B we enter the world of generalised composition operators and their spectral properties.
For the purposes of this dissertation and in particular of the construction of the Ruelle-Mayer transfer
operator it is sufficient to prove the trace formula (and the trace norm formula) for composition
operators of type Lqpa (Thm. B.4.3). The natural question concerns the general setting for this
theorem.

Some results of this dissertation will appear in a joint article with J. Hilgert under the title ,,Mero-
morphic continuation of dynamical zeta functions via transfer operators®.
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1 Thermodynamic formalism for lattice spin systems

The purpose of the thermodynamic formalism or statistical mechanics is the understanding of a dy-
namical system which consists of a huge number of similar subsystems (“particles”). The microscopic
properties of the subsystems and their interactions determine the macroscopic properties of the system.
Think for instance of a solid consisting of a huge number of atoms. Magnetism is a property which
depends on the average properties of the magnetic momenta (“spins”) of the particles. One observes
a macroscopic ferromagnetism if the elementary (microscopic) magnetic momenta are aligned in such
a way that they do not cancel each other. Physical observations show a phase transition from ferro-
magnetism to paramagnetism: At low temperature the spins are parallel leading to a ferromagnetic
behaviour of the solid, at high temperature one has thermal noise, i.e., a disordered spin configuration
and thus a paramagnetic behaviour. E. Ising proposed a model for describing ferromagnetism of a
solid, where the spins of the electrons can only take values in a set with two elements, “spin up” or
“spin down”. The interaction energy of a pair of parallel spins is smaller than that of a pair of an-
tiparallel ones. This makes the system tend towards a uniform parallel configuration. As temperature
increases the system tends to disorder. Ising’s original model considers nearest-neighbour interactions
of particles aligned on a one-dimensional lattice. Although Ising’s one-dimensional model does not
exhibit a phase transition, his model and its generalisations (higher dimensional lattices, other types
of imposed interaction) have been applied successfully in many branches of science to explain phe-
nomena where individual elements (e.g., atoms, animals, protein folds, biological membrane, social
behaviour, etc.) modify their behaviour so as to conform to the behaviour of other individuals in their
vicinity. For some biological applications we refer to [Th72, Ch. 7]. More than 12 000 papers have
been published between 1969 and 1997 using the Ising model.
We will now give an outline of this chapter. Roughly, a (classical)? lattice spin system consists of a
configuration space equipped with the structure of a dynamical system. After introducing the notion
of interaction and energy we will define the partition function which is the central object of this
chapter.
In Section 1.1 we define the configuration space. Given a Hausdorff space F' equipped with a finite
Borel measure, the full configuration space is the space F of F-valued functions which assign to each
lattice point ¢ € L in a fixed discrete space L a so called spin value £(i) € F. The position space
LL is often interpreted as a crystal. Depending on the modelled physical situation the set F' can be
interpreted as charge, as classical spin values F' = {£1} (“spin up”, “spin down”), as occupation
numbers F' = {0,1,...,n}, or as species of particles present at a lattice point. Thus we can treat
spin systems, lattice gas models, and alloy models from the same mathematical point of view. In the
literature only the case of compact F' or even finite is covered which for instance excludes to model
a system where a particle can have arbitrarily large charge. A non-empty closed subspace Q C FT
is called a (restricted) configuration space. In Section 1.2 we provide the configuration space with
the structure of a dynamical system. Given a left semigroup action I' x L. — L, (v,4) — -4 on the
position space we define a right semigroup action on the full configuration space in the natural way,
ie.,

7D x F¥ — FY 7(y,6) () == £(y - )

for all i € L. The triple (F™,T,7) is called a shift system. Now, a lattice spin system is a 5-tuple

3«“Classical” in contrast to “quantum”. We only consider classical systems without mentioning it in the future.
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Figure 2: A two-dimensional lattice with attached spins.
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(Q, F,L,T',7), where (F* T, 7) is a shift system and Q C F“ is a closed 7-invariant subspace. An
important and widely studied class of examples is the D-dimensional matrix subshift, see Def. 1.2.8.
For every subset A C LL one defines a restriction map pp : F* — FA € = (&)ier = &|a = (&)ien
and Qp = pa(Q). The elements of Q, are called subconfigurations. An observable is a bounded
continuous complex-valued map defined on the configuration space 2. We call f € Cp(Q2) localised
in the (finite) region A C L if f = fa o pa for some fo € Cp(24). In Section 1.4 we use the Stone-
Weierstrass theorem to prove that the space of localised observables is dense provided the space F' of
spin values is compact. Many interesting observables, as for instance the energy, are built up from so
called interactions. An interaction is a family of localised observables which we define in Section 1.5.
An important role play interactions of the following type: Define ¢ = (¢a) via

¢A(§A) = _d(i,j)r(gi,éj) ) lfA:{Zaj}agA - (&iagj)a (27&])’
0 , otherwise,

where 7 : FxF — Candd : LxL — C are symmetric functions, ¢ : F — C, and &, & eF,ACL. An
interaction of this form is called a two-body interaction with interaction matrix r, anisotropy matrix
d and potential ¢g. From Section 1.8 on we will restrict our considerations to the case of two-body
interactions. Two-body interactions are both simple to handle and still interesting for applications.
Depending on the interaction matrix one has an Ising model, a Potts model, or one of Stanley’s
M-vector models.

Our approach to lattice spin systems is affected by the tradition of thermodynamics, i.e., we look
at volume elements which contain a finite number of particles, investigate the localised observables,
and then study the asymptotic behaviour of the localised observables as the volume tends to infinity.
Average properties of certain observables can be encoded in the partition function which is of particular
interest in thermodynamics. Its definition depends on a couple of things we will introduce first.

The way how a subconfiguration gets embedded into the configuration space is described by the so
called boundary condition. Such an embedding should be a (partial) right inverse of the restriction
map pp : 2 — Qu and will be defined at least for certain subsets A of the position space L. In
Section 1.3 we introduce two types of such boundary conditions, the zero boundary condition as a
particular example of an external field boundary condition, and for a particular class of semigroup
actions the so called periodic boundary condition. In order to do this we use the orbit relation with
respect to a semigroup action. The periodic boundary condition has been studied in the context of
ZP-actions, whereas our generalisation will be applicable also in other situations, such as actions of
an arbitrary abelian semigroup. We examplarily study the one-dimensional matrix subshift and give
sufficient conditions on the transition matrix such that the associated matrix subshift allows a periodic
boundary condition.

In Section 1.6 we define the energy of a subconfiguration £y € 2 if an interaction is fixed. The total
energy UX’¢ consists of two parts. The inner energy comes from all interactions of subconfigurations
inside this configuration and can be defined for any region A C L provided that the interaction
satisfies a certain summability condition which we call compatibility. Given a boundary condition
b= (by: F» — F%),, a subconfiguration determines a configuration on the whole position space via
the boundary condition. The outer part of the energy counts the interactions between the inside and
its extension. We will give a sufficient growth condition imposed on the interaction which ensures the
convergence of the possibly infinite sums. In the special case of zero boundary conditions the total
energy is just the inner energy and the condition ensuring the absolute convergence can be weakened.
For the periodic boundary condition we will find a weaker condition in Proposition 1.9.3.

Section 1.7 introduces the main object of this chapter, the so called partition function. The partition
function depends on the (scaled inverse) temperature 8 € C, the volume element A C L, and via
the energy US?(£x) on the microstates £y € (ba)~'(€2) of a finite number |A| < 0o of particles. The
partition function is defined as follows: Let A C IL be a finite subset of the position space, I’ a
Hausdorff space with a finite Borel measure v and let v be the product measure on F*. Given a
configuration space 2 C F, an interaction ¢ which is compatible with the boundary condition b we
define the partition function with boundary condition b as

Z3%(B) = /bl(ﬂ) exp( -8 UX’¢(5A)) dv™(En)-
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The average properties of the microstates determine the partition function. Many of the thermody-
namic variables of the system, such as the total energy, free energy, entropy, and pressure, can be
expressed in terms of the partition function, its derivatives, and their asymptotic behaviour.

In Section 1.9 we restrict to the study of two-body interactions, see Def. 1.8.1. We determine the class
of interactions which are compatible in the sense of Def. 1.6.4 with a periodic boundary condition. In
Proposition 1.9.3 we formulate a sufficient condition ensuring compatibility which is easy to check, in
particular if the two-body interaction is given via a distance function, an interaction matrix, and a
potential. Afterwards we discuss some examples of such distance functions.

We would like to stress that the number of particles is typically thought as being huge (number of
atoms in a piece of matter.) Hence all our efforts serve to simplify the computation of the partititon
function. In this chapter we will see different approaches. They all consist in exploiting symmetries:
Two-body interactions given via a distance function, an interaction matrix, and a potential have
special properties which allow to simplify the integrand of the partition function further. In the case
of an Ising spin system, see Ex. 1.8.3, with vanishing potential we obtain the representation

2SCh /(bi)l(n) P (ﬂ > L& &) A (Ea)

ilEA

of the partition function with periodic boundary condition b = (b}),, where (ff;‘ )ilea 1S a symmetric
quadratic matrix and hence the integrand should be viewed as the exponential of a quadratic form in
the variables §; € FF C C (i € A). This is a generalisation of the situation [HiMay02, p. 26] in the
construction of the Kac-Gutzwiller integral operator. This representation only depends on the fact
that we have a periodic boundary condition defined via an orbit relation. Specific information about
the semigroup is not needed.

In the last two sections we specialise to one-sided ZP-subshifts. We use the specific semigroup structure
of N§ as a subsemigroup of Z” and prove explicit formulas for the energy and the partition function.
The considerations of Section 1.11 lead to the dynamical interpretation of the partition function in
Corollary 1.11.3 which we explained in the introduction. We introduce the so called standard observ-
able A4y and show that for one-dimensional systems the energy with periodic boundary condition
can be expressed in terms of A4y and the Np-action. This is an essential idea in the construction both
of the Ruelle transfer operator (2.1.3) and the Ruelle-Mayer transfer operator (2.3.7).

In the way of presentation we are inspired by the books [Ru78] and [May80a] which mainly deal
with the lattice . C Z” and ZP-actions on it. We generalise in the following respects: We allow as
position space a countable set equipped with a semigroup action. The spin variable can take values in
a Hausdorff space with finite measure, the hitherto existing setting was a compact Hausdorff space.
We decided to place more emphasis on the dynamical system and to give a mathematically satisfactory
definition of a periodic boundary condition.

1.1 Lattice systems

A lattice spin system consists of an underlying fixed discrete space, the lattice L, where on each lattice
point i € L a classical spin variable £(i) € F is attached. The set F' can be interpreted as spin values
for instance if F' = {£1} has two states which are usually called “spin up” and “spin down”. If one
models a lattice gas the set F = {0,1,...,n} is interpreted as the number of particles present at a
lattice point, so called occupation numbers. The alloy model thinks of £(i) € F as the species of
the particle present at the lattice point ¢ € L. We introduce the full and the restricted configuration
space, define the restriction operation and with its help the notion of a subconfiguration.

Definition 1.1.1. (Configuration space)

(i) Let L be a countable set, called the position space, and F a Hausdorff space, called the alphabet.
In many situations we will assume that F' carries a finite Borel measure v, called the a priori
measure.

(i) Let F* := [Lic F = {f : L — F} be equipped with the product topology. An element ¢ € FL
is a mapping which assigns to each lattice point i € L a spin value & = £(i) € F. We call F*
the (full) configuration space and its elements configurations. Let fo € F be a special element
to denote an empty lattice point, i.e., £(i) = fo means that there is no spin attached to the
point ¢ € L.
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(iii) Let ) # Q C F™ be closed. We call 2 a (restricted) configuration space of the spin system. The
elements of 2 are called allowed configurations. O

Think of F' as the set of possible values of a classical spin variable and of L as the position space of
a particle or as a crystal lattice. Important examples are the cases where F' is compact, in particular
if F' is a finite set equipped with the discrete topology. In some examples the countable set L has
a group structure which explains the notion “lattice”. Think of the (restricted) configuration space
) as defined by some constraints, e. g. if two spin values are not allowed at lattice points which are
“close” to each other. In (1.2.8) we will introduce a class of non-trivial configuration spaces.

On the configuration space we have the restriction operation which we will define next. The purpose
of these restriction mappings is that we want to define the total energy of a configuration as the sum
of the energies coming from the interactions of all subconfigurations.

Definition 1.1.2. Let F* be a full configuration space (1.1.1). For A C M C LL we define restriction
maps
pr: FY— PR =T F €= (&ier — &l = (&)ien
ieA
and pa m = palpw : FM — FA, O

The image of a configuration under the restriction map ps we call a subconfiguration.

Remark 1.1.3. (Subconfigurations) Let Q C F be a configuration space (1.1.1), A € Py(LL), where
PrL) :={A CL;0 < |A|] < oo} is the set of non-empty finite subsets of L, and pa the restriction
map (1.1.2).

(i) Let Qp = pa(2) for A € Pp(L). We will call the elements {5 of Qa subconfigurations. Note
that every subconfiguration £5 € Q4 can be extended to an allowed configuration: This means
there exists a £ € Q with pa(€) = €a.

(ii) The mappings pa, pa,am are continuous and surjective and hence so are their restrictions pa|q,
PA,M |QM'

(iii) For A ¢ M C L we clearly have py = pa a0 pur- O
We conclude this section with a little topological remark.
Remark 1.1.4. Let Q C F* be a configuration space (1.1.1), A C L.

(i) We have equipped F™ with the product topology. A basis of the topology are the so called
cylinder sets. The topology is metrisable, see for instance [Ki98, p. 2, p. 226].

(i) If F is compact, also the space F'“ (by Tychonoff’s theorem) and its images F* = pa(F) and
their closed subspaces 2 are compact. o

1.2 Shift operators

A dynamical system is a semigroup action 7 : G x M — M where the semigroup G is interpreted as
time. Thus typical examples are semigroup actions of the integers Z, the non-negative integers Ny,
the real numbers R, or the positive real numbers R>. Given a semigroup left action on the position
space, this induces a right action on the configuration space, which equips the configuration space
with the structure of a dynamical system. Such a dynamical system we call a shift system. We will
discuss the question when the dynamical system leaves the restricted configuration space invariant
and thus induces a dynamical system there. As an important class of examples we introduce the D-
dimensional shift. A large family of non-trivial Z”-subshifts, the so called matrix subshifts, is given
via a transition matrix A : F' x F' — {0,1}. We start with the definition of a semigroup action and a
dynamical system.

Definition 1.2.1. A 3-tuple (M, G, ) is called a dynamical system, if 7 : G x M — M is a right
semigroup action of the semigroup G on the set M, i.e., if

(i) 7(e,m) =m for all m € M, if G contains a neutral element e € G, and
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(ii) 7(h,7(g,m)) = 7(gh,m) for all m € M, g,h € G.

If 7(h,7(g,m)) = 7(hg,m) for all m € M, g,h € G, then 7 : G x M — M is a left semigroup action.
O

In the following remark we give some examples of dynamical systems.
Remark 1.2.2. Let (M, G, 7) be a dynamical system (1.2.1).

(i) If G are the real numbers or the integers, then 7 can be interpreted as the time evolution rule
of M: Think of 7(g,m) being the actual state of m € M after “time g € G”.

(ii) As an example, let T : M — M be a map, denote by T™ = T'o...oT the n-th iterate of T.
—_—

n—times

Then

(3) 7iNo x M — M, (n,m) = r(n,m) := T"(m)

defines a Ng-action and (M, Ny, 7) is a dynamical system. If T is invertible, then
4) T:ZxM— M, (n,m)— 7(n,m):=T"(m)

defines a Z-action. (M,Ny,7) and (M,Z, ) respectively, are called time-discrete dynamical
systems induced by T, see Figure 3.

(iii) Every set M can be seen as a dynamical system: Take G to be the trivial group {e} consisting
of the neutral element. Then 7(e,m) := m for all m € M defines a G-action. O

We specialise to the case where M is a space of functions. In Remark 1.11.5 we will see that in turn
every dynamical system induced by a map T : M — M can be written as an action on a space of
functions.

Definition 1.2.3. (Shift) Let F'™ be a full configuration space (1.1.1), T' a semigroup, and 7 : I' x L —
L a left action of I on L (1.2.1).

(i) We have an induced right action on the space of F-valued functions on L, also denoted by 7,
7D x P — FY 7(y,6)(i) := &(y - 1)

fori €L, £ € F¥ ~ €T, called the shift action. Hence (F T, 7) is a special dynamical system,
called a shift system.

(ii) For fixed v € I’ we have a continuous* map

T’Y : F]L - FIL’ T’Y(g) = T(’Yaé-)a

called the shift operator associated with ~.

4The cylinder sets are a basis of the topology, hence the continuity of T is easy to see, see [Kea9l].

Figure 3: A time-discrete dynamical system generated by a self-map T : M — M.
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(iii) For fixed v € I and A C L we have an induced operator 7.,.p : F7* — FA such that the
diagram

(5) FL . FL

F’Y'A Tryiy-A FA
commutes: For all £ € F¥ with &,.4 = py.a(€) let

Tysy-ayen 1= (pa © 74)(§).
This is well-defined: Given &,.4 € F7'A and two p..a-preimages &, n € FL, i.e., &4 = pya(€) =
py-a(n), we have (pa o 74)(§) = (§(7 - i))iea = (pa 0 7)(n). O
If ' is a group and 7 is a group action, then the corresponding dynamical system (F,T", 7) is invertible

and hence in a certain sense deterministic. Nevertheless it can have non-invertible subsystems, a
phenomenon which we will explain next.

Example 1.2.4. Let 7 : I' x L — L be a group action, H < I' a subsemigroup, and A C L. Then
IL; := H - A is H-invariant and 7 : H x [L; — L; is a semigroup action. We give some examples of
semigroups, which are not groups.

(i) Let v € T be an element of infinite order and H = {v™; n € Ny}.
(ii) Slightly more generally, take a finite number of commuting elements 71,...,7, € I' of infinite
order and let H = {7 ... 7% |aq,...,an € No}.

(iii) As a concrete example let T' = Hi’;l(niZ), where n; > 0, which acts on L = ZP via left

translation as usual. The semigroup H = Hfil(niNo) generated by the multiples n; e; of the
standard basis elements e; € ZP, has orbits of the form k+ H, k € ZP, and leaves invariant any
set of the form L; = k + NP, k € ZP, i.e., a translate of the positive quadrant in ZP. O

An important class of lattice systems are the so called matriz subshifts. At first we will introduce the
two- and the one-sided full shift and then their subshifts.

Example 1.2.5. (Full shift) Let D € N. The group L = Z”, and hence all subsemigroups I' < Z%,
act on L by (left) translations

(6) 7:TxZP = ZP, 7(k,m) =k + m.

The induced action on the space of F-valued functions is the regular representation

(7) 7T x F2° — F2° ) 7(k,€)(m) = £(k +m)

for all k,m € Z”. The dynamical system (FZD,ZD, 7) is called the D-dimensional full shift. O

An example for a non-invertible subsystem is the following, which has been mentioned already in
Example 1.2.4 (iii).

Example 1.2.6. (One-sided shift) The restriction of the Z”-action (6) to the semigroup N < ZP
leaves invariant any set of the form L; = k + NP k € ZP| hence we have an induced action on N}
via

(8) 77 NP x NP = NP 7(k,m) =k+m
and also on the space of functions
(9) 7 NP x FN — PNk, €)(m) = €(k + m).

The dynamical system (FND,N(];),T>) is called the one-sided D-dimensional full shift, in contrast to
the two-sided full shift (F ZD,ZD , 7). By abuse of notation we will sometimes write 7 instead of 77,
if the acting semigroup is clear from the context. Figure 4 illustrates the surjective, non-injective
mapping 711y : J RN FNQ, which moves the configuration one step down and one step to the left.
Look for instance at the motion of the block of spins inside the dotted frame. O
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In (1.1.1) we defined full and restricted configuration spaces. In (1.2.3) we have equipped the full
configuration space with the structure of a dynamical system. In order to get a dynamical system on
a restricted configuration space we have to assume that it is invariant under the semigroup action.

Definition 1.2.7. Let (F“ T, 7) be a shift system (1.2.3). A subset Q C F is called T-invariant, if
Q is 7, -invariant for all v € I'. If Q C F* is 7-invariant and closed, then the restriction of 7 to Q

7:I'xQ—Q

defines a dynamical system (Q, T, 7), called a subshift of (F“,T',7). A lattice spin system is a 5-tuple
(Q, F,L,T',7), where (F*,T,7) is a shift system (1.2.3) and Q C F" is a closed T-invariant subspace.
([l

As an example we will now define a family of non-trivial subshifts of the shift systems (F NP NP 7))
and (F' ZD,ZD ,7) introduced in Example 1.2.6. We only use the property of Z” that every point
i € ZP has a finite number of direct neighbours, hence this definition can be extended to more general
lattices. Given a function A : F x F' — {0,1} which assigns to a pair of spin values a “allowed” or a
“not allowed”, a configuration is allowed if all pairs of spins at adjacent positions are allowed. Think
of A as a nearest-neighbour exclusion rule in the sense explained in the introduction.

Such so called matrix subshifts arise for instance when a dynamical system where not all transitions
are allowed is encoded into a symbolic dynamical system. In Section 3.4 we will introduce a new
modelling of the so called hard rods model as a matrix subshift. For other examples we refer to [Ki98,
1.2).

Definition 1.2.8. (Matrix subshift) In continuation of Example 1.2.5:
(i) Amap A: F x F — {0,1} is called a transition matriz or transition rule.
(ii) A configuration £ € F@") is called allowed if
A&, Gie) =1

for all i € ZP, e € {u € NP; ||lu|| = 1}, where || - || is the standard euclidean norm on RP. We
denote the set of allowed configurations by Q4.

(iii) Clearly, Qp is T-invariant and closed in F' Z”  The dynamical system (24,77 7) is called the
two-sided D-dimensional matriz subshift. The set F' is called the alphabet of the shift.

(iv) Similarly, let 7 be as in (8) of (1.2.6). Then the restriction Q7 := pyo (Q4) is 77 -invariant and
closed in FND, and (7, NP, 77) is called the one-sided D-dimensional matriz subshift. O

The following remark gives a visualisation of the set of allowed configurations of a matrix subshift as
paths in a directed graph. This graph theoretic interpretation is helpful for many ergodic problems
related to matrix subshifts.

Figure 4: The one-sided two-dimensional shift (See 1.2.6).
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Remark 1.2.9. (Matrix subshift) A path in a directed graph is a sequence of vertices which are
linked by edges of the graph. The length ¢(v) of a path v is the number of its edges. One can visualise
the configuration space Q4 of the one-dimensional matrix subshift (Qa,Z,7) (1.2.8) as the set of
(two-sided infinite) paths in the directed graph with vertices F' and edges from « to y iff A(z,y) = 1.
Similarly, Q7 consists of the one-sided infinite paths in this graph. Consider for instance the following

one-dimensional two-sided matrix subshift defined by the data F' = {1,2, 3} and the transition matrix

A= (A(z’,j)) N = (8 0 %) corresponding to
1,j=1,2,3 111

(10)

1 2)

We will assume that the graph is strongly connected, which means by definition that for each pair of
vertices one can find a path connecting them. In this case the transition matrix A is called irreducible.
For each vertex « € F' we define its period to be the greatest common divisor (ged) of the length of
closed paths through z:

period(z) := ged {(7) | v connects x with itself}.

A vertex z € F is called aperiodic if period(z) = 1. A graph is called aperiodic if all its vertices are
aperiodic. The example (10) shows an aperiodic graph. A transition matrix A is called aperiodic if
its associated graph is aperiodic. O

Whereas for our main example, the matrix subshift, the shift invariance is obvious, the general sit-
uation is much more difficult. Let (F“,T,7) be a shift system (1.2.3). We would like to determine
which subspaces Q C F“ are 7-invariant. The 7-invariance of Q clearly imposes some constraints on
the “local” objects Qx = pa(£2) (A C L), where (pa)cr is the family of restriction maps (1.1.2). For
every A C L we have a diagram which is analogous to (5) in Definition 1.2.3

(11) Q( F]L ™ F]L 7Q
pv«Al lpw»A lpA LPA
Q'y‘A( FV'A Tyiy-A FA )QA

where the middle square is commutative by the definition of 7,.5., see Def. 1.2.3 (iii). As a necessary
condition for the T-invariance of € one has the commutativity of the diagram (11):

Proposition 1.2.10. Let (FL, T, 7) be a shift system (1.2.3), v € T, 7, : F* — FY and Ty.yp -
FYA — FM be as in Definition 1.2.3. Let Q C F* be a non-empty subset. Then:

(i) If Q C F is 7 -invariant, i. e., 7,(Q) C Q, then Ty A (Qy.n) C Qa for all A C L.

Figure 5: Coding a dynamical system: Given a map T : M — M, and a partioning of M = AU B U
C U D, then for example the sequence z, Tz, T?z, T3x gets encoded by AABC.
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(i) Let 7(2) C Q. The map 1y|a : @ — Q is surjective if and only if Ty.y.A(Qy.a) = Qa for all
ACL.

Proof. If Q C FU is 7,-invariant, then by the definition of Q,.A = p,.A(€2) in (1.1.3) and of 7,.,.o
in (1.2.3) we have

Ty A (Qy:8) = (Tyi9-8 © py2)(Q2) = (pa 0 79)(Q2) € pa(Q) = Q.
The equality 7y;v.a(24.4) = Qa holds if 7y|q : @ — Q is surjective. For the converse let A = L. O

Now we consider the converse of Proposition 1.2.10, i. e., the problem whether the 7-invariance of
Q can be guaranteed by local constraints on the Q4 C FA. Let Vi € F” be any family of closed
subspaces parametrised by A € Py(L). We define

(12) Q(Va)a) = {€ € F™| pa(€) € Vi VA € P4(L)}.

Under some constraints on the “local” objects Vi, A C L, the resulting Q((Va)a) € F" is 7-invariant:

Proposition 1.2.11. Let (F“,T,7) be a shift system (1.2.8), v € T and Q C F“ be a non-empty
subset.

(i) If Q € F is m-invariant and Qp = pa(Q) for all finite A C L, then Q C Q((Qa)a), the latter
defined in (12).

(ii) Let (VA)aep;w) be any fami{y of closed subspaces Va C F™ such that 7.,.a(Vs.a) C Vi for all
finite A C L, then 7, leaves Q((Va)a) invariant.

(iti) In particular, if in addition Q = Q((Va)a), then 7,|q : Q — Q leaves Q invariant.
Proof. Let € € Q((Va)a). Then
PA(Ty(8)) = Ty A (052 (6)) € Ty a(Vooa) C VA
for all finite A C IL, hence 7, (£) € Q((Va)a). O

The situation of Proposition 1.2.11 (ii) gives the commutativity of the following diagram

P~-A
F- Q Vaya FrA
: |
T’Yl g | Tv;’Y’Alﬂ.YAA lT’W‘Y‘A
4 Y
~ PA
F]L D) Q Va C FA
N

As remarked in [Ru78, p. 68], the hardest problem is indeed to show that Q((V4)a) defined in (12) is
non-empty. This can be undecidable in the sense of logic.

1.3 Boundary conditions

In thermodynamics one often studies a lattice spin system by looking at volume elements which
contain a finite number of particles, investigating the localised observables, and then studying the
asymptotic behaviour of the localised observables as the volume tends to infinity. Subconfigurations
can be embedded into the configuration space in different ways. This process is described by the so
called boundary condition. Since 4 was defined in (1.1.3) to be the image pa(€2) of the restriction
map pa : Q — Qa (1.1.2), every {4 € Qp has a preimage in 2. We would like to have at least for
certain finite A C L a (partial) right inverse of the restriction map. These admissible sets will be
collected in the subset P of Ps(L) = {A C L; 0 < |A| < oco}. We will introduce two types of such
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inverse maps which we call boundary conditions, the zero boundary condition as a particular example
of an external field boundary condition, and for a particular class of semigroup actions the so called
periodic boundary condition. The periodic boundary condition has been studied in the context of
ZP-actions, whereas our generalisation will be applicable also in other situations, such as actions of
an arbitrary abelian semigroup. We will give sufficient conditions on the transition matrix such that
the associated one-dimensional matrix subshift allows a periodic boundary condition.

Definition 1.3.1. Let Q C F" be a configuration space (1.1.1) and (pa : F* — F*)5cr, the family of
restriction mappings from (1.1.2). A boundary extension is a family (bp),cp of maps by : FA — L
parametrised by some non-empty subset P C Py(L) such that pp o ba = idpa for all A € P. The
subsets of the position space belonging to P are called admissible for the boundary extension. O

It is appearent that by : F* — F¥ is a right inverse of py : F* — FA. We will now consider the
restricted configuration space.

Remark 1.3.2. Let Q C F™ be a configuration space (1.1.1), (by : F* — FY)rcp a boundary
extension (1.3.1), and (pa : F™ — F*)scp the family of restriction mappings from (1.1.2). For A € P
let

Q) 1= (ba)7H(Q) = {&n € FA[ba(én) € O},

which is a subset of Q4, since for all {4 € €, we have by definition of the boundary extension (1.3.1)

En = pa(ba(€n)) € pa(2) = Qn,

where the latter identity holds by (1.1.3). Hence the restriction of by to (2, defines a map ba|q, : ) —
), which is a partial right inverse of pp : 2 — Q). By quite the same argument the following map
is well-defined: pp\a © balay, @ Q) — Qpya, since for all {4 € Q) we have pp\a(ba(§a)) € pr\a(Q) =
Qra- O

Definition 1.3.3. Let Q C F* be a configuration space and (by : FA» — F]L)Aep a boundary
extension (1.3.1) parametrised by P C Ps(L). If Q) = (ba) 1 () # 0 for all A € P, the family
(ba : Q) — Q)acp is called a boundary condition. If (by)~1(Q) = Q4 for all A € Ps(L), then we say
that b is globally defined. O

By Remark 1.3.2 the map by : Q) — Q is well-defined. We review what we have achieved so far. On
the full configuration space F the map by : FA — FT is a right inverse of py : F* — F®, whereas
on the restricted configuration space the picture is different: The map by : Q) — € is only a partial
right inverse of ps : @ — Q4 on a (possibly strict) subset 2, of Qx, as shown in Remark 1.3.2.
There are many ways to define extension maps. The simplest way is to choose the boundary exten-
sion (1.3.1) to be constant “outside” A. This leads to the so called external field extensions. In order
to glue together both parts we use the following concatenation operator.

Definition 1.3.4. Let F™ be a full configuration space (1.1.1) and M, N C L non-empty disjoint
sets. We define a concatenation operator @ : FM x FN — pMUN, (ErynN) — Ep DN via

oo - {81 12

.
s

Figure 6: Zero boundary condition, periodic boundary condition.
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Example 1.3.5. (External field extension) Let Q C F be a configuration space and n € F* a fixed
configuration, the “external field”. The admissible family P, for the external field extension consists
of all finite subsets of L, i.e., P, = Pf(IL). The external field extension is the family

by i FY — P&, & €4 @ praa(n)

for A € P,. If Q) = (b))~ 1) # 0 for all A € Py, the family (b} : Q) — Q)aep, is called the
external field condition. - If n°(i) = fo for all i € L, where fy € F is the empty spin defined in (1.1.1),
then the boundary extension is denoted by b} and is called the zero boundary extension, respectively
(03 : ) — Q) aep, ) is called the zero boundary condition if it exists. O

In Remark 1.3.13 we will discuss a concrete example of a configuration space and a necessary and
sufficient condition for the existence of the zero boundary condition.

Next we will define the periodic boundary extension. The idea is that certain subsets A C IL give rise
to a tiling of L such that the periodic boundary extension ba(€a) restricted to a tile coincides with
&p. First we need some preparation concerning semigroup orbits.

Definition 1.3.6. Let 7 : I' x L. — L be a semigroup action (1.2.1). We define the orbit relation
~pCL xL via
i ~p j iff there exist g, h € T such that 7(g,i) = 7(h, j).

O

Clearly the orbit relation with respect to a semigroup action is symmetric and reflexive. But, unlike
group actions the orbit relation is (in general) not transitive, hence not an equivalence relation. A
condition ensuring the transitivity is “commutator-free” which for instance holds if the semigroup is
abelian.

Proposition 1.3.7. Let 7 : ' x . = L be a semigroup action of a semigroup I'. The action is said
to be commutator-free if T(gh,-) = 7(hg,-) for all g, h € T'. If 7 is commutator-free, then the orbit
relation ~p CIL x L (1.8.6) with respect to T is an equivalence relation.

Proof. We have to show that the relation ~ C L x L is transitive: Let a ~ b, b ~ c. Then there
exist f,g,h,i € T such that 7(f,a) = 7(g,b) and 7(h,b) = 7(i,c). Hence 7(hf,a) = 7(hg,b) =
7(gh,b) = 7(gt, c), which by definition means that a ~r. c. O

In our applications the acting semigroups are abelian, but one could ask for other criteria forcing the
orbit relation to be an equivalence relation.

Remark 1.3.8. Let I' x L — LL be a semigroup action such that the orbit relation ~ C L x L
from (1.3.6) is an equivalence relation.

(i) The position space L decomposes into a disjoint union of equivalence classes with respect to
the orbit relation. The equivalence classes are called (generalised) I'-orbits. We will write
IL/ r:= L/ ~r for the quotient space with respect to the orbit relation and call it the (generalised)

T-orbit space. We call a set Ar C L of representatives of L/l" a fundamental domain for the
I-action.’

(ii) A fundamental domain A C L for the I'-action is said to satisfy the tiling condition, if

F~A::{'y~i|i€A,’y€F}:L

iii) If 7 : I' x L. — L is a group action, then our definition of the orbit relation coincides with the
g
usual one
ar~pb = (Iyel) r(y,a) =0

and defines an equivalence relation. Every fundamental domain satisfies the tiling condition.

5Note that L is assumed to be countable.
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iv) As an example take the integers . := Z, n € N, and the usual translation action (6) of nNy
g
on Z. Then the generalised orbits are of the form i« +nZ (i = 1,...,n), which differs from the
pointwise orbit

7(nN,i) == {r(nm,i) =nm +i € Z|m € No} =i+ nNy

of i € Z . The (standard) fundamental domain for this action is the set {1,2,...,n}. Note that
also the nZ-action on Z has this fundamental domain. (]

Given a semigroup action I' x L — L, (v,g9) — v -¢ (1.2.1) and a family (I',)qca of subsemigroups
', < T, we are now prepared to define a periodic boundary extension. Such a periodic boundary
extension assigns to every function defined on a fundamental domain of I'y, the periodic continuation
with respect to the I'-orbits.

Example 1.3.9. (Periodic boundary extension) Let I" be a semigroup and 7 : T'xL — L, 7(vy,9) = v-¢
a semigroup action (1.2.1). Let Ty, < T be a family of subsemigroups of T' (indexed by « € A) such
that

(i) The orbit relation ~, := ~p_ with respect to I', is an equivalence relation for all a € A,
(ii) L/l"a is finite for all € A, and

(iii) There is no pair of distinct semigroups having the same set of representatives: For all « # § € A,
for all sets A, of representatives of L/Fa and Ag of L/FB we have A, # Ag.

We say that such a family (I'y)aca defines a periodic boundary extension. Let Q C F™ be a configu-
ration space. We define the admissible sets for the periodic boundary extension to be the family P(r,)
of sets of representatives of I',-equivalence classes, i.e.,

(13) Py =P

a)acA

= {Aa CLL| A, is a set of representatives of L/Fa, a € A}.

Let Ao € P(r,) be a set of representatives of L/Fa- We define the I',-periodic continuation of
€r, € F2e to be
1, (€aa) 1 L — F) o, (6a.) () = €a, ()

where ¢ € L and j is the unique element j € A, with ¢ ~_ j. This defines a map
(14) o, s B — PRy e, (6a,).

The periodic boundary extension associated to (I'y)aca is the family

(15) by, =rr, : Ft — F"

for all A € P(r,). If Q) := (b))~ (Q) # 0 for all A € Pp,), then the family (b : Q) — Q)aep,, is
called the periodic boundary condition associated to the family (I'y)aca - O

Let Q C F"™ be a configuration space. In order to investigate the question whether the periodic bound-
ary extension gives rise to a periodic boundary condition, we have to determine Qj\a = (bRa )71 C
Qa,- It turns out, see Proposition 1.3.14, that Q) is just the pa,-restriction of the I',-periodic
configurations.

Remark 1.3.10. Let 7 : I' x L — L be a semigroup action of an abelian semigroup I".  Then
all subsemigroups I', < T' are abelian and hence define equivalence relations ~_ by (1.3.7). Hence
condition (i) in Example 1.3.9 is automatically satisfied.

It remains an open problem to decide under which assumptions the following holds: “Let 7 : 'xL — L
be a semigroup action, such that the orbit relation is an equivalence relation. Then the orbit relation
with respect to a subsemigroup H < T is an equivalence relation.” o

The periodic boundary condition seems at first to be quite artificial. Apart from the fact that it allows
a beautiful mathematical treatment as we will see, the derived physically interesting functions do not
depend on the boundary condition at least in the thermodynamic limit which we define next.
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Definition 1.3.11. (i) The name of a thermodynamic limit is given to a limit process in position
space L, when a sequence/a net of subsets A C L “tends to infinity”, i.e., to L. We write
An, — L if (Ay)nen is a sequence of subsets A,, C L such that for all finite M C L there exists
an index nys € N such that M C A,, for all n > nyy.

ii) We say that a periodic boundary extension (b} allows a thermodynamic limit, if there
AJANEPr,)
exists a sequence (Ap)nen of subsets A, € P(p,) with A, — L. O

We will now give some examples for orbit relations. Part (i) corresponds to two-sided shifts, whereas
(ii) corresponds to one-sided shifts.

Example 1.3.12. (i) We return to the situation of Example 1.2.5, where we let I' = ZP act on
itself by left translations (6) via 7 : I' x ZP — ZP 7(k,m) = k + m. The standard family
of subgroups of I is given as the family of all T',, = Hfil(niZ), where n = (n1,...,np) runs
through N”. The group I is abelian and the family of admissible sets consists of the translates
of the standard fundamental domains

D
P(F.) = P(Fn)nEND = {k + H{l, .. .,TLZ'} | ke ZD, ne ND}
=1

A second family of semigroups is H, = Hfil(niNo), (n € NP) with the same family of ad-
missible sets P(g,) = P(r,). The advantage of (I',) is that every A € P(r,) satisfies the tiling
condition (1.3.8) with respect to the associated semigroup having A as fundamental domain,
whereas no A € Pg,) satisfies a tiling condition with respect to (Hy,).

(ii) The restriction of the ZP-action (6) to the semigroup N < ZP leaves NP invariant, hence we
have an induced action 7 : NP’ x NP — NP 7(k,m) = k+m. The standard family of semigroups

consists of H,, = Hi’;l(niNo) parametrised by n € NP and

D
Py = {k+ [[{1,....ni} |k, n e NP}
=1

is the corresponding family of admissible sets. The elements A € Py, satisfying the tiling
condition are precisely the sets

D
pile = {TJ{1.-...ni} In e NP},
=1

Note that in both cases our choice of the families of subsemigroups makes the fundamental domains
finite and allows a thermodynamic limit. An example of a family (I',)nen of subsemigroups of N2
which does not allow a thermodynamic limit is the family T',, := N x (nN) parametrised by n € N. O

In the following Remark 1.3.13 we will discuss a concrete example of a configuration space and different
boundary extensions and conditions on it. In particular, we will see an example where bxl(Q) C Qp.
We study the one-dimensional matrix subshift (1.2.8) and use the visualisation technique from (1.2.9).

Remark 1.3.13. (Boundary conditions for the one-dimensional matrix subshift) Let A be an irre-
ducible transition matrix (1.2.9) and (Qa,Z,7) be the associated one-dimensional matrix subshift as
defined in Example 1.2.8. For all A C L let Q4 o := pa(Q24) be the image under the restriction map
(1.1.2).

(i) If A has all entries equal to 1 so that 24 = FZ, then clearly all boundary extensions are boundary
conditions and every subset A C Z is admissible for any boundary condition.

(ii) Let fo € F be the empty spin. The zero boundary extension (b%)Aepf(]L) (1.3.5) is globally
defined in the sense of Def. 1.3.4, if and only if

Az, fo) =1=A(fo,x)
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for all z € F. In fact: Suppose (b%)AePf(IL) is globally defined. Let A = {i} C L, then Q4 5 =

F1i} = F since the graph is connected. By the definition of the zero boundary extension (1.3.5)
the sequence b} (€4) € FZ has the entries

N ) L ifj =1,
bg)\(ff\)(] ) = { fg , otherwise.

Hence b3 (€) € Qu iff A(E(2), fo) = 1 = A(fo,&a (7)) and A(fo, fo) = 1. Vary over all €5 € Q4 4,
i.e., over all x € F, to get the assertion.

Conversely: If A(z, fo) = 1 = A(fy,z) for all z € F, let &4 € Qap and 7 := b3 (€r) € FE. For
i, 1+ 1€ A we have A(n(:),n(i + 1)) = 1 by definition of Qa 5. Ifi € A, i+ 1 € L\ A then
An(),n(t +1)) = A(n(i), fo) = 1 by assumption, similarly the case i € A, i —1 € L.\ A. Hence
1 € Qa and the zero boundary extension is a (globally defined) boundary condition.

(iii) We consider the following one-dimensional two-sided matrix subshift defined by the data F =
{1,2,3} and the transition matrix A = (A(i,j))i,j:l,z3 = (§ (1) i) for which we have drawn in
(10) of (1.2.9) the corresponding directed graph. We choose the standard family of subgroups
of Z consisting of (nZ),cn. We observe that the three-periodic sequence 123 belongs to Qa,
hence (1,2) € Qp (1,2} = py1,23(Qa), but its 2Z-periodic extension b??Q}(l, 2)=12¢ Q.

(iv) In example (iii) we can easily read off the fixed point set

ﬂ Fix(7y : Qu — Qu) = {§ =33,13, _3},
YE2ZL
hence for all A = {i,7+ 1} one has

QIA = (bR)_l(Q) = pA( m FiX(T'y (0 — QA)) = {(3a3)a (3a 1)a (3a2)a (LS)’ (2a3)} g Qa
~YE2Z

and the periodic boundary extension (1.3.9) induces a boundary condition b} : Q) — Q on a
strict subset Y, of Q4.

(v) We consider the following one-dimensional two-sided matrix subshift defined by the data F =

1,2, 3} and the transition matrix A’ = ( A’(4, 5 — (041 corresponding to
100 &
,j=1,2,3

3

1 2)

which is A from (iii) with some arrows removed. We choose the standard family of subgroups
of Z consisting of (nZ)nen. We have

() Fix(ry : Qa — Qu) = {123}
YENZL
for all n congruent 0 modulo 3 and the empty set otherwise. O

We will now determine the domain (b5)71(2) C Q4 of the periodic boundary condition. As suggested
by Remark 1.3.13 (iv) the set )y := (b})71(Q2) can be expressed in terms of joint fixed points.

Proposition 1.3.14. Let (2, F,L,T',7) be a lattice spin system (1.2.7), (Ta)aca a family of subsemi-
groups of I which defines a periodic boundary extension (bR)AeP(F ) (1.8.9). Let N, € P(r,) be a set

of representatives of L/Fa, then

p. : () Fix(ry : Q- Q) — (0y,) "1 (D)

YET o

s a bijection with inverse bl;va, where Fix(7, : Q@ — Q) is the set of fized points of the map 7, : Q@ — Q.
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Proof. Set N := N, as an abbreviation. First observe that for all £ € ﬂvel“a Fix(7,) C Q we have
(bl 0 pn) (&) = € by the definition of the periodic boundary extension (1.3.9), hence

pr + () Fix(ry) — (05) (@)

~yer

is well-defined. If one has &,n € (), o Fix(r,) with pny(£) = pn(n), then (i) = n(i) for all i € N.
Let j € L, then there exists a I'y-equivalent point j, € N, i.e., j ~, jo. Hence there exist g, h € I'y,
such that g-j = h - j,. Since £ is I'-periodic, we have

§(7) =&(g-7) = &(h - jo) = £(ja)-

Similarly for n. By assumption £(j,) = 1(ja), hence £(j) = n(j) for all j € L, hence £ = n, and py is
injective. Let &y € Yy := (b5,)~1(Q), then by definition of the periodic boundary extension (15) the
element n = by (£n) € Q is fixed by all maps 7, : Q@ — Q for all v € Ty:

(i) = n(y i) = n(i)

for all i € L,y € I'y. Here we used the fact that « - i ~p 4, which follows from v - (v - i) = (¥?) - .
Hence b5, () € N ~er, Fix(7y), and hence the definition of a boundary extension gives

v = (px o b)(Qy) € px ([ Fix(r,))

YET o

and thus the surjectivity of pn : ), op Fix(ry) — (05)71(Q). O

~ver

We will use Proposition 1.3.14 to prove the following fact: If A is aperiodic (1.2.9), then the periodic
boundary extension with respect to the family (nZ),en gives rise to a periodic boundary condition.
By the previous proposition it suffices to show that [ Fix(r, : Q4 — Qa) # 0 for almost all
n € N. For this we need a number theoretic lemma:

YENL

Lemma 1.3.15. Let A\1,..., A\, € N with ged (A1,...,\,) = 1. Then there exists N € N such that

{keN|k>N}c {) Amnjln; €N}

Jj=1

Proof. Euclid’s algorithm provides us with the existence of m; € Z such that 1 = 2?21 A;mj. By
relabelling the A;’s we can assume that there exists 1 < k < n and positive integers my, ..., m, such
that 1 = Z_I;:l >‘j mj; — Z_le:k-l-l >‘j mj. Set M := Z_le:k-l-l )\j mj. Write k € N as k = kl + kQ M with
1<k <M-—1. Then

k n n k n
k:kl'lﬁ’kQM:klZ)\jmj*kl Z )\jmj+k2 Z )\jmj:Z)\jklmj+ Z )\jmj (kg*kl)
Jj=1 j=k+1 Jj=k+1 Jj=1 j=k+1

Hence if k > 1+ (M — 1) M, then k; < ko andkze{zyzl)\jnﬂnjeN}. O

Corollary 1.3.16. Let (Qu,Z,7) be a one-dimensional matriz subshift (1.2.8). If the transition
matriz A : F' x F' — {0,1} is aperiodic (1.2.9), then there exists Ny € N such that [, ¢,z Fix(ry :
Qp — Qu) # 0 for all n > Ny. In other words, there exists Ny € N such that the periodic boundary
extension with respect to the family (nZ)nenn>nN, gives rise to a periodic boundary condition.

Proof. Recall the graph theoretic interpretation of {24 from Remark 1.2.9. If A is aperiodic, then for
each vertex x € F there exist a finite number of paths 71, ..., vy through x, whose lengths don’t have
a common divisor. Hence by Lemma 1.3.15 for all n € N sufficiently large there exists a concatenation
h :=~10...0710...09,0. . .07y, such that the closed path h has length £(h) = n. Since every closed path

in the graph gives rise to a periodic configuration, this shows that (0, Fix(r, : Q4 — Q) #0. O

In the following remark we will consider the one-sided one-dimensional matrix subshift and show the
analogon of Corollary 1.3.16.
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Remark 1.3.17. (i) Let D > 1 and (Q, F,ZP,T = ZP, 1) be a lattice spin system (1.2.7). Via
restriction to the positive quadrant N’ we obtain the (so called one-sided) lattice spin system
(> = pyo(Q), NP H = NP 7). For n = (ny1,...,np) € NP let T, = Hi’;lniZ and
H, = Hi';l n;Ng be the families as defined in Example 1.3.12 for a periodic boundary extension.

Then
PND ﬂ Fix(r, : Q@ — Q) — ﬂ Fix(77 : Q7 — Q7), £ — pyo (§)
vely YEH,
is a bijection with inverse rr o p, , where A,, = Hi’il{l, ...,n;} and rp, are defined in (14).

This is an immediate consequence of Proposition 1.3.14. We obtain, using rr, = bk,

(BR) 1) = (08) Q) = pv( [ Fix(ry : Q7 — Q7)) = pn( [ Fix(r, : @ — Q).

Hence by Proposition 1.3.14 the periodic boundary extension associated to the family (T'y,),enp
gives rise to a periodic boundary condition if the same holds true for the one-sided system and
the associated family (H,,)neno-

(ii) Let (27, F,Np,7”) be a one-sided one-dimensional matrix subshift (1.2.8) and z1,...,z, € F.
Note that the sequence

(16) T1... Ty i= (pNob}’VZ)(xl,...,wn) = TN (1, ..., Zn) € FN

belongs to the fixed point set Fix(r;, : QF — Q) of the shift operator on the restricted
configuration space if and only if Ay, 4y - ... Ay, 1 2, - Ay, 2, = 1. Hence by part (i) and
Proposition 1.3.14 we have

(17) ON)H) = {2 = (21, 20) € F" Ay wy oo Aup 1z - By oy = 1}

(iii) Let (23, No, 7) be a one-dimensional one-sided matrix subshift as defined in Example 1.2.8 with
an aperiodic transition matrix A : F'x F — {0,1} (1.2.9) and (24, No, 7) the corresponding two-
sided matrix subshift. By Corollary 1.3.16 there exists Na € N such that (., Fix(7, : Q4 —
Q4) # 0 for all n > Ny. Its pn-projection is non-empty and by part (1) precisely (bﬁﬁlo)’l(ﬂg),
hence the periodic boundary extension with respect to the family (nNo)pen,n>n, gives rise to a
periodic boundary condition, i.e., the analogous result to Corollary 1.3.16. o

1.4 Observables

We introduce observables in the sense of classical mechanics as continuous functions on the config-
uration space. An observable is a quantity to be measured. Examples of such observables are the
energy of a (sub-)configuration or the sum of interactions between two subconfigurations, which will
be introduced in the next sections.

Definition 1.4.1. Let Q C F" be a configuration space (1.1.1). A bounded continuous complex valued
function f : © — C is called an observableS. The space Cy(Q2) := {f : 2 — C| f continuous, bounded}
of observables on 2 is a Banach space with respect to the supremum norm. If F' is compact, then
clearly Cp(Q) = C(9). O

Remark 1.4.2. Let Q C F" be a configuration space (1.1.1) and A C L. Since the restriction map
a2 — Qp = pa(Q) from (1.1.2) is by definition surjective, the map

Px : Co(Q0) — Cp(R2), fa = faopa
is an isometric linear mapping. In fact, [|p3(fa)llc() = subeeq [(fa) © pA(E)] = supeeq [fa(§la)] =

Il falle,(n)- In particular, pj is injective with [|p} || = 1. Hence, we can regard Cy(€25) as a subspace
of Cy(Q2). =

6The usual notion from classical physics of an observable is a continuous real valued function on a compact space.
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The image p} (Co(24)) = {f € Co() | f constant along p-fibers} C Cp(€2) is interpreted as the set
of those physical quantities which are localised in the region A inside the position space L. If F is
compact, by the (complex) Stone-Weierstrass theorem the union of these images is dense in C():

Proposition 1.4.3. Let F be compact and Q2 C F¥ be a configuration space, then
A= {onpA:QH(C| fa € C(Q), AE'Pf(IL)}
is dense in C(Q2).

Proof. Recall the (complex) Stone-Weierstrass theorem, which can be stated as follows: Suppose K is
a compact Hausdorff space and A is a subset of C(K) which separates points. Then the unital x-algebra
generated by A is dense in C(K). We show that A := {faoppr : Q — C| fo € C(Q), A € P¢(L)} is
indeed a unital x-algebra: Let f, g € A. Then there exist finite subsets A, M of IL such that f = fyopp
and g = gy o py- Let N = AU M, then using Remark 1.1.3 we have the following representations

f=(faopan)opn, g = (grmopm,n)opn where the functions fa o pa n, gar o par,n belong to C(Qn).
For ® € {+, -} we have

fOg=(faopanOgmopun)opn €A

The algebra A is closed under taking complex conjugates
f=Tfaopa=faopreA

and contains the constant function 1 € C(£2), since 1 = 15 o pp € A for all A C L. Hence A is a unital
x-subalgebra of C(2). Let = # y € 2, then there exists a finite subset A C LL such that x := pp(z) #
pa(y) =: ya € Qa. Since the Banach space C(€25) separates the points of Q4, there exists a function
fa € C(Qn) with fa(za) # fa(ya). Then fa o py € A and (fa o pa)(x) # (fa © pa)(y). O

1.5 Interactions

Most of the observables (energy, partition function) we are going to investigate later will be functions
which depend on a given interaction. An interaction assigns to every subconfiguration (over a finite
position region A € P¢(L)) a (complex or real) number, i.e., an interaction is a family of localised
observables. In the physical interpretation this accounts to look at a finite number of particles and
quantify their interactions.

Definition 1.5.1. Let Q C F* be a configuration space (1.1.1).

(i) An interaction is a family (¢pa) AEP; (L)’ indexed by all finite subsets A C L, of continuous
bounded mappings ¢a : Q4 — C with the property that ¢ (€a) = 0 if the empty spin fo € F
from (1.1.1) belongs to the image of &4.

(i) Let (2, F,L,T',7) be a lattice spin system (1.2.7). An interaction ¢ = (¢A)Ae7>f(L) is called
I-translation invariant, if for all v € T and all A € Py (L)

¢'y-/\ = ¢A O Tyiy-A

as functions Q.4 — C, i.e. if the following diagram

Qp

Q'y~A —C
¢'y»/\

commutes, where 7,.5.5 is defined in (1.2.3).

(iii) An interaction (¢p) rep, () 18 called an n-body interaction, if n is the minimal integer such that
oa =0 for all A € Py(L) with [A| > n. O
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In Section 1.8 we will give some examples of two-body interactions. Interactions will occur as the
“building blocks” of many interesting observables, e. g. the energy of a subconfiguration £ over a
finite region A C L is defined as the sum of all interactions of its subconfigurations py,a(€x) where
N C A. When the physical observations of a given system suggest that the energy does not depend
on the position of the region inside IL, but only on its volume, then one should choose a model with a
I'-translation invariant interaction, where I' is a semigroup of translations on L.

Remark 1.5.2. Interactions form a C-vector space with respect to pointwise operations, which by
deﬁclllitﬁion means, given a complex number ¢ € C and two interactions (¢, ) AEP; (L) and (¢p) AEPS (L)’
we define

(Da)aer; ) T ¢(@a)aep,wy = (DA + c¥r)rep, w)-

This leads to the interpretation that interactions form a subvector space of ] AEP; (L) Cp(Q2a) defined
via a certain vanishing condition. O

1.6 Energies

Given an interaction as introduced in Section 1.5, we define the energy of a subconfiguration. The
total energy consists of two parts, the inner and the outer part. The inner energy comes from all
interactions of subconfigurations inside this configuration - see Proposition 1.6.1. If we have fixed a
boundary condition, observe that a subconfiguration determines a configuration on the whole position
space via the boundary condition. The outer part of the energy counts the interactions between the
inside and its extension, see Proposition 1.6.5. In order to make the infinite sums, which appear
when one sums up all interactions, convergent, we have to introduce classes of interactions of certain
suitable decay. We begin with the inner energy.

Proposition 1.6.1. (Inner energy) Let Q C F* be a configuration space (1.1.1) and ¢ = (PA)aer; (L)
an interaction (1.5.1) such that

(18) o= 3 ﬁgsup [6a€n)] < o0

A€P;(L); A3i A€

for all i € L. Then for all A € P¢(LL) the so called inner energy

(19) UL: Q0 —C, & Y. dulpaalén))
P#AMCA

1s well-defined, depends linearly on the interaction, and HﬁfHCb(QA) = SUP¢, ca, |l71‘€(§/\)| <Y ien ldli-
Proof. For any A € P¢(L) and any sequence (ans)amrca we have
ap
DTS S S
D#MCA €A MCA;M>i

since every ays is precisely counted |M|-times on the right hand side. Using this identity we get

swp (U560 = sw [0S o ouloma(en))|

EAEQA IS\ ieAMCA;IV[Bi| |
1
< Z( Z il sup |¢M(€M)|)§Z|¢|i<00-
i€A  MCAM3i Em EQM ieA

The linearity then is obvious. In the following remark we comment on this peculiar upper bound. [

Remark 1.6.2. Let Q C F" be a configuration space and ¢ = (¢a)aep, ) an interaction (1.5.1).

Then the obvious bound ensuring the absolute convergence of the inner energy [7}? :Qp — C (19) is
the following:

sup [US(En)l < D sup [ou(én)| < 2 max sup |Par(Em)l,
EAENA MCA SMEQM CAepmeQy
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since 3 y7ca 1 = [P(A)] = 2/A1 As far as the limit |A] — oo is concerned, this bound seems to be
worse than that from Proposition 1.6.1, which grows linearly, but the complexity is hidden in the
computation of the seminorms |¢|;. O

Given two finite d18301nt subsets A M C L of the position space and an interaction ¢, one can compare
the inner energies UAU Mo U¢ N+ UM inside the regions A, M and AU M. The difference between these
two terms was introduced by D. Ruelle [Ru78, 1.2].

Remark 1.6.3. Let Q C F* be a configuration space, A, M C L, AN M = (), and A finite. Let
¢ = (¢a)aep, L) be an interaction (1.5.1) such that

(20) Wam : Qaomn = C, £— Z o~ (pn,aum(§))
NePs(AUM):NNAADANNM

converges absolutely. Note that Wa pr @ Qaum — C is well-defined, since by the definition of
subconfigurations (1.1.2) and the restriction maps (1.1.3) we have the identity pn aunm(Qaunm) =
(pnv.aum © paum)(Q) = pn () = Qn. If the seminorms

(21) lollis= Y. sup |ga(éa)l

AEP;(L); A3i SASIA

are finite for all ¢ € L, then

[Wa,am ()] < > sup [on(EN)[ <D Y sup [on (En) =D l16l:.

NeP;(L):NnA£p SNV EN i€EA NeP;(L):N3i SV €N ieA

If A, M C L are both finite, then one has

ij/(fujw (Eaum) = ﬁf(pA,AuM(ﬁAuM)) + ﬁf@(ﬂM,AuM(EAUM)) + Wa m(Eaum)-
O

The function Wy pr will play a role in Remark 2.2.11 in the context of the leading eigenfunction of
the Ruelle transfer operator. Given a boundary condition (ba),cp we will now define the total energy
as the sum of the inner energy (19) and a term which depends on the boundary condition and the
function Wi .

Definition 1.6.4. Given a configuration space Q C F™ (1.1.1), a boundary condition (bs : Q) —
Q) pep (1.3.3), and an interaction ¢ = (¢A)Ae79f(]1,) (1.5.1) we define for A € P

(22) Uy’ 1031 (Q) — C, Up?(€n) := Ug(€a) + WLy (ba(€r))

and call UX’¢(§A) the total energy of a subconfiguration £ € bxl(Q), provided the defining series
converges. We say that an interaction ¢ is compatible with a boundary condition (b ),cp if UX’¢(§ A)
converges absolutely for all {5 € bxl(Q) and A € P. O

Figure 7: Total energy = inner energy (from interactions inside framed box, dots denote particles, arcs
denote interacting pairs) + outer part (interactions between box and its outside, interaction strength
decays with increasing distance).
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The total energy is the sum of all interactions of spins over A with all other spins determined by
the by-extension of £,. By Remark 1.6.3 an interaction with the property that the seminorms ||¢||;
(21) are finite for all ¢ € L, is compatible with any boundary condition. For both types of boundary
conditions introduced in (1.3.5) and (1.3.9), we will enlarge the class of compatible interactions, see
Propositions 1.6.6 and 1.9.3.

Proposition 1.6.5. Let Q C F% be a configuration space, (by : Q) — D) pep @ boundary condi-
tion (1.3.3), and (¢a)aep,; ) an interaction such that the seminorms ||¢||; (21) are finite for all
i € L. Then

(23) Up? b1 Q) — C, Uy®(€r) = > dr1(par 0 ba(€r))
MePs (L), MNA#£D

Proof. At first note that for all £, € b;l(Q) we have (par 0 ba)(€a) € pm(Q) = Qar, hence the
interaction @as(par 0 ba(€n)) is defined. Consider the summands in (23) with M C A. Note that ba
is a (partial) right inverse of pa, i.e., (pa 0 ba)(€n) = &a for all €4 € by (Q). The sum of those terms
gives exactly ﬁjf The condition ||¢||; < oo ensures the absolute convergence, hence we can rearrange
terms to get Uk"i) = ﬁf + Wa L\ ©ba- O

In the special case of a zero boundary condition (1.3.5) the total energy (22) is just the inner energy
(19) and the condition ensuring the absolute convergence of its defining sum can be weakened.

Proposition 1.6.6. (Inner energy) Let Q C F™ be a configuration space admitting the zero boundary
condition (bY)aep;w) (1.3.5) and (pa)rep,w) an interaction such that the seminorms |¢l; (18) are
finite for all i € L. Then for all A € Ps(L) the inner energy coincides with the total enery for the

0 ~
zero boundary condition, i. e., U}; ¢ = Uf as functions on (b%)~1(Q).

Proof. We use the definition (1.3.5) of the zero boundary condition and the fact that an interaction
vanishes by definition on subconfigurations which contain the empty spin fy € F', hence the difference
term vanishes, (Wy 1\a © b3)(€a) = 0 for all &4 € (b) (). O

Remark 1.6.7. (i) Let {|| - ||l;; ¢ € L}, {| - |;; ¢ € L} be the families of seminorms introduced in
(18) and (21), respectively. Set

A={pe ] GQa);VieL: ¢ <oo}and A”:={pe [] Co(Qn);VieL: |¢|; <oo}.

AePy (L) AePy (L)

(ii) By Propositions 1.6.1 and 1.6.5 the total energy for a general boundary condition is well-defined
and bounded if the interaction belongs to A; for the zero boundary condition A° suffices.

(ili) If ¢ is a I-translation invariant interaction, then the seminorms || - ||; and || - ||,.; are equivalent
for an arbitrary point ¢ € L and « € T, similarly |- |; and | - |- O

From Section 1.8 on we will focus mainly on two-body interactions. In Section 1.9 we will give (neces-
sary and sufficient) conditions on two-body interaction such that the total energy converges absolutely.

This will be applied in Example 1.9.7 where we give some examples of interactions belonging to the
class A defined in (1.6.7).

1.7 Partition functions

We will now introduce the main object of this chapter, the so called partition function, which encodes
many statistical properties of a system. The partition function depends on the temperature, the
volume, and the microstates of a finite number of particles. Many of the thermodynamic variables of
the system, such as the total energy, free energy, entropy, and pressure, can be expressed in terms of
the partition function, its derivatives, and their asymptotic behaviour.

Definition 1.7.1. Let F' be a Hausdorff space with a finite Borel measure v, called the a priori
measure. For A € P;(L) let v* be the product measure on F*. Given a configuration space Q2 C F*
(1.1.1), an interaction ¢ which is compatible with the boundary condition b = (bs),cp (1.6.4) such
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that the total energy UX’¢ belongs to Lm(bxl(Q), v2) for all A € P, we define the partition function
with boundary condition b as

789(5) = / exp( — BUL (1)) dv (En),
by H()

where § € C is a parameter, called the (scaled) inverse temperature. O

In this picture the microstates are just the subconfigurations &5 € (ba)~1(£2). Every microstate has
a certain energy from which by integration the partition function is obtained. The partition function
in turn allows to determine other statistical properties of the system.

Remark 1.7.2. Since we suppose in Def. 1.7.1 the total energy to be bounded, the partition function
Zi’d) exists as an integral over a v-almost everywhere bounded function with respect to a finite
measure. In particular, for interactions belonging to the classes A and Aj as defined in (1.6.7) the
energy functions UX’¢ are continuous and (everywhere) bounded as we have seen in Remark 1.6.7. Note

that for the parameter 8 equal to zero, the partition function is nothing but the volume Zi’d)(O) =
A (031 (). O

Our definition 1.7.1 of the partition function is motivated by the so called canonical ensemble. In
statistical thermodynamics an ensemble is the collection of all configurations of a fixed system, e. g.
the canonical ensemble is the collection of all configurations with constant number of particles, constant
volume and constant temperature. If there is a unique probability measure on the ensemble, this is
often called ensemble also.

Example 1.7.3. (Gibbs measure) Let F' be a Hausdorff space with a finite Borel measure v. Let
Q C F" be a configuration space and ¢ an interaction which is compatible (1.6.4) with the zero
boundary condition b = (b )acp, ) (1.3.5). For fixed positive real § the Gibbs measure or canonical
ensemble for a finite region A C L is the probability measure on (%)~ (2) which has the density

pa(€n) = (25 )" exp(— BUS (En))

with respect to v*. The parameter 3 = 1/kT is interpreted as Boltzmann’s factor, k the Boltzmann
constant, and T the absolute temperature. This explains the notion of (scaled) inverse temperature for
3. The physical model behind it is the following: Given a system with possible states 4 € (b3)71(£2)
such that a microstate £y has the energy UIZ{O’d)(«E A) and an exterior large source of heat which is at
temperature T', then it is a physical fact, see [Bo75, p. 4], that pua(£a) is the probability to find the
system in the state &5 (after long time). O

Since we know the domain of integration in the case of the periodic boundary condition by Proposi-
tion 1.3.14, we can rewrite the partition function as follows.

Corollary 1.7.4. Let F be a Hausdorff space with a finite Borel measure v, (Q, F,L,T',7) a lattice
spin system (1.2.7), let b¥' = (bR)AeP(F , be the periodic boundary condition (1.8.9) associated with

the family (Ta)aca of subsemigroups of T, and ¢ a compatible interaction (1.6.4) such that UX’¢ €
Le(b31(Q), ™). Let N, € P,y be a fundamental domain of I'o, then

(24) 75:%(8) = exp( — BUL P (Ex,)) dvNe (En.).

/PNa (n»ygra Fix(7y))
In particular, if F is finite and v is the counting measure, then
In In
(25) Zy B = Y en( =AU (pn.(6).
§€N,er, Fix(ry)
Proof. Combine the definition of the partition function (1.7.1) with Proposition 1.3.14. O

Proposition 1.3.14 and its Corollary 1.7.4 show that partition functions can be expressed as sums
over fixed points. This leads to a dynamical interpretation of the partition function and will be used
together with Section 1.11 in the construction of the Ruelle type transfer operator in Chapter 2.
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1.8 Two-body interactions

In the following we will restrict our considerations to the case of two-body interactions and give some
examples. Recall from (1.5.1) that an interaction ¢ = (¢a)aep, () is called two-body if g4 = 0 for all
finite subsets A C L with cardinality |A| > 2. Two-body interactions occur where interaction forces
superpose without further interference, i.e., the energy of a three particle configuration is the sum of
the interactions of all possible pairs and singletons. Of particular interest are those interactions which
are given via an interaction matrix, an anisotropy matrix (respectively, a distance function), and a
potential. Among them are the following physical models: Ising model, Potts model, and Stanley’s
M-vector model. We introduce the new class of Ising type interactions which contains both Ising
model and Stanley’s M-vector model. We will show later that for the special case of a finite alphabet
F every interaction matrix is of Ising type.

We start with the normal form of a two-body interaction and define a special type of two-body
interactions, which will be of interest later on.

Definition 1.8.1. Let  C F* be a configuration space (1.1.1) and ¢ = (¢A)aep; ) be a two-body
interaction (1.5.1). We can always write ¢ as

—p1(4; &) , if A= {i}, §a = (&),
(26) ¢A : QA - (C) 6/\ — ¢A(§A) = 7@2(%]75’“5]) ) iftA= {Zvj}v 5/\ = (5175])7 (Z 7é ])7
0 , otherwise,

where &;,& € F, A € Py(L) and ¢1 : Lx F — C, ¢ : L? x F? — C are some functions”.
(i) If wa(i,J; 2, y) = w2(4,4;y,2) Vi, j €L, z,y € F, then ¢ is called symmetric.
(ii) ¢ is called a pure two-body interaction if @1 = 0.
(iii) If ¢ is of the form

0 , otherwise,

where 7 : F x F — Cand d : L x L — C are symmetric functions®, ¢ : F — C, and &,& EF,
A C L, then ¢ is called a two-body interaction with interaction matriz v, anisotropy matriz d
and potential q. Denote by qu the two-body interaction with anisotropy matrix d, potential g,

and interaction matrix r. Such interactions are automatically symmetric. O

In (3.4.4) we will introduce another type of two-body interactions, the so called hard rods interaction.
The restriction to two-body interactions simplifies many arguments, for instance, the energy can
be calculated quite explicitly. Before doing this we give examples how an anisotropy matrix or an
interaction matrix can look like, see Remark 1.8.2 and Example 1.8.3.

Remark 1.8.2. Let Q C F* be a configuration space (1.1.1).

(i) Let ¢ be a two-body interaction on € of the form (26). Then ¢ is I'-translation invariant (1.5.1)
iff o1 and @9 are T-invariant in the following sense: ¢1(y-4;x) = ¢1(4;2) and @a(v-i,v-j;2,y) =
w2(i, j;x,y) for all 4,5 € L,y € T,z,y € F. In fact: Let A ={i} CL,{p:i—ax € F, yeT,
then —@,.A(Er) = w1(v - 4;2) = ¢1(4;2) = —@a 0 Tyiy.a(€a). Similarly, let A = {4,j} C L,
5/\ = (givgj)v v e Fv then 7¢’Y'A(§A) = 902(7 : Zafy ' ])51;5]) = 502(15]’5175]) = 7¢A o T'y;'y-A(&A)-

(ii) If L is a group and d : L. — C is a function satisfying the symmetry condition d(i) = d(i~1),
then

d:LxL—C, d(ij):=d(i" )

defines an anisotropy matrix, i.e., J(z, j)= cZ(j, ). Such a function d : . — C is called a distance
function.

"2 (i,4;2,x) can be chosen arbitrarily.
8A function f : X x X — Y is symmetric if f(z1,22) = f(z2,21) for all 1,22 € X. We denote the space of
symmetric functions by {f : X x X — Y}%2.
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(iii) If L is a group, I' < IL a subgroup of L, which acts by left translation on L, i.e., I' x L. —
L, (v,9) = v-g =g, and d is defined as in part (ii) via a distance function, then every two-
body interaction with anisotropy matrix d, potential ¢, and interaction matrix r is I'-invariant,
since (yi)~'(yj) =i~y Tty =071y

(iv) As a partial converse of part (iii): Let I' = Z act on L = Z by left translation, then

d— (n+—d(n) = d(0, n))

defines a C-linear isomorphism between the space of Z-invariant anisotropy matrices and the
even functions d : Z — C. In fact: Using the invariance and the symmetry of d we obtain

d(—n) = d(0,—n) = d(n,n — n) = d(n,0) = d(0,n) = d(n),
hence the map is well-defined. Its linearity and injectivity are obvious, it is surjective by (iii). O

The next examples introduce the widely studied physical models, namely the Ising model, the Potts
model, and Stanley’s M-vector model.

Example 1.8.3. (Physical models)

(i) Ising model: Let F' C C be a bounded set and r(z,y) = zy. In Ising’s original model he took
F = {£1}, the so called spin—% model, in order to describe ferromagnetism of a solid, where the
spins of the electrons can only take values in a set with two elements, “spin up” or “spin down”.

(ii) Potts model: Let F be any set and r(x,y) = §(z,y), where § : F x F — C is Kronecker’s delta
on F. This model is due to R. Potts [Po52] and describes the situation where only electrons
having the same spin (members of the same species) interact.

(iii) An interaction matrix r is called of Ising type if

!
r(z,y) = Z ai(z) bi(y)
k=1

for some functions a;, b; : F' — C. The minimal number [ is called the rank of r. O

Let Q C F™ be a configuration space , d an anisotropy matrix J, and g be a potential g. We call Q2
when equipped with the two-body interaction (bgq (1.8.1) an Ising model, Potts model, or Ising type

model, if the interaction matrix r is of the form (i), (ii), or (iii) respectively.

With respect to the construction of transfer operators, Ising type interactions can be treated by a
superposition principle which we will describe in Section 2.13. This has been observed for instance in
[May80a, p. 98]. Note: If F is finite, then every interaction matrix is of Ising type as we will explain in
Section 2.13. The prototype of an Ising type model is Stanley’s M-vector model (see [St68a], [St74]),
which we discuss next.

Example 1.8.4. Let s > 0, M € N, L a countable set, and d:LxL—Chbea symmetric function.
The (generalised?) Stanley M-vector model is defined by the following data: The spins take values in
the (M — 1)-sphere with radius s, i.e.,

M
F = Sy-1(s) :={o = (D, ..., 0™y eRM . Z lo®)? = s°1,
i=1

equipped with the (normalised) surface measure v on F', and the configuration space is Q := FT.
The interaction is the two-body interaction with anisotropy matrix d and interaction matrix r(z,y) =

(ZL' | y) = Zi\il i Yi, i'e'a

~4(&) LIEA = (i}, & = (&),
¢A(§A) = _%d(laj) (§Z|§]) ; lfA:{Zaj}agA = (giagj)a
0 , otherwise,

9Stanley has considered these models only for finite range interactions.
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where J € C is the energy of a pair of parallel spins and ¢ : FF — C is a potential. Note that r has
rank M (1.8.3).

The following table gives a list of physical models which can be seen as applications of Stanley’s
M-vector model. Depending on the parameter M these models have special names.

| Rank | Special name | System |
1 Ising model one-component fluid, binary alloy, mixture
2 Planar model/Vaks-Larkin model | A-transition in a Bose fluid
3 Heisenberg model (anti-)ferromagnetism
M > 3 | general M-vector model no physical system discovered yet
o0 Stanley spherical model no physical system discovered yet

This table has appeared in [St74, p. 488] with lots of references therein to the physical models. Note
that the rank 1 case gives F' = So(1) = {£1} and hence the spin-1 Ising model, see (1.8.3). The rank
oo case is treated in [St68D). O

Another non-trivial example is the following: Let F' C Mat(D, D;C) be a bounded set, for example
a compact matrix group, and the interaction matrix r be defined by r(z,y) := trace (zy). Then r is
symmetric and of Ising type, since it can be written as

D

D
r(z,y) = trace (xy) = Y (¥y)ii = > Ti;Yji,

i=1 i,j=1

for © = (z;)ij=1,..0 and y = (Yi,j)ij=1,...,p0- As a generalisation of this example any R-bilinear
symmetric form on a finite-dimensional normed vector space V' in which F' is contained as a bounded
set defines an Ising type interaction matrix.

1.9 Energy and partition function in the case of two-body interactions

We will now determine the class of two-body interactions (1.8.1) which are compatible in the sense
of (1.6.4) with a periodic boundary condition. For this purpose we decompose the total energy into a
pure one-body term and a pure two-body interaction term and discuss the necessary decay conditions.
Let T be a semigroup acting on the position space L and (T'y)ac4 a family of subsemigroups of I'. A key
step is Proposition 1.9.3 which states that a symmetric two-body interaction ¢ is compatible (1.6.4)
with the periodic boundary condition (bR)AEP(F.) associated to (Iy)aeca iff Zvera wa(i,y - Lz, y)
converges absolutely for all i,l € A, z,y € F, a« € A. This condition can be checked in particular easily
if the two-body interaction is given via a distance function, an interaction matrix, and a potential. We
discuss some examples of such distance functions in Example 1.9.7. Then we compute the partition
function in the case of a two-body interaction and discuss special situations where the integrand can
be simplified further. In the case of an Ising spin system (1.8.3) with vanishing potential we finally
obtain a representation

2000 = [ ew(p 3 7 66) dr(en)

BR)~1(9) A

where (f{;‘)” is a symmetric quadratic matrix and hence the integrand should be viewed as the
exponential of a quadratic form in (&1, ...,&,) € F™. This is a generalisation of the situation [HiMay02,
p. 26] in the construction of the Kac-Gutzwiller integral operator. We would like to stress that this
representation only depends on the fact that we have a periodic boundary condition defined via an
orbit relation. We start with the decomposition of the energy U/l;’¢ (1.6.4) into a potential term and
a pure two-body interaction term.

Proposition 1.9.1. Let Q C F“ be a configuration space (1.1.1), ¢ be a symmetric two-body inter-
action (1.8.1) compatible with the boundary condition b = (ba)aep (1.6.4), and A € P. Then

bp _ 1709 b,
UA 7UA.,1+UA.,2’
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where

URS 031 () = €, €a = = > w1(i:6a(0)

i€EA

is the so called magnetic potential term and Ui’g : bxl(Q) — C defined via

e =5 30 Y (i k)@ 00 8) — 30 3 (5K balen) ), balen) (b))

€A keA\{i} i€A keL\A
18 the so called pure two-body interaction term.

Proof. Let €5 € by (). By our assumptions the series defining U}{"ﬁ(f A) is absolutely convergent. We
use the explicit form of the total energy given in Proposition 1.6.5 and change the order of summation.
We collect the first summands where M € Py (L) with MNA # () is a singleton, and then the summands
where M consists of two points. We distinguish further whether both points belong to A or not.

Uv®(en) = Z dar(par 0 ba(€n))
MePy (L), MNA#D
(27) = > ¢am(par 0 ba(§a)) + > IVIVEIININ))
MePy (L), MOAZD,| M|=1 MePy (L), MAAZD,| M|=2
= =Y wiliea) - —Z > (i ksbalen)(@). ba(6n) (k) )
ieA i€ keA\ {3}
(28) > > e (z', i ba(€a) (1), ba (€0) (k) )
i€A kEL\A
= UR1(60) +URS(EN),
since bp (€a) (k) = &a(k) for all k € A by definition of the boundary extension (1.3.1). O

The only influence of the boundary condition on the magnetic potential term is the domain bxl(ﬂ)
where it is defined on. In any case, its defining sum is a finite sum since P C P;(LL) and hence does
not influence the convergence of the total energy. If b is the zero boundary condition, then all sums
in Proposition 1.9.1 have only finitely many non-zero summands and thus there is no convergence
problem. Another set of examples are the so called finite-range interactions:

Example 1.9.2. (Finite range interaction) Let (L, p) be a countable metric space and Q@ C F* a
configuration space. A two-body interaction ¢ has so called finite range pg if and only if

@2(i, 55 2,y) =0

for all z,y € F whenever p(i,j) > po and pg is minimal with this property. For any boundary condition
(bn)nep and N € P one has the representation

=Y Y (b kbalen) @) byEn)k)
1€N kelL:0<p(i,k)<po
of the pure two-body interaction term (1.9.1) which is a finite sum. O

Proposition 1.9.3. Let (2, F,L,T',7) be a lattice spin system (1.2.7) and (bR)AeP(p,) a periodic
boundary condition associated to the family (U'o)aca of subsemigroups of I' such that every A, € Pr,)
satisfies the tiling condition (1.3.8). Then a symmetric two-body interaction ¢ is compatible (1.6.4)
with the boundary condition iff Z—yel‘a w2 (i,y - l;2,y) converges absolutely for all i,l € A, x,y € F,

a € A.

Figure 8: A (pure) two-body interaction with range two: Arcs denote interacting particles.
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Proof. Let A := A, € P(r,) be a fundamental domain of the subsemigroup I', < T and let {4 € ) =

(b%)71(Q2). The absolute convergence of the total energy U}{F"ﬁ(«fj\) is equivalent to the absolute
convergence of Y, o0 S0, oy o (i, ki bl (€a) (i), by (€a)(k)), since we can disregard a finite number of
summands (for instance the magnetic potential term and the first term of the pure two-body interaction
term (1.9.1) in equation (28)). Since A C L is finite, this (double-) series converges absolutely, if and
only if the inner series >, 1 2 (4, k; b} (£4)(4), b (€4)(K)) converges absolutely for all i € A. We now
use the definition of the periodic boundary extension (1.3.9) and the tiling condition I'y, - A = L. If
the convergence is absolute, we can rearrange terms in the following way

Z<P2(i,k;bi(éA)(i)abR(éA)(k)) = Z @2 (i, k3 b (€4) (i), by (€4) (K))

kel kela-A

— Z Z @2 (4,7 - 16X (€)(8), b (En) (- 1))

leA~vel,

IR R ANGINORININIG))

leN velq

(29) DD RN ORING))
leN vel'y

since by (€4)(k) = &a(k) for all k € A by definition of the boundary extension. Hence the absolute
convergence of U}{F"b(SA) is equivalent to the absolute convergence of Zvel“a wa(i,vy - l;x,y) for all
,leN z,yeF. O
Remark 1.9.4. In the case of a two-body interaction with interaction matrix r and anisotropy matrix
d expression (29) reduces to Y-, o5 7(€a (i), a(K)) > er, (i, - k). Hence the absolute convergence
Ser, d(i, - [) for all i,1 € A. Since
', C T, this can be bounded by Zver lpa2(i, - ;2,y)|, respectively by Zwer |d(z,~ - 1)]. O

of the total energy is equivalent to the absolute convergence of >

Corollary 1.9.5. Let (2, F,1L,T',7) be a lattice spin system (1.2.7). Letb" = (b} )aep,.,, be a periodic
boundary condition associated to the family (I'a)aca of subsemigroups of I' such that every Ao € Pr,)
satisfies the tiling condition (1.3.8). Let P . be the two-body interaction (1.8.1) with anisotropy matriz

d, potential q, and interaction matriz v € Cy(F x F)?2. Then ¢2~q s compatible with the boundary
condition b in the sense of (1.6.4) if > er (i, - 1)| < oo for alli,l € A. In this case the map

_ sy
Co(F x F)™ — Cy((b)) (), 7= Upy

1s linear and continuous.
Proof. The compatibility of the interaction was shown in Remark 1.9.4. The linearity of the mapping
ror

b
Cy(F x )22 — (), 7 +— Uy, 2¢ "? is obvious by the definition of the pure two-body interaction
term in (1.8.1) and (1.9.1). Concerning the continuity observe that

SN T d, D) <D T d(y k)| < AP sup > ld(y - k)]
i€A kel i€A keAyET k€A er
hence, setting ||7||c,(rx F) := Sup, yer [7(z,y)|, we obtain
(30) e |UA2 Pla(en) < DD ldk i) rlle,imxmy < AP I7lle,(rxm S Do ldly - ki)

i€A keL yer
O

Proposition 1.9.6. Let T' be a subsemigroup of Z acting by translation on L =7 and (Q, F,L,T', 1)
a lattice spin system (1.2.7). Let ¢ = (¢a)aep,(z) be a pure two-body interaction of the type

oA (EA) (Z _J) (51;5] ZfA {Z ]} En = (Elagj)

where d : Z — C is an even function with Y ., |d(n)| < co and r € Co(F x F)?2. Then the interaction
¢ belongs to the class A as defined in (1.6.7).
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Proof. The interaction ¢ is translation invariant by Remark 1.8.2 (i), hence by Remark 1.6.7 it suffices
to show ||¢|l; < oo for an arbitrary point ¢ € L = Z. The subsets of L, which contribute to the
seminorm ||@||; (21), are of the form {i,j} with j € L\ {¢}. Then we have

Igle=" > suwp [ealéa)l= D sup  Jea(Eugy)l < sup (@, y)| D 1d(i = )] < oo,
Z,Yy

AEP;(L); A3i SAEMA el i §.3y €205y =

since 37 ;¢ |d(i — 5)| = ez [d(N)] < 232724 ld(n)] < oo. O

Example 1.9.7. The following distance functions satisfy the condition Y ;|d(n)| < oo in Propo-
sition 1.9.6

(i) Exponentially decaying interactions d(k) = A*l for 0 < |\ < 1,
(ii

)

) Polynomially decaying interactions d(k) = |k|~* for Re(s) > 1,
(iii) Logarithmic interaction d(k) = log(1 — cAl*l) for 0 < |¢|, |\ < 1,

)

(iv) Plummer potential: d(k) = (e + |k|?)~/2 for ¢ > 0, a > 1, and
(v) Finite range interactions d(k) = 0 for all |k| > ro for some 9 € N.

For the proof of (i) use the geometric series and for (ii) Riemann’s zeta function. Concerning (iii) we
use |log(1l — z)| < —log(1 — |z]|) for |z| < 1 and conclude from that

o0

D [log(l —eX)| < = log(1 — || [A[F) = —log(J T (1 = le] IN[*)),
k=0 k=0

k=0

which converges since Y-, |[A|¥ < oo by the standard criterion for the convergence of infinite products.
For case (iv) we observe that (e + k2)~%/2 < k™% since € + k% > k2. Hence Y po (€ + k?)~2/2 <
€2 43702 k™. The case (v) is trivial. O

We will focus on long range interactions, which by definition means a nowhere vanishing anisotropy
matrix (respectively, non-vanishing distance function). The associated models are sometimes called
Kac model, whereas in other references this name is reserved to the special case of exponentially
decaying interactions from Example 1.9.7 (i) after M. Kac’s article [Ka66].

In Proposition 1.9.1 we have seen that the total energy Uk’j of a finite region A C L amounts to
evaluating the interaction at an infinite number of pairs of points. This shows that the computation
of the partition function (1.7.1) via its definition as the integral of exp(—/f Uf{’f) is ineffective. In the
case of a periodic boundary condition the spin values over the complement of a fundamental domain
A, are determined by the spin values of their I',-equivalent points. Using this idea we can transport
back all computations on A, by integrating a new function depending on the interaction and the
semigroup I',.

Theorem 1.9.8. Let (0, F,L,T', 7) be a lattice spin system (1.2.7), (La)aca a family of subsemigroups
of I defining a periodic boundary condition (bR)AeP(F ) and ¢ a symmetric compatible two-body inter-
action (1.6.4) such that the T, -averaged interaction function

1

- 1 . ,
(31) tro (i, b2 y) == —ge2(i, La,y) + 5 > (@2(%7 Lixy) + ol Z;y,x))
Y€l

converges absolutely for alli,l € L, z,y € F, a € A and sup, ,cr |tApa (i,1;z,y)] < oo for all i,l € L,
a € A. Suppose that A € Pr,) satisfies the tiling condition . = T'y, - Ao (1.3.8). Then the partition
function defined in (1.7.1) can be expressed as

Z% 2(8) = /( i e exp(ﬂ Dt 6 56,8) + 8D ei(isé) f§ > wz(i,z‘;éi,gi)) A (€n,).

i, EAy 1€A, €A,

In particular, denote by Q%q the two-body interaction (1.8.1) with anisotropy matrix d, potential q,
: .
and interaction matriz v, then the map Cy(F x F)22 — C, r+— Z, = *(B) is continuous.
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Proof. Set

1

(32) tr, (i, Lz, y) == B ; (@2(i,v~l;w,y)+<P2(l,7~i;y,x))
Y o

for i,l € Ay, z,y € F, a« € A. Obviously, the function ¢ has the following symmetry: tr(i,l;z,y) =
tr(lisy, @). Set = (yi);cp, = by, (€r.) € (M, er, Fix(r,). By Proposition 1.9.1 we know that

Ub Y(En) == D erliéan () — 5 Z S oaliksyiu) — Y Y walis ki vi uk)-

i€Aa zeA keAa\{i} i€Aa kEL\Aq
By the tiling condition L =Ty, - A, we have

DD paliskiyiyw) ST waliskiyiue)

i€Ao kEL 1€Aq k€T Ao

Z Z Z 2,7 - I yi, 1)

1€ENq lEAG YET o

SNt Ly w),

1€A, IEA,

—
w
w

~—~

I

since by assumption the last sum converges absolutely and, by relabelling,

Yo el -Lynu) = Y > eallyy iy, i)

1€EAL IEA, 1€EANL IEA,
Therefore
r , o1
—Up . *(€n,) = Z ©1(i:€. (1) + 5( | > aliskiyiyk) — Y @alisisyi, v )
€A i, k€A €N
(34) +( SN eai by — Y @2(i,k;y¢,yk))
€N keL i,k€Aa
. . 1
= Z e1(d3y:) + Z tro (L iy yi) = 5 Z P2, 15 yi i) Z ©2(1, 45 i, Yi)-
€A i, EAy RIS\ ZEA

By our assumptions this is a finite sum of bounded functions, hence integrable with respect to the
finite measure v* on (b5)71(Q) C Q. This proves the first claim. Note that for any pair of measurable

functions f, g we have
- }/ef(l —eI N < 1= e 7)o /|ef| < (ells=Tll= 1) /|€f|_

‘/ef—eg

Recalling the notation ¢2q from (1.8.1) and the definition (1.9.1) of the pure two-body interaction

term, we get for any pair of continuous bounded symmetric functions r, s : F2 — C the identity

A s L ¢7‘ s
»Pd,q Pd,g _ ’ T
Uy - Uy = UA,2 —Upo

Hence, by the proof of Corollary 1.9.5 (30)

N F
’ b0 o5 e,

7 i L SN
A (B) —Z, o exp BUA
A
T r

g ¢ b
< <exp(|ﬁ||\UA,2 Uy “chm) -1) /Q lexp( — 4UL 1 (60)) | d €n)
A

(0)) —exp( = AU, T (€0)) vt (6n)]

< (exp(|ﬁ| |A|2c(d) ||7“ — SHCb(FQ)) — 1) /Q ’eXp( — ﬁUi ’¢§,q(€A))‘ dVA(EA)

for some constant c(cZ) > 0 depending on the anisotropy matrix d. Since the integral is finite, the

o b5
difference ’ZA “1(B) — ZA & "(6)’ tends to zero as || — s||¢,(#2) tends to zero. O
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The function tp, : LxL x F x F — C, (,1,2,y) — tr,(i,l;2,y) as defined in (32) in the proof of
Theorem 1.9.8 has an additional symmetry if 7: ' x L. — LL is a group action:

Proposition 1.9.9. Let 7 : ' x L — L be a group action and f : L2 x F? — C a I'-invariant function
with the symmetry condition f(i,j;x,y) = f(j,4;y,x), then

%Z (f(m-l;w,y)+f(l,7-i;y,w)) =Y fli,v Ly

yel ~el
forallijle L, z,y € F.

Proof. Use the symmetry, the I'-invariance, and summation over a group to calculate

Do fly-sye) =Y fly-ilimy) =Y fG (v hry) =Yy lay).

yel’ yel yel’ vyel
|

We end this section by a further specialisation. Let L. be a group, e its identity element. Set J(z, j) =
d(i=1j), where d : L — C is a distance function (1.8.2), i.e., a function with the symmetry condition
d(i) = d(i~"). Then the map A — C, i+ d(i,i) = d(i~'i) = d(e) is constant and every two-body
interaction qﬁg . with this anisotropy matrix d has the properties that the maps A — C, i — ¢1(4;2) =
q(x) and i — @2 (i,4;x,x) = r(x,x) d(e) are constant. This motivates the assumptions of the following
corollary:

Corollary 1.9.10. Suppose in addition to the hypotheses of Theorem 1.9.8 that the maps A — C, i —
v1(i;x) and i — @o(i,4; @, x) are constant for allx € F. Setp: F — C, p(x) := wl(i;x)—%wg(i, i, 1)
and let tr be as in (31). Then the partition function defined in (1.7.1) can be expressed as

erv‘b(g) - / eXp(ﬁ Z tAF(i,l;fiafl) + ﬁzp(fz‘)) dVA(‘EA)'

(b)) ileA i€EA
O

Corollary 1.9.10 implies that the integrand of the partition function for an Ising interaction can be
written as the exponential of a symmetric quadratic form as we will show next.

Remark 1.9.11. Suppose the same hypotheses as in Corollary 1.9.10. For any subsemigroup I'y

of I' with fundamental domain A, C L we define two symmetric matrices T, = (ff;*)l leA and
5 1 B B 9 [e3
Fa o Fa -— y /Ta — y y y
Tr, = (t“ )i,le/\a via t; § 1= Z d(i,v-1), ;7= f§d(z,l) + Z d(i,7-1) for all 4,1 € A,. Then
vElo velo
the averaged interaction functions defined (31) and (32) can be simplified to
o 1~ )
fr. (i, o, y) = =5 d(@ D r(o,y) + 47 (@, y), e, (s bo,y) =67 r(2,y).
We combine these considerations with Corollary 1.9.10 and obtain
br, iTo
200 = [ (93 e + 53 p(e) dr(en)
(b)) ileA i€A
In particular, in the case of an Ising spin system (1.8.3) with vanishing potential we have
I N
Z500(8) = exp(8 Y 1Ly & &) dv(6n),
(b)) ileA
where the sum in the exponential should be viewed as a quadratic form in (&1,...,&,) € F* C C". O

Note that for § > 0 the matrices fp + 0,7t + 0 in Remark 1.9.11 are positive definite such that one
may try to use the Kac-Gutzwiller trick for the evaluation of the partition function. This trick is due
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to M. Kac [Ka66] and has been adopted by M. Gutzwiller [Gu82] to periodic boundary conditions.
This trick uses the well-known identity on Gaussian integrals

em(zlaz) _ (det 04)7% / e*ﬂ'(m'g*lx)fQﬂ'(Z'I) dx

for a € Mat(n,n; C) with a = a” and Re(a) positive definite and any z € C". For one-dimensional
one-sided shifts with exponentially decaying interaction this idea was an essential step in the construc-
tion of the Kac-Gutzwiller transfer operator. For details we refer to [Gu82], [Hel02], [HiMay02, p.
26], or [Ri03]. In Chapter 5 we will construct Kac-Gutzwiller transfer operators also for polynomial-
exponential and finite-range interactions using a different approach.

1.10 One-sided Z"-subshifts: explicit formulas

By the results of Section 1.9 the partition function with periodic boundary condition both for the
one-sided and two-sided shift, as defined in Example 1.2.6, can be expressed as an integral over a
“semigroup averaged interaction”. If this average is taken over a group (as for instance for the two-
sided shift), this yields additional symmetry properties of the averaged interaction. In the special
situation of one-dimensional systems one can easily relate the pure two-body interaction terms (1.9.1)
for the one- and the two-sided system, Prop. 1.10.1, since N}’ sits inside Z” in a special way. This
result will be generalised to higher dimensions and will be used to prove Theorem 1.10.3, which is
quite similar to Theorem 1.9.8.

Proposition 1.10.1. Let (Q, F,Z,Z,T) be a one-dimensional two-sided subshift (1.2.5) and denote
by b* = (b/Z\)AeP(nZ) the periodic boundary condition on 0 associated to the family (nZ)nen (1.3.9).
Let Q= = pn(Q) (1.1.2) and (Qs, F,N,Ng, 7) be its one-sided subshift (1.2.6) and b0 = (bﬁo)AeP(nN)
be the periodic boundary condition on Qs associated to the family (nNo)nen, and ¢ a Z-invariant

compatible (1.6.4) symmetric two-body interaction on Q (and hence on Q). Let A = {1,...,n}.
Then on py( M, enz Fix(ry : Q@ — Q)) one has

UN 3 (€0) = 203 5 (€0) + Zw,m Zwm LEa(0)).

i, lEA zeA

Proof. Let {n € pa((),epz Fix(7y : @ — Q) and (yi) ¢z = b% (€4). Using the tiling property (1.3.8)
nNp - A = N and the nZ-periodicity of the sequence (y;);c, we have

SN walikiynye) =D > ety Kt yyk) = D > 0a(i, v ki v, k)

i€A kEN\A i€A kEA vENN i€A kEA vENN

Because of the Z-invariance and the symmetry one has

DX D el -k = DY > (v i kiyayr)

i€EAN ke yenN i€EA ke yenN

= ZZ Z (Y + 15 K5 Yryeis Yke)

i€A kEA yE—nN

= > palkiisyn i)

i€ k€e—Np

= > ) palisksyiyn):

i€N ke—Ng

We will use this relation in (x). Starting with the representation (1.9.1) of UA 9 ? we calculate using
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the relations found during the proof of (1.9.8

)
—203 3 () + > palinisyinys) = %Z Z (ks g ) +2) > 2(i ks v, yi)
EA keA\

ieA i€A kEN\A
E (4,45 Y, yi)
€A

®) Z( Z +Z+ Z )wzlkyuyk)
i€A  kEN\A k€A ke-No

= ZZ(‘DQ(Z,I{?,yZ,yk Z nZ ’L;l7ylayl

i€EN kEZ =1

(34) 1 .
= - Z 902 ywyl + 3 2 ZW?(%%%A%%

i,lEN i€EA

where the function t,z : L? x F? — C, (i,l,2,y) — t,z(i,[;x,y) was defined in (32) in the proof of
Theorem 1.9.8. U

The proof essentially is based on summation techniques used in [Gu82] and [HiMay02]. We will now
generalise Proposition 1.10.1 to higher dunensional systems. This makes the resulting expression for

the pure two-body interaction term UA 00

for the proof of Theorem 1.10.3.

much more complicated. We will use Proposition 1.10.2

Proposition 1.10.2. Let (Q, F,ZP 7P 1) be a D-dimensional two-sided subshift (1.2.5) and by =

(bJZ\D)AeP(F.) the periodic boundary condition on S associated to the family (T, := Hi’il N Z)eno - Let
D

(Qs = pyo(Q), F,NP NP 1) be its one-sided subshift (1.2.6) and PN = (biU )AeP,, b€ the periodic

boundary condition (1.3.9) on Qs associated to the family (H, = Hil niNo)peno . Let ¢ be a ZP-

invariant'® symmetric two-body interaction such that tr, (i,1;x,y) = > ver, P2(v i l;z,y) converges
absolutely for all i,l € ZP, z,y € F, n € NP. For k € N let A(k,¢;) = { %LH'JC} ’? i 1 1 and
sy Co —

for € = (e1,...,ep) € {£1}P, n € NP let A, (¢) := Hle A(ng, €;). Then for A, := Hil{l, ceyMGb
and for all én € pa(),ep, Fix(ry : @ — Q)

) = 22 D ealiiéa (i) én, ()

JEA e€{£1}D i€ A(n,e)

+ > @a(isgiéa, (i), 6a *—ZsﬁzlléA ) éa,. (1))

,JEAR €A,

Proof. Let A= An, &x € pa(),er, Fix(7y : @ — Q)) and y := b/Z\D (€p). Let

A (05)7HR) = C, @a(6n) : =3 alisdiviyy)

€A ]END

ND
be the sum of interactions between A and the positive quadrant. Using the definition of UX; % in
Proposition 1.9.1 one easily confirms that

pNE 1
—Up 5 "*(€r) = ®a(6r) — 5 > eali, Gsyinyj) sz 055 Yis Yi)-
i,JEN ZEA

We show by induction (over the dimension D) that

(35) 2P @5 (&n) = Z Z Z ©2(4, 53 Yi, Y5)

JEA ee{£1}P i€ A, (¢)

10We can apply Prop. 1.9.9, hence the definition of tr, (4,1; z,y) confirms well with (32) in the proof of Theorem 1.9.8
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which gives the assertion. This identity has a geometric interpretation, namely it yields a repre-
sentation of the positive quadrant as a signed sum of boxes whose sides are either finite or all of
7.

Let D = 1: By equation (%) in the proof of Proposition 1.10.1 we have

DO ealidiviys) = Z( STAY + D )90223 vir ;)

iEA JEZ €A jEN\A jEA je-No
i€A FEN\A iEAN JEA
Hence
DN palindiyeys) + YD a(i divis ys) 2> oa(i v ) 2) Y @2(i g vin ;)
i€A jEZ i€A jEA i€A JEN\A i€A jEA
= 2 0alisdi i yy) = 20a(n)
i€A jEN

The induction step is a straight forward calculation: Let i/, j/,¢’ € ZP~1 A’ = Hl[fll{l, ceoy Nyt
AD = {1, e ,’RD}, 3 = (i/,’t'D),j = (jl,jD),A = AI X AD. Then

RHSof 35) = > > Y > ¥ > ealidiviy))

i'€N ip€AD e’e{£1}P~lep==%14'€A, /(') jpEA(nD,ep)

= X T Oy ¥ ¥ > walifiviny)

ip€Ap ep=%1jp€A(np,ep) V€N ee{£1}P~1 /€A, /()

ind. Z Z Z 2D_1Z Z ©2(1, J:Yir Y5)

ipEAp ep=%1jp€A(np,ep) i'EN jeND -1
D-1 - -
= 2Py Y ( oY eelidivey)+ Y Zs@(l,y,yuyj))
i'€N j’eNP-1 ip€Ap jp€AD ip€AD jpEZ

= 2071y % (2 >N 902(i,j;yiayj)):LHS of (35)

i'€N j/eND-1 ipEAp jpEN

An immediate consequence of Proposition 1.10.2 is the following analogue of Theorem 1.9.8.

Theorem 1.10.3. Let (0, F,NP NP 7) be a one-sided subshift (1.2.6), let pNo = (bi"D)Aep(H.) be

the periodic boundary condition (1.3.9) on Q associated to the family (H, := Hil 1n;No)peno, and
¢ a compatible ZP -invariant two-body interaction (1.8.1) with interaction matriz 0 # r € Cy(F x F),
potential g € Cp(F'), and anisotropy matriz d of the form d(i,j) = Hl[il d®(iy, j;). Fori,j € Z set

t:lLJZ O Z dW (i, j + kngep),
keZ

where e, € ZP denotes the I-th standard unit vector. Set ¢ : NP x F — C, (i,z) — q(z) —
1d(i,i)r(z,z). Then for A, = H?:r{lv ...y} the partition function (1.7.1) is given as

2800 = [ o5 X (I TT 650, 0).6,6))

1,J€EAn ee{+1}P L:ig=1 liegg=—1
exp(~ 0 0 (i) r(En, ()60, () + 8 Y 0660, (1)) di (En, )
,JEA, €A,

Ng'

where Yy = (b,° )71 (Q); in particular for D=1, A, = {1,...,n}

ZRACE BRI (D W IR Bt
An

i,0=1 =

MIQ

Z d(i, i) r(z;, xl)) vt (z1,. .. x).
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Proof. By the compatibility assumption (1.6.4) the defining series for tzsz,(l)

(1.9.3). Then apply Proposition 1.10.2 and write the energy as

v = 2 Y Y T, T % ren, ().60, )

converges absolutely

1,J€ENn e€{£1}P L:g=1 lelf—l
1 s .
+3 > di, ) (€, (i), 6a -3 Z d(i, i) r(éa, (), €, (3)).
1,5€AR zEA

By the compatibility assumption (1.6.4) and the boundedness of the interaction matrix r and the
potential ¢, the integrand is a bounded function. Hence the integral converges. O

Theorems 1.9.8 and its Corollary 1.9.10 as well as Theorem 1.10.3 show that partition functions
can be expressed as integrals over exponentials of symmetric quadratic forms. These results are
generalisations of ideas appearing in [Gu82], [HiMay02, p. 26], or [Ri03]. We hope that this idea can
be applied in a direct construction of future Kac-Gutzwiller type transfer operators.

1.11 Omne-sided Z-subshift

In this section we restrict our considerations to the case of one-sided one-dimensional subshifts. We
will introduce the so called standard observable A(4). It depends on the sum of interactions between
the spin at position 1 and the rest of the half line. Given a one-dimensional system with periodic
boundary condition, the energy can be expressed in terms of A4y and the Ny-action

7:No x FN — FN (n,€) — 7,(&)(m) = £(n +m).

This leads to a dynamical interpretation of the partition function in Corollary 1.11.3 and allows a
higher dimensional generalisation which we call the dynamical partition function. The dynamical
interpretation will be important for the construction of the Ruelle transfer operator in (2.1.3) in
the next chapter and is also the link between the thermodynamic formalism for lattice systems and
the thermodynamic formalism for expanding maps. Whereas the Ruelle transfer operator (which
we will define in the next chapter) was invented in order to describe the partition function for one-
dimensional lattice spin systems, for higher dimensional systems there is up to now no reasonable
transfer operator available. We think that it might be easier to find a generalisation of Ruelle’s
transfer operator which describes the dynamical partition function (also in higher dimension) than
one for the ordinary partition function, since a fixed point interpretation is built in by definition.

Definition 1.11.1. Let (Q, F,NP NP 7) be a D- dimensional one-sided subshift (1.2.6), and ¢ a two-
body interaction (1 8.1) on Q such that ), o w2(1,7;2,&;) is absolutely convergent for all § € 2, x €
F, where 1 = (1,...,1) € NP. Set

A Q= C, Ay =piLi&)+ Y. ea(lis€e, &)
iENP\{1}

We call the function A4) the standard observable. It expresses the energy coming from all interactions
between the spin at position 1 and all the spins over the rest of the positive quadrant N”, in fact:

Ay (€) = UL (60 + Way oy 13 (6),

where U : Qp — C is the inner energy (1.6.1) and Wiy no\qay ¢ © — C is Ruelle’s difference term
from (1.6.3). O

pa——

Figure 9: The standard observable counts the pair interactions between the first particle and the
halfline.
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The standard observable A4 is an interesting object since for one-dimensional systems it has a special
property (Prop. 1.11.2), which will play an essential role in the construction of the Ruelle transfer
operator for lattice spin systems and which is due to Ruelle [Ru78].

Proposition 1.11.2. Let (Q, F,N,Ng, 7) be a one-sided one-dim. subshift (1.2.6), (b%)Nep(nNo) the
periodic boundary condition (1.3.9) associated to the family (nNo)nen of subsemigroups of Ny, and
¢ a compatible two-body interaction (1.6.4). Let N = {1,...,n}. Then for all &y = (x1,...,2n) €
on(Fix(r, : @ — Q)) one has

pNo
Uy (n) = Z A (e (@),
where Ty -+ Ty, = (pn © nz)(T1, ..., Xy) 18 the periodic extension of the subconfiguration (z1,...,Ty)
to the half lattice N.

Proof. By the compatibility assumption we can rearrange terms. Using the representation of the
energy Ug;‘i’ given in the proof of Proposition 1.9.1 (27) we obtain

(pl 'L T +ZZ§02 { .7 ZCZ,ZEJ)

~UY 0 (en) =

N
HM:
[\

=1 j>1
n—1 n—1 oo
- 901(1+k;$1+k)+22@2(1+k;1+k+l;z1+k7$1+k+l)
k=0 k=0 l=1
n—1

= Ay (e (T1 - 20))

>
Il
=)

by definition of A4 (1.11.1). O

We would like to underline that the expression on the right hand side of Proposition 1.11.2 can be
seen as n-times the orbit mean of the observable A4 along the closed nNp-orbit through =1 7,.
We will return to this point of view in Remark 1.11.5. We add the remark that Proposition 1.11.2 (i.e.

expressing the total energy U;:?O@(f ~) with periodic boundary condition as the sum of the values of
one fixed function evaluated at translates of £ where the translations are parametrised by N) seems
to be limited to one-dimensional systems. All our attempts to find a higher dimensional analogue
failed.

In the following we will assume that v is a finite Borel measure on F' and that the transition matrix
A: FxF — {0,1} is a v ® v-measurable function and irreducible aperiodic (1.2.9). The latter
assumption guarantees by (1.3.16) that the matrix subshift Q4 (1.2.8) admits a periodic boundary
condition with respect to the standard family of subsemigroups of Z.

Corollary 1.11.3. Let (Q7, F,N,Ny, 7) be a one-sided one-dimensional matriz subshift as defined in
(1.2.8). Let (b%)Nep(nNo) be the periodic boundary condition (1.3.9) associated to the family (nNo)nen
of subsemigroups of Ny, and ¢ a compatible two-body interaction (1.6.4). Then for all n € N the
partition function (1.7.1) can be expressed as

bN(,)..q.b, /n HAII Tig1 eXP(ﬂZA(qs) (T ))) dv™(zy,...,xn),

where T1 - - Ty = (pn 0 Tnz) (X1, ..., &n) and Tpy1 = x1.

Proof. Remark 1.3.17 gives a characterisation of the periodic sequences belonging to the configuration
space Q7 , hence a reformulation of the domain of integration. Then use Proposition 1.11.2 to see that
the integrand has the stated form. o

One can interpret the above formula as the average of the observable exp(3 A) over (a parametrisation
of) the joined fixed point set of the shift operators 7, : Q7 — QF (m € nNp). This suggests the
following generalisation, the dynamical partition function, where we replace the standard observable
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A(g) (1.11.1) by arbitrary observables A € Cy(£2). Dynamical partition functions have been introduced
by Ruelle, [Ru78, 3.3], in a similar form without using this name.

In Chapters 2 and 3 we will construct (for certain interactions ¢) a so called transfer operator such
that the trace of its iterates allows to express the partition function. Therefore the interpretation of

the above formula for Z?TO_’_?R} (B) as a fixed point formula will be used.

Definition 1.11.4. Let F be a Hausdorff space with a finite Borel measure v, (2, F,NP NP r)
a one-sided D-dimensional subshift (1.2.6). For n € NP let H := N, H, := HiD:l(niNO)neND,
N, =TI2, {1, ...} € NP, and M, = []2,{0,...,n; — 1} € N§. Let b0’ = (0{)nep,, | be the
periodic boundary condition (1.3.9) associated to the family (Hy),enyp. Let A € Cp(2). We define
the dynamical partition function to be

b

Z

n

exp( Z A(Tmbﬁn«f;\/n)) dVN"(an).

(= |
PN (m’YEHn Fix(74:2—Q)) meM,,

O

We note that we will always consider the dynamical partition function coming from the periodic
boundary condition 60 = (bN)NeP,,, associated to the family (H,),eno-

We will now give examples for the application of the dynamical partition function which show the
connection between the thermodynamic formalism for lattice spin systems (which is the main topic of
this dissertation) and the thermodynamic formalism for expanding maps (see [Ru78, 7.26 ff.], [May91,
7.3]) which we only touch occasionally.

Remark 1.11.5. Typical choices of A € Cp(Q2) are the following:

(i) Let D =1 and A(4) be the standard observable (1.11.1), then by Corollary 1.11.3

Z8° (BAw) = 2%, (),

.....

since Remark 1.3.17 provides an alternative characterisation of the domain of integration, i.e., of
the joint fixed points of 7, (v € H,, = nNy), in terms of the transition matrix and the integrands
of both partition functions coincide. We raise the question whether the thermodynamic limit
of the dynamical partition function behaves like the limit of the (ordinary) partition function
which seems to be likely in view of [Ru78, 3.3].

(ii) (In the notation of 1.11.4) The trivial choice A = 0 leads to a measurement of the number of

the joint fixed points of 7, (n € H,) in Q, since 22" (0) = vN=(py, (N em, Fix(my : @ — Q).

(ili) Let X be a set and T': X — X a map such that for all n € N the n-th iterate 7" : X — X of
T has only finitely many fixed points!!. Define an Ny-action (1.2.2) via

No x X — X, (k,x) — T*(x).
Define Qr := {¢ € XN |T(&) = &1}, which is invariant under the shift action
7:No x Qp — Qp, 7(n,€)i = &ign-

The elements of Qr are (in bijection to) T-orbits: Let & = (& )ien € Qr, then &,41 = TE, =
... =T"& . Hence the map T is encoded in the sequence space )7 and we can apply our technics
for lattice spin systems. Let X be equipped with the counting measure and A : X — C be an
observable. Then we obtain the following expression for the dynamical partition function (1.11.4)

Z8°04) = S e ( ni A(Tk:c)) .
k=0

z€Fix(T:X—X)

Note that the term in the exponential is the orbit mean of A along the closed T-orbit of x.

1Provided a summability /integrability condition this assumption can be weakened.



52

(iv)

(v)

The trivial choice A = 0 of the observable in (iii) leads to ZzNO (0) = |Fix(T™ : X — X)|, which
is the number of the fixed points of T™ in X.

Let X = I be a bounded domain in R™ or C® and T : I — I a piecewiece continuously
differentiable map such that 7™ : I — I has only finitely many fixed points for all n € N. For
the particular choice of the almost everywhere defined function A(x) = —log|det(7”(z))| in (iii)
one obtains

~ 1N / T .
Zy° (= Blogldes(T'@))) = > ] [ det(T"(T*a))]P”

z€Fix(T™:I1—1I) k=0

which is the standard notion of the partition function in the context of expanding maps. O
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2 Transfer operators for the full shift

The Ruelle transfer operator is an important tool for the investigation of dynamical systems, statistical
mechanics, quantum chaos, and fractals. The idea is to encode the dynamical information into an
operator, study its spectral properties, and to deduce back from these some dynamical properties.
The transfer operator is defined as follows: Given a fixed self map T : I — I of a set I, this gives rise
to an Ng-action, i.e., a time-discrete dynamical system, by Remark 1.2.2. If every point € I has
only finitely many T-preimages, the formula

(Laf)@)= > exp(Ay)) f(y)

yeT ()

defines the Ruelle transfer operator acting on complex-valued functions f : I — C. Here the function
expoA : I — C is the weight corresponding to the observable A. The Ruelle transfer operator is a
(sum of) composition operator(s) acting on a huge function space. Nevertheless, one can show that
(in many situations) this operator has a spectral gap, i.e., there exists a leading eigenvalue A; and the
rest of the spectrum is contained in a disk with radius strictly smaller than |A;]. The Ruelle-Perron-
Frobenius Theorem 2.1.4 uses these analytic properties and concludes from them certain dynamical
properties, such as the existence of an equilibrium state. One technique for the investigation of
the spectrum is the restriction of the transfer operator to an invariant subspace which is easier to
analyse. For instance, if one can transport the (restriction of the) transfer operator to one of the
commonly used function spaces from functional analysis, then many results on composition operators
are available. The smaller the subspace, the more “improve” the spectral properties of the (restricted)
operator (for instance the operator becomes bounded, compact, Schatten class). But of course in this
process information about the physical properties is lost. The choice of a suitable subspace or a direct
construction of a good transfer operator is a hard problem and in many cases depends on a skilled
view.

In this chapter we consider the one-dimensional one-sided (full) shift endowed with a Ising two-body
interaction ¢ (1.8.3) given via a distance function d € /!N and spin values in a bounded subset F' C C.
In this case the self map T from above is the shift operator acting on the configuration space Q ¢ FN
and the observable A is the standard observable A4 from (1.11.1) corresponding to the interaction ¢.
In several papers ([May76], [Vi76], [MayVi77], [ViMay77], [May80a], [Mo89], [HiMay02], [HiMay04])
examples of interactions have been found for which one could identify a certain subspace which is
invariant under the Ruelle transfer operator yielding the so called Ruelle-Mayer transfer operator
which - via a so called dynamical trace formula - gives a complete description of the physical system,
i. e., the sequence of partition functions can be expressed in terms of the spectrum of the transfer
operator. The thermodynamic formalism shows that many properties of the dynamical system depend
as functions on the partition function. Motivated by these examples we ask for the class of interactions
for which the dynamical system can be completely described by a transfer operator. We can find a
class of interactions in which all the above examples are contained and give some new examples. The
main Theorems 2.7.6 and 2.13.8 of this chapter will be explained during the following outline of the
chapter.

In Section 2.1 we introduce the Ruelle transfer operator £ and formulate the Ruelle-Perron-Frobenius
Theorem 2.1.4. We introduce the dual shift 7/ and show that the leading eigenfunction of the Ruelle
transfer operator factors through a family of continuous linear functionals. This observation is the
key idea in finding the suitable L-invariant subspace in Section 2.6. In Section 2.2 we discuss some
ways to find a natural Hilbert space H which contains a preimage of the leading eigenvector of the
Ruelle transfer operator. For our constructions we will need a certain suitable stronger decay of the
distance function d and hence define subspaces of /!N. By Cauchy’s root test the space ¢£'N of distance
functions splits into three parts, namely d € ¢'N either satisfies

0, (d has faster than exponential decay),
limsup {/|d(k)| = ¢ ¢ with 0 < ¢ <1, (d has exponential decay at infinity), or
k—o0 1, (d has subezponential decay).

Our methods are limited to cover (parts of) the first two cases as we will see in Remark 2.6.8. In
Section 2.3 we give another motivation for the study of the Ruelle transfer operator. We recall the
definition of the so called counting trace of a composition operator. We show that the counting trace
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of the iterates of the Ruelle transfer operator is precisely the dynamical partition function (1.11.4).
By virtue of Ansatz 2.3.3 we can transport the dynamical system on 2 to a dynamical system on
another topological space E, such that the Ruelle transfer operator induces a composition operator,
the Ruelle-Mayer (RM) operator Mg : Cy(E) — Cy(E). For a certain class of examples this operator
looks like

(Msf)(z) = /F exp (B(z|v)) f(aw + Bz) du(x),

where v, w € E := (2N, B is a trace class operator on ¢2N, and f : /2N — C. It is an interesting
observation that the dynamical partition function can be expressed as the counting trace of this
induced operator.
In Section 2.4 we will assume that the Ruelle-Mayer transfer Mg operator is trace class. We calculate
the spectral traces of its iterates and relate this to the dynamical partition function (1.11.4). We show
that B

ZZNO (BA(p)) = det(1 —B") trace (Mp)"

which we call a dynamical trace formula. In Section 2.5 we investigate arbitrary finite range interac-
tions, construct the Ruelle-Mayer transfer operator, and prove its trace formula with the methods of
Section 2.4. For the rest of this chapter we will restrict to Ising (type) interactions. In Section 2.6
we will introduce a general method how one can choose a projection map in order to construct a
Ruelle-Mayer transfer operator which works for a large class of (longe range) distance functions. The
main idea is to find a family of linear continuous maps from ¢*°N (which contains our configuration
space 1) into C, which translates the shift action on ¢*°N into affine maps on some complex vector
space. In Section 2.6 we investigate the Banach space situation, whereas in Section 2.7 the Hilbert
space case is concerned. Our approach is new compared to the existing literature and allows to treat
the following classes of distance functions from a unified point of view: finite range interactions in
Section 2.8, superexponentially decaying interactions in Sections 2.9, polynomial-exponential decaying
interactions in 2.11, and their superpositions. These distance functions have in common that they can
be written as

d:N—=C, ks d(k) = B ojw)y

where B : H — H is a bounded linear operator on a Hilbert space (H, (- |- )#) with spectral radius
pspec(B) < 1, and two fixed vectors v, w € H. Abstractly speaking, the restriction of the shift
operator T to the subspace of /!N generated by the functions 7%d (k € Np) is contractive. This point
of view allows a classification of this type of distance functions and implies that the above list is almost
complete.

In (2.7.1) we define the classes of distance functions DY) € (N (for p < 00) via d € D iff d has a
generating triple (B, v, w), i.e., admits a representation d(k) = (B*~'v|w)y, where B belongs to the
Schatten class S, (¢?N) and pspec(B) < 1. The following main theorem of this chapter states that for
all Ising interactions with distance function d € Dgp ) for some p < 0o a dynamical trace formula holds
at least for almost all n € N:

Theorem 2.7.6. Let ¥ C C be a bounded set and (F N Np,7) a one-sided one-dimensional full
shift (1.2.6). Let ¢ be a two-body Ising interaction (1.8.3) with potential ¢ € Cp(F) and distance
function d € D for some p < oo (2.7.1), say d(k) = (B*~lv|w)p2y. Then there exists an index
ng € N depending on B such that for all n > ng the Ruelle-Mayer transfer operator

My FUPN) = F(EN), (Maf)(2) = [ exo(ato) + Bolelu)) flow+B2) o)

satisfies the dynamical trace formula Z¥° (BA@)) = Zfljo‘bn}(ﬁ) = det(1 — B") trace (Mpg)™. O

In Section 2.12 we will make some comments on the classification of this class of distance functions.
In the following sections we will construct Ruelle-Mayer transfer operators for finite range interac-
tions (Subs. 2.8), superexponentially decaying Ising interactions (Subs. 2.9), polynomial-exponentially
decaying Ising interactions (Subs. 2.11), and Dgp )A Ising interactions (Subs. 2.10). The latter are dis-
tance functions which are suitable infinite superpositions of exponentially decaying interactions and
have not been studied before.
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We end this chapter by transferring the result 2.7.6 to Ising type interactions. Recall that an interac-
tion matrix is called of Ising type if it can be written as a finite sum of Ising interactions. A typical
example of an Ising type interaction is Stanley’s M-vector model [St68a]. If the alphabet F is a finite
set, which is often the case, then every interaction matrix is of Ising type. This allows to study the
M -states Potts model from the same mathematical point of view as for instance the Ising model. Our
Theorem 2.13.8 will be obtained by taking the Ruelle-Mayer transfer operator for each summand and
form (mainly) their tensor power.

In Chapter 3 we will generalise the results of this chapter to one-dimensional one-sided matrix subshifts
and obtain a similar dynamical trace formula.

2.1 Ruelle transfer operator

In this section we will explain the concept of a transfer operator. We start with the original definition
by D. Ruelle and discuss some of its properties. The Ruelle transfer operator is a composition operator
acting on the space of continuous bounded functions on the configuration space. Under additional
assumptions one can show that this operator has a spectral gap, i.e., there exists a leading eigenvalue
A1 and the rest of the spectrum is contained in a disk with radius strictly smaller than |A;|. The
Ruelle-Perron-Frobenius Theorem 2.1.4 exploits this fact, deduces further properties of the Ruelle
transfer operator, and relates these analytic facts to certain properties of the dynamical system.

Remark 2.1.1. We return to the situation of Remark 1.11.5 (v): Let I be a bounded domain in R"
or C* and T : I — I a continuous map, such that every point x € I has only finitely many preimages.
Let A € Cp(I) and define the Ruelle transfer operator

(36) La:Co(I) = Co(D), (Laf)(z)= Y exp(A(y)) f(y).
yeT—(x)

There is a closely related operator: The Perron-Frobenius operator L is defined on L(I) via

/wﬁwmmw:/ﬂm@ﬂwmw
I I

for all f € LY(I),g € L>(I). If T is piecewiece continuously differentiable, then the function
A(x) = —log|det(T"(x))| is almost everywhere defined and the Ruelle operator associated with this
observable coincides with the restriction of the Perron-Frobenius operator to the space Cy(I) of con-
tinuous bounded functions on I. O

In the following we will only deal with the one-dimensional matrix subshift for which we can determine
the preimages explicitly:

Example 2.1.2. Let (FN,Np, 7) be a one-sided one-dimensional full shift (1.2.6). The shift operator
is the surjective, non-injective map

=7 FN — FN (7€) (i) = £(i +1).

We give a description of the preimages of a configuration ¢ € FYN under the shift operator: Recall
the bijective right shift 7_, FN — FN>2 defined in (1.2.3). For any o € F the element (o V &) =

(0,61,&2,...) = (0 ®7_1.5(§)) € FN defined via

o ,i=1,

(V) { §i-1 ,12>2

is a preimage of £&. Forn € N, 01,...,0, € F, £ € F™ we define
(37) on V.. VoaVorVE:=0,V(op_1...V(02V (01 VE))...).

Let (4, Ny, 7) be a one-sided one-dimensional matrix subshift (1.2.8) of (F,Ng, 7). The preimages
of £ € Oy are precisely those configurations (o v §) € FN with A, ¢, = 1. O

This leads to the following definition:
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Definition 2.1.3. Let F be a Hausdorff space equipped with a finite Borel measure v, (Q = FN, Ny, 7)
a one-sided one-dimensional full shift (1.2.6), and A € Cp(€2) an observable, then the associated Ruelle
transfer operator L4 : Cp(2) — Cp(Q) is defined as

(Laf)(E) = /F exp(A(o v €)) f(o v E) dulo).
[

As one easily checks, the Ruelle transfer operator is a bounded linear operator on Cy(2). Moreover
cp. [May91, p. 181], [Ru78], if F' is compact and A is real-valued, the operator L4 : C(Q) — C(Q) is a
positive operator and hence has a positive, separated leading eigenvalue, which implies the following
theorem:

Theorem 2.1.4. (Ruelle-Perron-Frobenius Theorem?) Let F be compact, (Q, F,N,Ng, ) a lattice
spin system (1.2.7), and A : Q — R a Hélder continuous function. Then:

(i) There exists hy € C(2), h1 > 0, A1 > 0 such that Lah1 = A1hy.
(ii) There exists a probability measure v; € C(Q)', v1 >0, vi(h1) =1 and (La)'v1 = Aivs.

(iii) For any f € C(Q)
Jim [AT(£4)"F = (Halece) = 0.

(iv) The following formula holds for the topological pressure'3
1 ~
(38) P(A) := lim —log Z!°(A) = log \;.
n—oo N
(v) The probability measure uy := hy vy is shift invariant and is a Gibbs state'*. O

The spectral properties of the transfer operator (quasi-compact, compact, Schatten class) determine
the limit behaviour of the dynamical system, see for instance the book [Ba00]. For this purpose it
is helpful to study the Ruelle transfer operator on subspaces of Cp(§2) which are easier to treat. To
preserve the main (spectral) information about the original operator, such a subspace should contain
the constant function 1 € Cp(2) and its image under the iterates of L, i.e., the space V' defined as

(39) V = span{Zil|n e NoJ "7,

since by the Ruelle-Perron-Frobenius Theorem 2.1.4 the eigenvector h; of L corresponding to the
leading eigenvalue \; can be approximated by the normalised L 4-iterates of the constant function 1
due to the fact that

Jim [ATTLL = haleqo) = 0.

In this dissertation we restrict our attention to Ising type interactions which contain many physically
interesting systems. For the mathematical treatment it is often expedient to consider first the Ising
model and the transfer operator L4, , see Example 1.8.3, with spin values in a bounded subset
F C C, and then to generalise to Ising type models. If F C C is bounded, then the configuration
space Q = FN is a bounded subset of />°N.

The previous considerations motivate the investigation of the image of the constant function 1 under
the iterates of £ in order to obtain an explicit description of the space V' (39). It turns out, see
Proposition 2.1.8, that the functions (£ A ¢))”1 depend on a family of functionals which are defined
via the distance function and the shift. These functionals will be introduced in Remark 2.1.6.

125ee for instance [Bo75] or [PaPo90].
13The topological pressure can equivalently be characterised by a variational principle, which can be stated as:
P(A) = sup{hu() + [ Adu|p7-invariant probability measure on Q}, where hy(7) is the entropy of T with respect to

14Gibbs states can be equivalently characterised as solutions of the Dobrushin-Lanford-Ruelle equations and also by
certain conditional probabilities, see [Ru78].
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Remark 2.1.5. The (left) shift operator 7 : CY — CN, (7¢); = &1 leaves invariant all the spaces
/PN for 1 < p < oo and defines continuous linear operators on these spaces:

I7(E)ller vy < M€ lern-

With respect to the usual bilinear pairing (£, n)een oy = Yoy & 1 (where p, g are dual exponents,
ie., % + % = 1), the dual operator of 7: PN — (PN is 7/ : /IN — (9N acting via 7/(§) = 0V £ (2.1.2)
defined via

eevon(s, i3
In particular, (77)(§) =7(0VE) =& and (7'7)(c VE) =7'(§) =0V E. O

Remark 2.1.6. Let 7 : /!N — (!N be the shift operator (2.1.5). With respect to the usual bilinear
pairing (-, - )y ey @ sequence d € (N gives rise to a family of continuous linear functionals wg €
(¢>°N)’ (indexed by k € N) defined via

(40) Tl 0°(N) = C, € (&, 7" M) ooy o1y = Zfz‘ d(k+i—1).

i=1
Obviously,
LSS sup [&i| 175 dll oy < (€]l [l
1€

For any finite set J C N set 79 := (n),; : £*°(N) — Cl/I. Then 7¢ is a continuous linear operator.

O

Jj€J
The functionals 7{ € ¢>°(N)’ are interesting objects due to their relation to the standard observable
(1.11.1) and the following proposition.

Remark 2.1.7. Let F C C be a bounded set and (2, F, N, Ny, 7) be a lattice spin system (1.2.7), then
Q c FN c £>(N) is a bounded set and the observable A, (1.11.1) associated to the Ising interaction
(1.8.3) with distance function d € /!N and potential g € Cy(F') is given as

(41) Ay Q= C, Ay (o VE) =q(o) +oni(©).

In this situation, we call Ay the standard Ising observable. By Remark 2.1.6 we have A4 € Cp(92).
If g extends to a continuous map C — C, then also A4) extends to a continuous map via

Agg)  t°N = C, Ay (o VE) =q(o) +ori(é).
In fact: Let n = o V £ € Q, then using (1.8.1), (1.8.2), and (1.11.1)
Ay () = er(Lsm)+Y_ oL, im0, m) = q(m)+ Y dii=1) mmi = q(o)+0 Y _ d(i) & = q(0)+0o 71 (),
i>1 i>1 i=1
which proves (41). By the continuity of 7{ (2.1.6) and ¢ also A, is continuous:

< lq(@) = (@) + o 7{(€) — o’ 71 ()]
< lg(o) —q(@)| + ol lldllon 1€ = & lleen + o = o[l dll e 1€ [l
O

[A@gy(a V&) = Ay (o' V&

In Proposition 2.6.6 we will return to the idea that the standard Ising observable can be expressed
with a certain linear functional. The next proposition says that the spectral information about the
leading eigenvalue of the Ruelle transfer operator is concentrated on a subspace of Cp(£2) which is
characterised by the functionals 7f € £>°(N)’ from Remark 2.1.6. This observation will be essential
for the construction of the Ruelle-Mayer transfer operator.
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Proposition 2.1.8. Let F C C be a bounded set, (FN, Ny, 7) a one-sided full shift (1.2.6), ¢ a two-body
Ising interaction (1.8.3) with distance function d € ('N, Ay the standard Ising observable (2.1.7),
and La,, be the associated Ruelle transfer operator (2.1.3), then ((La,,)"1)(§) depends on & via the

functions 7l|q (40) fork=1,...,n

(on DO = [ exp(Ba(o) + ol (©) v(a).

((EHA<¢))H1)(§) / eXP(ﬂZq Ok JrﬂZUkZUZ —1 +620k7rk )dzx On)...dv(or).
k=1 i=

Proof. Let A € Cp(2) and L 4 be the associated Ruelle transfer operator (2.1.3). We write this operator
as an integral over a family of composition operators as

(Laf)(E) = /F exp (Ao (6)) (f 00 (€) du(0) = /F Ly dv(z),

where for any o € F we set ¢, : FN — FN, £ s 0V E (2.1.2), Ay : FN — C, £+ A(o VE), and L,

Co(2) — Co(), (Lo f)(€) = exp(As(€)) (foths)(€). We compute the n-th iterate of L4 = [, Ly dv(z)
with Corollaries A.7.7 and B.1.3 which yields for n > 2

@i0©) = [ (Layor oL HOd@)...dvlz)
(42) = / exp(ZA(zk\/...\/zn\/f))f(:cl\/...\/:cnv&)dy(:cl)...dl/(zn)
" k=1

using the definition of V (37) given in (2.1.2) For the particular choices A = SA4) (1.11.1) and f
being the constant function 1 we obtain (for n > 2)

((Lsa,,)"1)(E) :/ exp(ﬂz Agy(p V...V, V 5)) dv(z1)...dv(zy)

Fn

/ exp( ZA(¢) T V...V1y \/5)) dv(z1)...dv(xy)

n k 00
= /F exp <BZ v1(k, o) + ﬂz (Z wa(l,4; 0%, Op+1—i) + Z pa(k + 1,15, gk))> dv™ (o1, .., 0p)
" k=1 k=1 i=2

=1

which gives in the case ¢ being an Ising two-body interaction (1.8.3)

n n k—1 fe’e)

(Loa,)"1)(E :/ eXp< ank)JrﬂZJk(ZUid(ki)+Z§id(kz+i1))>dz/”(01,..,an).
k=1 k=1 =1 =1

0

We will make a first attempt in finding a subspace of Cp(£2) which is invariant under the Ruelle
transfer operator L4, , contains the leading eigenfunction, and can be described without knowing
the eigenfunctions of L4, .

Remark 2.1.9. Let F C C be a bounded set, (2 = FY Ng,7) a one-sided full shift (1.2.6), ¢ a
two-body Ising interaction (1.8.3) with distance function d € ¢'N, A(g) the standard Ising observ-
able (2.1.7), and L4, be the associated Ruelle transfer operator (2.1.3), then in view of Proposi-
tion 2.1.8 a reasonable candidate for the investigation of spectral properties of L4, is

Ch(Q)
W = span{f € Cy(?) | 3J C Ny finite, g € C,(Uy) : f = gon¢} el

where U; C C7 is some (connected) neighbourhood of the image 74(Q) C C/ of 7¢ defined in (2.1.6).
The space V from (39) is contained in W. A priori it is not clear whether V' and W are non-trivial
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subspaces of Cp(2), whether V' = W, and whether W is £ A ¢)—invariant. Concerning the latter: Let
97 € C(Uy), f=gsom§ e W, then

(Lag, F)(E) = /F exp(Bond(€)) (g7 0 74)(o v €) di(o) = /F exp(Bom (€)) gs(ody + 1 (£)) di(o),

where dj := (d(j))jeJ € C’/ and J+1:={j+1;5 € J}. Hence the image depends on the functionals
7l (2.1.6) for k € {1} U J + 1. a

2.2 The leading eigenfunction of the Ruelle transfer operator

Let ¢ be a pure Ising two-body interaction (1.8.3) with distance function d € /!N and spin values in a
bounded subset F' C C. We look for a small subspace of C;(2) on which the spectral information of the
Ruelle transfer operator is concentrated. In Proposition 2.1.8 we have seen that the leading eigenvector

of the Ruelle transfer operator L4, (2.1.3) depends on all the functionals mf : £*N — C (k € N)

as defined in equation (40) of Remark 2.1.6. This observation suggests to consider 74 =“lim;_y 7"

of 7 and to consider the action of the Ruelle transfer operator on functions f = g o 7¢. Hence one
has to estimate the size of 74(£). First we will use the /2N-norm, which leads to the class Dy of
distance functions such that 7¢ is continuous. Later, we will investigate distance functions belonging
to subspaces of Dy characterised by a stronger decay condition. The potential ¢ does not play a role
for these considerations and will be included only later.

Definition 2.2.1. Let Dy be the subspace of /!N consisting of all sequences d : N — C such that

I3, = Z(Zldk+3—1) zz@m 1) <o

j=1 j=1

O

The requirement that a distance function d belongs to D is the natural condition which guarantees
the continuity of the linear map 7% : /N — (2N defined next.

Proposition 2.2.2. Letd € Dy (2.2.1). Then

oo

(43) 7? N — 2N, 719(€); = 7] (€) = (€,77 ' d)ponan = ka dlk+j—1)
k=1

is a continuous linear map with ||7¢|| < ||d|p, and

(44) oV E) =od+rrE)

for all o € C, £ € {°°N, where 7 : 2N — (°N, 7(£); := &1 is the shift defined in Remark 2.1.5.
Proof. Let £ € {*°N. Then by Remark 2.1.6

Im ()l = le P < el 3 I s = el 3 (3l +5 - 1))’

j=1 j=1 k=1

Let j e N, o € F, £ € /N, then

oV E); =T o VE) = (o VET ) e = 0 d(j +Zskdkz+y>—ad<)+m+1<£)-
k=1
O

Example 2.2.3. Let d € Dy (2.2.1). Cauchy-Schwarz’s inequality yields a majorant for ||d|3,, via

@) =Y (Sl + i)’ <|\d||ewNZZ|dk+g—1|f||dnemNZg|d

j=1 k=1 Jj=1k=1

where the last equality can be shown by counting the number of equal terms in the double series.
This upper bound will reappear in Definition 2.2.4. Examples of distance functions belonging to Dy
will be given in (2.2.5). O
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In the following we will require a suitable stronger decay of the distance function d such that the image
of /*°N under 7 (43) lies in ¢'N. This is also the natural condition for the absolute convergence of
the function Wz_ z. from Remark 1.6.3. The interest in the function Wz_ z_ is its close relation to
the leading eigenfunction of the Ruelle transfer operator. This we will show in Remark 2.2.11. We
will prove a useful representation of Wz_ z. with the help of a continuous trilinear mapping W, as
we will see in Remark 2.2.10. This will allow us to investigate whether the leading eigenvector hy of

the Ruelle operator L4, (2.1.3) has a preimage hy = hy o 7 under composition with 7¢.

Definition 2.2.4. Let D; be the subspace of /!N consisting of all sequences d : N — C with

ldllp, =D ld(i+j—1)| = Z |d(#)] < o0,

i=1 j=1 i=1

O

By Example 2.2.3 we have D; C D2, and obviously ||d||;y < ||d||p, holds. We give some examples of
physically relevant distance functions belonging to this class.

Example 2.2.5. (i) Leta>1and d:N— C, k— k=% It belongs to Dy (2.2.4), iff a > 2, since

o0

> vld |—Zu = ((a+1),

v=1

where ¢ denotes the Riemann zeta function. This class of distance functions contains the van
der Waals potential (o« = 6) of particle physics, but not the Coulomb potential (a« = 2) of
electrostatics.

(ii) Plummer potential: Let € > 0, a > 1 and d : N — C, k ~— (e + |k|?)~®/2, which is an approxi-
mation of d'(k) = k~®. In fact: One can choose ¢, > 0 such that c. k=% < d(k) < k~*. Hence
it belongs to Dy, iff a > 2.

(iii) Lety, 6 >0,n € Ny, andd : N — C, k — k™ exp(—vk?), which appears for instance in [May80a,
p. 100] in the case n = 0. It belongs to D; by Proposition 2.2.6.

(iv) Let o,y > 0and d : N — C, k — fol t* exp(—~ytk) dt which for large k behaves like k=1,
This distance appears in [May80a, p. 109]. It belongs to D; for all ¥ > 0, @« > 2: Note
that the function [0,00[— R, ¢ +— t* exp(—~yt) attains its maximum at v/, hence d(k) <
(a/7)* k™ exp(—a) and Y o7 v |d(v)] < (a/v)* exp(—a) > pey k'™, which converges for o >
2. o

The following auxiliary proposition is left from Example 2.2.5.
Proposition 2.2.6. Let €1, €2 > 0, n € Ng, then > -, k™ exp(—e€1 k) < .

Proof. The series converges if and only if the condensed series

oo

ZQk (2F)" exp(—e; 2F¢2) Z (2" )R exp(—e; 2F€2)
k=1 k=1

converges. By the root test this holds true, since

fim {/(271)¢ exp(—ey 240) = 27 i exp(— - 24%) = .

k—o0

O

Remark 2.2.7. Let d € ¢'N be a given distance function. Cauchy’s root test implies that there are
only three possible cases

0, d has faster than exponential decay;
limsup {/|d(k)|=<¢ 1, d has subexponential decay;
k—o0 q with 0 < ¢ < 1, d has exponential decay at infinity.
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In Example 2.6.9 we will investigate this limit behaviour measured by 2.2.7 for the distance functions
introduced in Example 2.2.5. We will now show that the distance function with at least exponential
decay at infinity belong to the class D;.

Proposition 2.2.8. Let d : N — C be a function with limsup,_, .. v/|d(k)] < 1, then d € Dy (2.2.4)

Proof. The root test implies that ||d||p, = >z, k|d(k)]| is finite. O

The converse of Proposition 2.2.8 is not true: Consider for instance d(k) = k=3 (2.2.5) (i).

We will construct trace class Ruelle-Mayer (RM) transfer operators for some classes of interactions
which decay fast enough. It is an open problem to find trace class RM transfer operators for interac-
tions with slower than exponential decay, or to prove that those cannot exist.

The requirement d € D; is the natural assumption which guarantees the continuity of the map W,
which we define next.

Proposition 2.2.9. Ford € Dy (2.2.4) let 7@ : {°N — (2N be the linear map defined in (2.2.2). Then
the image of (N under ¢ is contained in ¢'N and the linear map 7 : {*N — ('N is continuous
with |7 (@)]|lan < ||dl|p, [|2]|e=n. Set

W N x (>N x Dy — C, (z,y,d) — W(z,y;d) : Zszy] (i+7—1).
i=1 j=1
Then W is a continuous trilinear map, |W (x,y;d)| < ||d||lp, ||z|lesn ||yl ¢o vy, with
(46) W (z,y;d) = Wy, a5d) = —(z, 7 (y))sonein = —(7(2), y)ean eoon-
Proof. To prove the continuity of 7% we calculate for z, y € /N, d € D;
Ixt@)llon =D Imf @) =Y | D awd(G+k—1)| < [lalleen DD 1A+ k= 1)),
j=1 j=1 k=1 j=1k=1

which is finite by definition of Dy (2.2.4). Rearranging terms gives

oo 00
Wz, y;d ZZM/J (i+7—-1) :Z%Z%d“LJ*l Z»’Cz = (z, 7 (y))poon 1N
=1 j=1 =1 j=1

which is linear and continuous in z, y € {*N, d € D;. The symmetry in the first two arguments of
W concludes the proof. O

The interest in the function W from Proposition 2.2.9 is the following connection with the function
WZS,Z> from Remark 1.6.3 and a theorem of D. Ruelle which we recall in Remark 2.2.11.

Remark 2.2.10. Let F C C be a bounded set and (FZ,7Z,7) a one-dimensional two-sided full shift
(1.2.5). Let ¢ be a pure two-body Ising interaction (1.8.3) with distance function d € Dy (2.2.4). Set
Z< := —Ng and Z- := N. Then the function

Wiz, : FTNOx FN = C, (&) = Wa 2. (n® &) = ZZ@ —i,i-i,5)

=0 j=1
from Remark 1.6.3 can be written as
(47) Woz.(n& &) =W(S(n),&d).

where W is the continuous trilinear map from Proposition 2.2.9, S : CNo — CN| (Sz); = ;1 is the

bijective right shift!5, ~ is the inversion map : CN — CN, = n_;, and @ is the concatenation
operator (Def. 1.3.4). Wz z. extends to a bilinear continuous map

Wa_ g : 60°(Z<) x £2(Zs) — C, (1,€) = Wa_ z_ (n® &) = W(S(1), & d).

158 was denoted by S = T_1;N, in the notation of Definition 1.2.3.
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In fact: Let n € £°(Z<), & € {>°(Z), then

WZ<,Z> 77@€ ZZU lEJ 'L+.7 ZZM z€J ’L+¢7_1) (S(E)a&d)
=0 j=1 i=1 j=1

O

We are now prepared to formulate a result due to D. Ruelle which gives an explicit description of the
leading eigenfunction of the Ruelle transfer operator.

Remark 2.2.11. Let F' C R be a bounded set, (FZ,7Z,T) a one-dimensional two-sided full shift (1.2.5),
and (F%<,Ny,7) be the one-sided subshift on the negative half axis Z< endowed with the semigroup
action 7 : Ng x FZ2< — FZ< 7(n,£&)(i) := £(i —n). Let ¢ be a two-body Ising interaction (1.8.3) with
real-valued distance function d € Dy (2.2.4) and potential ¢ € Cy(F). Furthermore, let Ay € Cy(F)
be the standard Ising observable (2.1.7). Let W7_ z. be as in Remark 1.6.3 and 5 > 0 the thermody-
namic constant from (1.7.1). D. Ruelle [Ru78, 5.12] has shown that the eigenspace corresponding to
the leading eigenvalue of the Ruelle transfer operator Lz, : Co(F™) — Cy(F™) (2.1.3) is spanned by

(48) hi: FY—C, € | exp(=BWa 2. (n @ €)) du<(n).

F°=

Here p< denotes the (unique) Gibbs measure on FZ< for the interaction ¢. The existence and
uniqueness is of this finite measure is shown in [Ru78, 5.9]. Usually, one is interested in the unique
positive, normalised eigenfunction % hi >0, where K := [ h1(§) dpu<(€) is a known constant [Ru78,
5.9, 5.12], which is of independent interest. Note that h; is independent of the potential ¢ € Cy(F). O

We look for a (small) Hilbert subspace H of Cp(FY) which is invariant under the Ruelle transfer
operator and still contains the main spectral information. In view of the Ruelle-Perron-Frobenius
theorem we require that this subspace contains a preimage of the leading eigenvector of the Ruelle
transfer operator. A starting point for the idenfication of a suitable Hilbert space H is obtained as a
combination of Remarks 2.2.10 and 2.2.11. More precisely, we look for a Hilbert space such that the
composition operator

Cra :H—>Cb(FN), f»—>fo7'rd

is continuous and C«(H) contains the spectral information of the Ruelle transfer operator L4, -

Remark 2.2.12. Let F' C C be a bounded set and (2 = FZ Z, 1) a one-dimensional two-sided full
shift (1.2.5), Q< = p_n,(Q), and Qs = pn(Q). Let ¢ be a two-body Ising interaction (1.8.3) with
distance function d € D (2.2.4). Let 7% : £°N — ¢'N be defined by formula (43), ~: C™N — CN the
inversion map, and S = 7_1.y, : CNo — CV the bijective right shift. Then by Proposition 2.2.9 and
Remark 2.2.10 we have

«—

W 2 (n@ &) = W(S(1),&d) = —(S(1), 7(€)) poery g1

Hence by Remark 2.2.11 the leading eigenvector of the Ruelle transfer operator L4, (2.1.3) is given
as

P

h(€) = /Q exp(8 (S(7), 7€) yemer ) dpi< ().

This, together with Proposition 2.1.8, suggests to look for a Hilbert space H, which can be embedded
into C(Qs) via the composition operator Cya : H — C(Qs), f+ fond. If

BN = C, 2 | exp(B(S(0),2) oo ) dpis(n)
Q<

belongs to H, then hy = hyom? € C,a (H) C C(Q2s). We were not able to implement this idea, maybe
because we tried to find a reproducing kernel Hilbert space!S. It remains an open problem to find a
(reproducing kernel) Hilbert space H C C(¢'N) such that H contains the vector hi: As a first step

16Reproducing kernel Hilbert spaces (rkhs) are introduced in Appendix A.4.
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one could look for a rkhs such that for any zo € ¢°*°N the map g, : {'N — C, z — exp((20, 2)gecn s1n)
belongs to that rkhs and in a second step show that the {2<-averaged function hy belongs to it.

Note that in general 2y does not belong to the subspace /2N of /*°N, hence g, and hy are undefined
on /2N, in particular they do not belong to the Fock space F(¢£2N) defined in (A.4.6). The reproducing
kernel k of F(¢?N) and its restriction to /!N x ¢!N are functions of positive type, hence there exists
an tkhs H(('N, k|pinyan). By [Ar50, 1.5.1] this space is given as

H(ﬁlN, k|gleglN) = {f . glN —C | aF S f(gzN) : F|glN = f}

If 29 € ¢*°N\ £°N, then in view of Theorem A.4.8 it is impossible to find F' € F(¢?N) such that
FlllN = gZ()' D

In Section 2.7 we introduce a class of examples of distance functions for which we are able to find a
reproducing kernel Hilbert space which contains a preimage of the leading eigenvector h; of the Ruelle
operator L4, : Cp(2) — Cp(2) and investigate the associated transfer operators. Our class Dgoo)
of distance functions is a proper subclass of D; (Def. 2.2.4) and contains a large family of distance
functions which are characterised by a certain exponential decay at infinity. Among them are the
known examples of finite range interactions, polynomial-exponentially decaying interactions, and a
class of superexponentially decaying interactions. Moreover, for this class of interactions we will find
a subspace of Cp(€2) which is invariant under the Ruelle operator and induces the so called Ruelle-
Mayer transfer operator. A positive answer to the question raised in the previous Remark 2.2.12 might
lead to a larger class of distance functions, which can be treated with our method.

2.3 The counting trace

Besides the Ruelle-Perron-Frobenius Theorem 2.1.4 which relates the leading eigenvalue of the Ruelle
transfer operator (2.1.3) to physical quantities, we will give a second motivation for the study of this
operator: The counting trace of its iterates is precisely the dynamical partition function (1.11.4).
By virtue of Ansatz 2.3.3 we can translate the dynamical system on  to a dynamical system on
another topological space E, such that the Ruelle transfer operator induces a composition operator,
the Ruelle-Mayer operator, acting on Cp(E) and the dynamical partition function can be expressed
as the counting trace of this induced operator. Remark 1.11.5 will lead us to a representation of the
partition function with periodic boundary condition. At several points in this section we will assume
the set F' of spin values to be finite (and still write an integral sign). We think that the results still
hold true for general F', but this would complicate the arguments. Our main intention in this section
is to give a motivation for the Ruelle-Mayer transfer operator.

Definition 2.3.1. Let E be a topological space. Let Trace® be the so called counting trace defined
as the linear extension of
Trace“T = Z o(x)

Yr=x

to the algebra of composition operators generated by simple composition operators

T :Co(E) — Co(E), (Tf)(2) =¢(2) (forp)(2)

where ¢ : F — C and ¢ : E — FE are continuous functions and v has only finitely many fixed
points. O

The counting trace was first introduced by D. Ruelle, see [Ru02], since the counting trace of the
Ruelle transfer operator gives the dynamical partition function: Let F be a finite set, (2 = FN, Ny, 7)
a one-sided one-dimensional full shift (1.2.6), A € C4(Q2) an observable, and

(19) L£4:C(Q) — Co(), (Laf)(E) = /F exp(A(z v €)) f(x v €) di(z)

be the corresponding Ruelle transfer operator (2.1.3). For every € F the map & — x V £ has the
unique fixed point T = (z,z,...) and hence

Trace® L4 = /F exp(A(T)) dv(z) = Z0° (A).
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The following proposition shows that this equality also holds for the higher iterates of £4. This sug-
gests that not only the first eigenvalue of the Ruelle transfer operator is interesting, see Theorem 2.1.4,
but also certain tracial functionals evaluated on its powers.

Proposition 2.3.2. Let F be a finite set, (@ = FNNo, 7) a one-sided one-dim. full shift (1.2.6), and
A € Cp(Q). Then the dynamical partition function ZZNO (A) (1.11.4) is given as

7Y (A) = Trace® (L4)",
where L4 : Cp(2) — Cp(Q) is the Ruelle transfer operator (49).

Proof. Forfixedn € N, z1,...,2, € FthemapQ — Q, £ — 21 ...2,VE = (21,...,Tn, &1, ..) defined
via (37) has the unique fixed point Z7 ... @, € Q. For k € Ng let 74 : FN — FN| 7.(&)(n) = &(k +n)
be the k-th iterate of the shift (1.2.3). Foralln € N,0 <k <n, z1,...,2, € F, £ € F" one has

(50) Te(x1 V...V, VE) =xp41 V...V, VE

In fact: Let n = 1, hence k = 0 and 79(z V §) = x V . Induction step n — n+1: Again k = 0 is
trivial.

Trhp1(@1 Voo Va1 VE) =mp(22V .o . VZpi1 VE) = Tpp1 Voo Vi VE
Then for E =71 ... 2pn, =21 V... V2, VT1...T, we have

_ ______, (50 _
Tee1(T1 - Tp) = Th—1 (@1 V.. .V, VT Tp) = Tk V...V VI Tp-

Let f € Cp(€2). An explicit formula for (£4)™ is given in formula (42) in the proof of Proposition 2.1.8:
(LA F)(E) = / exp(z Al V...V, V 5)) fli V...V, VEdv(rr)...dv(xy,).
" k=1

Hence the counting trace of (£4)" coincides with the dynamical partition function (1.11.4). O

We will now assume that the observable A factors through a so called projection map. Together with
a second assumption on the projection map, this will allow us to transfer the dynamical system on 2
to another dynamical system on a topological space E. Via this transfer we obtain the Ruelle-Mayer
transfer operator associated to a Ruelle transfer operator. We remark that a similar set of axioms has
been proposed by D. Mayer in [May91, p. 192].

Ansatz 2.3.3. Let (2 = F Ny, 7) be a one-sided one-dimensional full shift (1.2.6), A € C(f2), and
m: ) — FE a continuous map into a topological space E. Consider the following properties.

(S1) There exist continuous maps ¢, : E — F, such that for all o € F,£ € Q
(Yo 0m)(§) = (o VE).
(S2) There exist continuous bounded functions A, : F — C such that for all o € F, & € Q

A(o V&) = (A, om)(E).

(S3) The families (¢;)zer and (A, )zer are measurable with respect to the parameter € F and the
a priori measure v on F.

We call the map 7 a projection map and ¢, a linking map. o

If the projection map 7 is the identity on €2, then trivially every observable A possesses properties
(S1) - (S3) by setting A, (&) := A(x V§) and 9, (§) = = V & We look for projection maps with values
in a space E with nicer properties such that additional structures can be used for the investigation
and description of the dynamical system.

The main example we have in mind for the projection map = is the linear map 7% : FN C /*N — ¢°N
from Proposition 2.2.2, hence the image is a subset of a Hilbert space.

Assuming conditions (S1) - (S3) we will rewrite our partition function in Proposition 2.3.5. We begin
with an induction argument.
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Proposition 2.3.4. Let (FN Ny, 7) be a one-sided one-dimensional full shift (1.2.6) and 7w : FN — E
a continuous map into a topological space E with property (S1). Then for alln € N, xq,...,2, € F,
£e FN

(51) (thay 0. 09g, )(T(E)) = (21 V...V 2p V).

Proof. By induction: 1, (7(£)) = w(z1 V&). Let 21,...,0,41 € F, £ € FN. Then

(U 0 -0 Y(T(E)) = W (ay 0+ -0 J(T(E)) = oy (R(22V .V 5 VE)) = M1 V2 V.20 VE).
O

Proposition 2.3.5. Let (FY Ny, 7) be a one-sided one-dimensional full shift (1.2.6), A € Cp(FN)
and 7 : FY — E a continuous map into a topological space E with properties (S1) - (S3) (2.8.3). Let
(Qa, F,N,Ng, 7) be a one-sided one-dimensional matriz subshift (1.2.8). Then the dynamical partition

function ZSNO (A) (1.11.4) is given as

~1N n

Zﬁ 0 (A) = / Apl oAy a Ay o eXp(Z(Amkoz/;zHlo. o, )2y zﬂ))du(:cl) cdv(xy),
" k=1

where z =n(T1 . T,) € E.

Proof. By Corollary 1.11.3 it suffices to show that for all { = T1 ... @, € Fix(r,) and k =0, . -1

A(Tkg) = (Amk+1 o ’l/)ﬂﬁk+2 -ee 0 /l/}zn)( Zx1,.. ,zn)

This follows from properties (S1), (S2), and Proposition 2.3.4:

A(1€) (5 Aps1 V.. Vo, VE) = (Apy o) (@pg2 V... VI, VE) (81 (Agpr 0y 0o Wz, 0m)(§).
O

The assumptions (S1) - (S3) from (2.3.3) lead to a factorisation of the Ruelle transfer operator. The
resulting operator is the so called Ruelle-Mayer transfer operator:

Remark 2.3.6. Let F be a finite set, (2 = FN,Np, 7) a one-sided one-dimensional full shift (1.2.6),
A € Cp(Q)) an observable, and 7 : 2 — E a continuous map into a topological space E with properties
(S1) - (S3) (2.3.3). Let Cr : Co(E) — Cp(2), f — f om be the associated composition operator and
L4 :Cp(2) — Cp(2) the Ruelle operator (2.1.3). Let f € Cp(E) and g = C(f) = f om € Cp(2), then

(Lag)(€ Zexp (cVE) (fom)(oVE) = Zepr om(§)) (f o v o m)(E),

ceF oeF

i.e. L4 leaves the image Cr(Cp(E)) of Cr invariant. Thus the operator

M :Cy(E) = Co(E), (Mf(2) = exp(As(2)) f(1hx(2))

zeF

makes the following diagram commutative:

Remark 2.3.6 motivates the following definition:
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Definition 2.3.7. Let (2 = F Ny, 7) be a one-sided one-dimensional full shift (1.2.6), A € Cy(Q)
an observable, and 7 : @ — E a continuous map into a topological space E with properties (S1) -
(S3) (2.3.3). The (possibly unbounded) operator

M :Cy(E) = Co(E), (MS)(2) Z/Fexp(Az(z)) f(z(2)) dv(z)

is called the (formal) Ruelle-Mayer (RM) transfer operator. O

If the projection map 7 is the identity on €, then trivially the Ruelle-Mayer operator is just the Ruelle
operator and we do not gain any new insights. Both the Ruelle and the Ruelle-Mayer operator are
generalised composition operators!”. If for instance the projection map 7 takes values in a bounded
complex domain, then more techniques are available to determine the spectral properties of M,
since the Ruelle-Mayer transfer operator looks like the Ruelle transfer operator for an expanding
map. In this interpretation, the properties (S1) - (S3) provide a link between the two types of
operators. Depending on the functions ¥, and A,, the Ruelle-Mayer operator preserves smoothness
and integrability on bounded sets. It turns out that under additional assumptions this operator is
trace class with a nice trace formula directly linked to the partition function. Before proving this
result, known as the transfer operator method, we will compute the counting trace of its iterates. For
the one-dimensional one-sided full shift we have an analogous result to Proposition 2.3.2. It uses the
general idea that the counting trace remains unchanged under every factorisation which preserves
fixed points.

Proposition 2.3.8. Let I be a finite set, (0 = FN,Ng,7) a one-sided one-dim. full shift (1.2.6),
A € Cp(Q) an observable, and w: Q — E a continuous map into a topological space E with properties
(S1) - (83) 2.3.3. Suppose that for all x1,...,x, € F the map by, o...0%, : E — E has a unique
fized point. Then the Ruelle-Mayer transfer operator

M : Cy(E) — Cy(B), (Mf(z) = /F exp(As(2)) (s (2)) di(z)

satisfies the (pre-) trace formula ZZNU (A) = Trace® M™.

Proof. By Propositions 2.3.2 and 2.3.5 it suffices to show that 2} =7 (T1...Z,) is a fixed point
of the map ¢,, o... 01, : E— E. Apply (51) from Proposition 2.3.4 for £ =71 ... 2,

(Ygy 0.0ty V(m(T1 - Tn)) (51 (@1 Ve V..., VI .. Tp) = 7(T1 -~ Tn).

O

We end this section with a superposition principle: Given a finite number of observables A(®) € C,(2)
(a=1,...,1) with properties (S1) - (S3), then also the observable A := Zla:1 A@) Q) — C admits a
factorisation with these properties.

Proposition 2.3.9. Let (2 = FN Ny, 7) be a one-sided one-dimensional full shift (1.2.6). For o =

1,...,0 let ALY € Cy(Q) be observables, and ©(®) : Q — E@) continuous maps into topological spaces
E() with properties (S1) - (S3) (2.3.3). Set E := Hla:1 E@. For all 0 € F we define the maps
Yo = ( S ((,l)) tE — E and A, == Zlazl A E - C. Then 7 := (M D)y Q- E

satisfies (o V £) = (s o) (&) and A(o V &) = (Ay om)(€) for all o € F and € € FN.

Proof. For all o € F and ¢ € FN we have

m(oVE) = (ﬂ(a) (oV 5))

o=1,...,

and
!

l
Al Ve =3 Ao vE =Y (AL om(@)(€) = (A5 o m)(©).

a=1 a=1

17The reader finds an introduction to composition operators in Appendix B.
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Moreover, for any « € F' the fixed points of ¢, are precisely the products of the fixed points of the
(@)
Py, since

(be 00 e, )(2) = (4 0. 0 pf) (=)

Proposition 2.3.9 can be used to construct a (family of) Ruelle-Mayer transfer operator(s) correspond-
ing to the observable A in the case that Ruelle-Mayer transfer operators are known for each of the
observables A(®. This idea will be used for the construction of Ruelle-Mayer transfer operators for
Ising type interactions in Section 2.13.

a=1,...,l

2.4 The Ruelle-Mayer transfer operator and the dynamical trace formula

In (2.3.7) we have given the general definition of a Ruelle-Mayer (RM) transfer operator. We will now
assume that we are in a situation where the RM transfer operator is trace class. This depends on the
data A, 1., and the space on which the operator acts via this formula. We adress this question in
the subsequent sections. In this section we show, based on results of D. Mayer, that the Ruelle-Mayer
transfer satisfies a dynamical trace formula, i.e., the (spectral) traces of its iterates determine the
(dynamical) partition functions.

In order to prove the dynamical trace formula we proceed in steps. We suppose that the base space
FE is a topological vector space and that the Ruelle-Mayer transfer operator leaves a Hilbert subspace
H C C(F) invariant. We write the Ruelle-Mayer transfer operator (2.3.7) as an integral (Mg)(z) :=
[ (Mzg)(2) dv(x) over a family of composition operators

M H = H, (Maf)(2) = exp(Ae(2)) (f 0 ¥2)(2).

For each of them we will apply a generalisation of the so called Atiyah-Bott formula, which expresses
the trace of a composition operator as a fixed point formula. Then we will compare the traces of the
iterates of the Ruelle-Mayer transfer operator with the dynamical trace formula. The next lemma,
which we will prove in Appendix A.7.7, provides an abstract trace formula for operators of the type

M = [ M, dv(z).

Lemma 2.4.1. Let v be a Borel measure on F and (Ty).cr a measurable family of trace class'®
operators on a Hilbert space H with [, || Ty |ls, ) dv(z) < oo. Then T : H — H, Tg:= [, T,gdv(z)
18 a trace class operator with

™f = Ty, 0...0T,, fdv(xy)...dv(zy)

Fn

and

trace T" = / trace (T, o...0 Ty, ) dv(zy)...dv(zy).

O

We add the remark that in case the set F' is finite, then Lemma 2.4.1 simply states the linearity of
the trace functional.

For each of the composition operators M, we would like to apply an Atiyah-Bott type fixed point
formula. The classical formulation of this theorem, which we sketch in B.2.4, is the following: Let
U C CF be an open bounded complex domain. We denote by A% (U) the space of holomorphic
functions on U, which are continuous up to the closure U of U. The space A®(U) is a Banach space
with respect to the supremum norm.

Theorem 2.4.2. (Atiyah-Bott type fized point formula) Let U C CF be an open bounded complex
domain. Let ¢ € A®(U) and ¢ : U — U be a holomorphic function with continuous extension to
U and Y(U) C U, i. e., ¢ is strictly contractive. Then v has a unique fized point z* € U and the
generalised composition operator

T:A®(U) — A®(U), (Tf)(2) = ¢(2) (f o ¥)(2)

Ils, () denotes the trace norm as defined in (A.2.2).

18” .
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19

is nuclear of order zero'” with trace given by

e
(52) trace gy T = det(1 —4/(z%))’
O

In Appendix B we will discuss the question whether the trace formula (52) holds on other function
spaces and also over infinite-dimensional domains. In the following we will take this trace formula for
granted and investigate how the trace of the iterates of the Ruelle-Mayer transfer operator and the
partition function are related.

Proposition 2.4.3. Let E be a topological vector space. For o € F let ¥, : E — FE and A,
E — C be continuous maps with the following property: Suppose that for all o1,...,0, € F the
map Yo, ©...0%s, + B — E has a unique fized point, denoted by z3 . . and that the linear

map VP! (22) € End(E) admits a Fredholm determinant. Suppose that the algebra generated by the
composition operators

My H—=H, Msf)(z)= eXp(Ag(z)) (f ovo)(2)

consists of trace class operators on a Hilbert space H C C(E) and satisfies the trace formula

exp(Aq (7))
(53) trace M, =% v (2))

Let v be a Borel measure on F such that [} ||Mq||s, ) dv(c) < oo. Then the operator M : H —
= [-(Mqsg)(2) dv(o) is trace class with

trace M"™ = / eXp(ZkZl(Agk ° 1/}%“ 0 Vo) () dv(oy)...dv(oy).

det(l - (1/}0'1 ... 0 ’l/)Un) ( Ro1,..., an))
Proof. By Corollary B.1.3 we have

n

(Mzn . Olef —eXp(Z zkowzkﬂo'--owzn)(z))(fowzlo---owzn)(z)'

k=1
We apply the trace formula to M, o...o M,, and use Lemma 2.4.1. O

We comment on the determinant condition in (A.1.1) and Appendix A.2: It is satisfied for instance
for trace class maps on a Hilbert space and for the Grothendieck class of maps on a Banach space
which are nuclear of order 2/3 (A.3.1). Proposition 2.4.3 can also be stated if E is a finite dimensional
manifold. In this case ¢, (z:) € End(T%:: E) = End(C%™¥) is automatically trace class and hence
admits a Fredholm determinant. Comparing the trace of the iterates of M and the partition function
given in (2.3.5) leads to the following theorem in the finite dimensional setting which is due to D.
Mayer [May91].

Theorem 2.4.4. Let F be a finite set, (@ = FN,Ng,7) be a one-sided one-dim. full shift (1.2.6),
A € Cy(Q) an observable, and 7 : Q — U C C* a continuous map into a bounded complexr domain
with properties (S1) - (S3) (2.3.8). Suppose that the maps 1, : U — U are holomorphic and strictly
contractive, i. e., }.(U) C U, and A, : U — C is holomorphic. Then the dynamical partition
function (1.11.4) can be expressed as

k
ZZNU (A) = Z(—l)T trace (M(M)»

r=0

for all n € N, where for r =0, ...,k the operator M) is defined on \" A®(U) via
M) (2) = [ exp(Au(2) A7 D2} ) 2) o),

if w(z) = Zl§i1<...<irgk Wiy i (2) dziy Ao N dz, with wy, ., € AP(U).

9For a definition of a nuclear operator see for instance (A.3.1) or [May80a, Appendix A].
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Proof. The trace of M(") is given by the formula

AN'Dy (22)
trace M) = / A (2 L d
race ; exp(Az(22)) det(l = "D (1)) v(x)
forallr =0,...,k. Use the following Lemma 2.4.5 and compare with the expressions for the dynamical
partition function Z,‘;NO (A) given in Propositions 2.3.5 and 2.3.8. O

We note that this theorem works for more general linking maps v,, but requires F' to be finite. We
pose the question in which setting this theorem is true for an arbitrary alphabet F'. For the proof one
either requires a Banach space version of Lemma 2.4.1 or an identification of suitable Hilbert spaces
replacing A" A= (U).

The following identity (2.4.5) from (advanced) multilinear algebra (see for instance [Si77]) concludes
the proof of Theorem 2.4.4.

Lemma 2.4.5. Let A:H — H be a trace class operator on a Hilbert space H. Then

dim H
det(l — A) = Z (—1)" trace A" A,

r=0
where N"A: N"H — A"H, AN"A(er A...Ne.) = Aer A... A Ae, is the r-fold exterior product of A. O

An important special case of Theorem 2.4.4 is the following, where the linking maps are affine. This
happens for all known examples of Ruelle-Mayer transfer operators for one-dimensional spin systems.
In Section 2.7 we will explain how the affine linking maps arise in our context.

Theorem 2.4.6. Let (2 = FN Ny, 7) be a one-sided one-dimensional full shift (1.2.6), A € Cy(Q) an
observable, and w : Q — E a continuous map into a Banach space E with properties (S1) - (S3) (2.3.3).
Assume that the maps 1, : E — E are affine and of the form v, : E — E, z+— ,(2) :== a, + Bz for
some fized map B € End(E) which admits a Fredholm determinant and has operator norm ||B||,, < 1.
Suppose that the algebra generated by the composition operators

M H—H, (Maf)(2) = exp(As(2)) (f 0 1h2)(2)

consists of trace class operators on a Hilbert space H C C(E) and satisfies the trace formula (53). Let
v be a Borel measure on F such that [, || M| s, ) dv(xz) < co. Then for alln € N the Ruelle-Mayer
transfer operator

M:H —H, (Mf)(z) = /F exp(As(2)) (f 0 ) (2) d(z)

satisfies Z0°(A) = det(1 — B") trace M™.

Proof. Using von Neumann’s series the operator 1 — B is invertible and hence 1, has precisely one
fixed point in E. Compare the expression for the trace of M" given in Proposition 2.4.3 with Proposi-
tions 2.3.5 and 2.3.8. By our assumption on the special form of the linking maps 1, the determinant
is independent of the integration variable, hence it can be pulled out. [l

We call a formula of the type ZzNO (A) = det(1 — B™) trace M™ a dynamical trace formula. We have
shown in the abstract setting of Theorem 2.4.6 that the Ruelle-Mayer transfer operator satisfies a
dynamical trace formula. In the rest of this chapter we investigate classes of observables and - by

.....

are fulfilled. This means one has to identify the projection map and to solve several analytic problems,
for instance find the suitable Hilbert spaces.

2.5 Transfer operators for finite range spin systems

In this section we review the transfer operator method as developed in [May80a, I1.2.] for finite range
interactions. Recall: Let (2 = F, Ny, 7) be a one-sided one-dimensional full shift (1.2.6), then a two-
body translation invariant interaction ¢ (1.8.1) has finite range po, if v2(i,7;2,y) =0 for all z,y € F
whenever i — j| > po (1.9.2). We denote by g € Cp(F') the potential term of ¢. We will construct the
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Ruelle-Mayer transfer operator and prove its trace formula using the methods of Section 2.4. Finite
range interactions are the simplest case where the dynamical trace formula (2.4.4) is valid, since the
higher iterates of the Ruelle-Mayer operator are superpositions of degenerate composition operators
(B.1.4). We will point out the connection between the Ruelle transfer operator, the Ruelle-Mayer
transfer operator, and the Kramers-Wannier transfer matrix.

For a finite range interaction ¢ the standard observable A4 € Cy(€2) (1.11.1) reduces to a finite sum,

PO

Ay oV E) =q(0) + D ealk+ 1,18, 0).
k=1

Let L4, be the corresponding Ruelle transfer operator (2.1.3). The observation that Ay (o V §)

depends on ¢ only via the first pg entries {1,...,§,, leads to an L4, -invariant subspace of C;({2): For
o € F set
PO
As 1 FP° = C, 2= (21,...,2p,) — q(0) +Z<p2(k+ 1,1; 2z, 0)
k=1

and ), 1 FP0 — FP 2 = (21,...,%5) — (0,21,...,2p,—1). Let pr : Q@ — Fro & — (&,...,&,)
be the projection onto the first pg components. We will show that the choice of the maps = = pr,
Yy, and A, satisfies properties (S1) - (S3) as defined in (2.3.3): For all £ € Q, 0 € F we have

AoV E) = (As opr)(€) and pr(o VE) = (0,81,...,&p,-1) = (Yo 0 pr)(§), i.e., (S1) and (S2)
from (2.3.3). Thus by Definition 2.3.7 we have a Ruelle-Mayer transfer operator.

Proposition 2.5.1. Let (2 = FN Ny, 7) be a one-sided one-dimensional full shift (1.2.6). Let ¢ be a
two-body translation invariant interaction with finite range py and potential ¢ € Cy(F). Then for all
m > po the Ruelle-Mayer transfer operator Mg : C,(FP0) — Cp(F?°)

PO
(Mpf)(z1,.. .1 2p,) = /Fexp(ﬁq(a) —i—ﬁZg@g(k—i— 1,1;zk,0)) flo,21,. .., 2p,—1) dv(0).
k=1

satisfies the dynamical trace formula ijo (BA@)) = Z?To_i?m}(ﬂ) = trace (Mpg)™.

Proof. For m > po and any choice of o1,...,0,, € F the maps ¢y, 0... 0%, = FPO — FPO . 2z
(o1,...,0p,) are constant. By Corollary B.1.5 the higher mixed iterates S;, o...0 .S, of the compo-
sition operators Sy : Cp(F*°) — Cp(FP0), (S, f)(2) = exp(BAs(2)) (f 0 1o )(2) are (for m > pg) rank
one operators and hence their nuclear norm || - || 11 ¢, (peo)) (see Def. A.3.1) can be bounded by

8000 Senlaeyemy < (52| xP(BA( Dleyrmn) ) < explmll |4l ).
hence M7 is a trace class operator. By Corollary B.1.5 the operators Sy, o...0.S;,, satisfy the fixed

point trace formula (53) provided m > pg, hence Theorem 2.4.4 gives the assertion. o

Let pr: Q — Fr, & — (&1,...,&),) be the projection and C, : Cp(FP0) — Cy(2), f +— fopr the
associated composition operator. It was the observation that

Cpr ] Mﬁ = ‘CBAW) o Cpr

which was historically the starting point for the theory of the (nowadays called) Ruelle-Mayer transfer
operators in [May80a).

Remark 2.5.2. Let Mg : C,(F?°) — Cyp(F*°) be the Ruelle-Mayer transfer operator for finite range
interactions, which we introduced in Proposition 2.5.1 as an integral over a family of generalised
composition operators. We get from Corollary B.1.3 for m > pg

(MED i) = [ (B (A 0y 020000, )(2) (F 0o 0200, () 0 (0)
k=1

= / exp(ﬁZAzk(xk_,_l,...,xm,zl,...,zpo_m+k))f(acl,...,gcpo)dy(ml)...du(acm),
" k=1

which opens an alternative view on M7, namely views it as an integral operator on Cp(FPo). O
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Our Proposition 2.5.1 is a minor extension of known results:

Remark 2.5.3. Let F be a finite set, (2 = FN, Ny, 7) a one-sided one-dimensional full shift (1.2.6),
and ¢ a pure two-body translation invariant interaction with finite range pg. Let pr: Q — FrPo, £ —
(&1,...,&y,) be the projection and Cpy : Co(FP°) — Cp(£2) the associated composition operator. The
image Cp. (Cp(F*°)) C Cp(2) of Cpy is a finite (in fact |F'|P°-) dimensional complex vector space, hence
every linear operator is trace class and Mg can be written as

(Maf)Er &) = D My eye,) fl2),

geFPU

/\Z
Q
=
Q
o
[=}
=
—~
™
o
I
©
[=}
=

pPo PO
eXP(BQ(Ul) + B; (PQ(k + 1,15 &, 01)) gégk—ho'k

_ { exp(ﬂ(A(qﬁ) Opr)(olvfla .. '7§p0*1))5 if (027 .. '7Jp0) = (517 cee 7§p0*1)5

0, otherwise,

By direct computation(see [May80a, I1.2.1]) D. Mayer was able to show that M#° is exactly the transfer
matrix K used by H. Kramers and G. Wannier in [KrWa41], hence
ZZPZ (BA@g)) = Z?lj’f”po}(ﬂ) = trace K" = trace M"° = trace (Mpg)"°
for all n € N. Later we will extend this idea to handle the case where (4, F, N, Ny, 7) is a matrix sub-
shift (1.2.8), simply by replacing the matrix M by M‘(*al7_“,%0)7(517.“,5%) = Aoty Moy, 0p0)u(Errbng)
O

2.6 Linear models and Ny-representations

In Section 2.5 we have seen an example how one can choose a projection map in order to construct
a Ruelle-Mayer transfer operator. We will now specialise to Ising interactions and show that there
is a general method how to choose the projection map which works for a large class of longe range
interactions. This method explains the results [May76], [Vi76], [MayVi77], [ViMay77], [May80a],
[Mo89], [HiMay02], [HiMay04] from the same point of view and also allows to handle new distance
functions. In particular our method will be applied for the following classes of distance functions: For
finite range interactions in Section 2.8, for superexponentially decaying interactions in Sections 2.9
and for polynomial-exponential decaying interactions in 2.11.

We have the following setting: Let F' C C be a bounded set and (2 = F~,Np, 7) a one-sided one-
dimensional full shift (1.2.6). Let ¢ be a two-body Ising interaction (1.8.3) with distance function
d : N — C and potential ¢ € Cp(F). The boundedness of F' C C implies that the configuration space
) is a bounded subset of /*°N.

The main idea is to find a family of linear continuous maps from ¢*°N (which contains our configuration
space ) into C, which translates the shift action on ¢*°N into affine maps on some vector space. In
this section we investigate the Banach space situation and explain the main ideas, whereas in the
next Section 2.7 the Hilbert space case is treated and the trace formula is proven using the additional
Hilbert space structure.

Recall the Definition 2.3.3 of the properties (S1) - (S3). We will restrict to the case where the projection
map 7 extends to a continuous linear map ¢*°N — B, where B is a complex Banach space. Recall
that the family of linking maps is defined as a family i, : B — B indexed by ¢ € F with the property
that 1, (m(€)) = w(o V). Under this assumption the linking maps are affine and their linear part has
special properties:

Proposition 2.6.1. Let 7 : {**N — B be a continuous linear map, which is the projection map of a
(S1) - (S3) Ansatz (2.3.3). Then for any o € F the linking map ¥, : B — B is affine and continuous
on w(£>°N). Moreover, there exists a continuous linear map B : B — B such that ¢,(z) = o m(e1) + Bz
on m({*N) C B. Let 7/ : £*°N — (*°N, 7/(£) := 0V £ be the dual shift (2.1.5), then for all & € (>N

(54) (mo7)(&) = Bom) (&)
where e = (1,0,...) € £°N is the first standard basis vector.
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Proof. Let o € F. At first we determine the constant part of 1, which is

¥5(0) = ($5 0m)(0) = m(0 vV 0) = o m(es).

The norm of the constant part of 1, can be estimated by |o7(e1)|ls < |o| |7 lle1lleen = |o]||7]|-
Using property (S1), the linearity of 7, and the definition of 7/ we obtain

Yo (m(€)) =m(o V&) = om(er) +7(0VE) = om(er) + (o 7)(&)-

Observe that by Remark 2.1.5 the map 7 : £°°N — £°°N is linear and continuous, hence the linking
map 1), is affine and continuous on the closed span B := span7((*°N) C B of the image of 7. Without
loss of generality we can assume that B = B. Note that we have not yet identified the linear part, but
the previous argument also shows that the linear part of v, is independent of o and will be denoted
by B : B — B. By property (S1) it has to satisfy equation (54). O

In order to get a trace formula for the transfer operator we will have to assume that the linear
part of this affine map is contractive in a strong sense which will be specified later, see (2.7.1).
Proposition 2.6.1 has a representation theoretic interpretation:

Remark 2.6.2. (i) Rephrasing equation (54) in other words, the projection map 7 is an intertwin-
ing map for the following representations a; and ag of the semigroup Ny defined by

a1 : No x LN — £*N, (n,€) = a1(n,§) := (7)"(£)

and
az :Ng x B— B, (n,2) — az(n,z) :=B"z.

Intertwining means that 7(aq(n,§)) = az(n,w(£)) for all £ € £°°N and n € Ny.

(ii) The representation a; and the representation
as : Ng x glN — ElN, (n,d) — ag(n,d> = T”d,

defined by az(n,d)(k) := ("d)(k) = d(n + k) are dual to each other in the following way:
a; = aj, i.e., a;(n, ) = as(n,-)’ for all n € Ny, and allN = a3. This is due to the facts that

ON
((IN) = (>N,
(a1(n, €),d)ger,oin = ((7')"(€), d) oo i = (€, 7" d) o oin = (€, as(n, d)) goony o1y,
but /N C (¢*°N)’. To see that all‘NoxelN = a3, let d € /'N and calculate as follows
ay(n, d)(k) = (ex, ay(n, d)) = (a1(n, ex), d) = (er4n,d) = d(k + n).
(iii) The dual representation of as is given on the strong dual B’ of B as
ay :Nox B — B, (n,2) — ay(n,2") = (B)"2

where B’ : B’ — B’ is the dual map of B : B — B. With the identification 7/ = 7 and
(mo7") =7"on’ =7 o7’ equation (54) transforms into

(55) (ton’)(d) = (mo7")(d) = (Bor)(d) = (n" oB')(d)

for all d € (¢*°N)’, which implies that 7’ intertwines a} and aj, i.e., 7'(ab(n,2’)) = aj(n,7'2")
for all n € Ny, 2’ € B/, since for all 2’ € B/, £ € £*°N we have
(€' (a5(n,2)))eer = (&7 (B)"2))sp = B "7(S), 2)B.5r
(r(r')"(&), 2 s = (& 7" )5
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Proposition 2.6.1 and Remark 2.6.2 say that in order to fulfill the condition (S1) one has to look for
intertwining maps for certain representations of the semigroup Ny. We will assume in addition to the
hypotheses of (2.6.1) that there is a connection between the intertwining map of the Ny-representations
ay and ay from (2.6.2) and the standard Ising observable A4 (2.1.7). Then the distance function is
of the form d(k) = (B*~1v,w’)p 5 for some linear operator B: B — B and v € B, w' € B':

Proposition 2.6.3. Let B : B — B be a bounded linear operator and o : {*°N — B be a continuous
linear map such that a(0V &) = Ba() for all £ € L°N, i.e., « o7 = Boa, hence a is an intertwiner
of a1 and ay from (2.6.2). Let d € (*N. Suppose there exists o/ € B’ such that

(56) (@(§),d Vs =Y _ & d(k)
k=1

for all ¢ € (°N. Then d(k) = (B*a(e1),a’)p,p for all k € N.

Proof. We set 3 : {*N — C, B(§) := Y roq & d(k) and evaluate (3 at the standard basis elements
e;j = (0jk)ken € (°N. This gives (ej) = > pey0kd(k) = d(j). We show by induction that
a(er) = B¥ta(e;). The case k = 1 is trivial. Since 0V e = exy1, we have

I
aleg+1) = a0V eg) = Ba(er) @D BB*La(e;) = B*a(e;)
using at (I) the induction hypothesis. Hence d(k) = [(ex) (50 (aler), Vs = (B ta(er), o )sp-
([l

Proposition 2.6.3 shows that a distance function d € ¢'N with the property (56) is necessarily of
the form d(k) = (B*~la(e1),o/)p s, hence Y oo, [(B*"ta(e1),a’)s,p| has to be finite. Whereas the
upper bound |[(B¥~la(er),a’)pn| < [[B¥ La(er)|s||o/||s is straight forward, a sharp lower bound
is missing. A natural sufficient condition®® which ensures the convergence of > p , [|B* 1a(e;)| s is
that the spectral radius of B is less than one. We briefly remind the reader of the notion of the
spectral radius of a linear operator acting on a Banach space and recall some of its properties. In
Proposition 2.6.5 we will show that each bounded linear operator with spectral radius less than one
gives rise to a distance function which decays exponentially and has the desired intertwining properties.

Remark 2.6.4. Recall (for instance [We00, p. 231]) the definition of the spectral radius of a bounded
linear operator B : B — B on a Banach space B as

Pspec(B) = sup {|Z| eR|z € Spec(B)}.

(i) The spectral radius can be characterised via

pspec(B) = max {[z| € R |z € spec(B)} = lim {/|B*| = int {/|BH.

From this formula it is obvious, that pspec(B) < ||B||.

(ii) Let B : B — B be a linear operator with ||B*|| < 1 for some kg € N. Then pspec(B) < 1, since

popec(B) = lim {/[BH| = lm "4/[Beko]| < tim /B n = /|[BRo| < 1.

(ili) Let B : B — B be a linear operator with pspec(BB) < 1, then there exists kg € N such that
|B¥|| < 1 for all k > k. In fact: For all € > 0 there exists ko € N such that for all k > ko one
has |pspec(B) — ||BF||*/*| < e. Hence ||B¥||Y/* < pspec(B) + €, which gives the assertion if we let
€ <1 — pspec(B). O

Proposition 2.6.5. Let B : B — B be a bounded linear operator with pspec(B) < 1, v € B, w' € B'.
Setd:N — C, k+ d(k) == (B*lv,w)g . Then d belongs to the space D1 of distance functions
defined in (2.2.4) and limsup,_, . {/|d(k)| < pspec(B) < 1, which by definition means that d is (at

least) exponentially decreasing at infinity.

201t would be sufficient that the restriction of B to the subspace span{B*a(e1) € B|k € Ng} C B generated by B and
a(e1) has spectral radius less than one, so one might assume that a(e1) is a cyclic vector.
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Proof. We have the trivial estimate |d(k)| = [(B* 1o, w')| < |‘Bk71HHU|| |w'|] and hence

tim sup &/[d0] < T 3/ B o] o] = tim (/B2 2t {18 = pspec(®) < 1.

k—o0

Hence by Proposition 2.2.8 the distance function d belongs to D; (2.2.4). It remains to show the
stated equality (): We use that pspec(B) = limj_.o || B¥||/*. Hence for all € > 0 there exists ko € N
such that for all k > ko one has the estimate |pspec(B) — ||B||*/*| < €. Hence

(pspec(B) + €)=/ F+D < (IIBF||/F) 7/ FHD < (pgpec(B) — €) 7/ FFD),

thus limy,_ o ([|B*||}/*)~1/*++1) = 1 and

Jim Y NBH = lim [BHE BYTHEEED = tim BE lim [BYTVRETD = lim [BYE
o

In the remark following Proposition 2.6.3 we asked the following question: Given d : N — C, k —
(B*v,w')p s, find a lower asymptotic bound for &/|d(k)| = {/|(B*~1v,w’)s 5| depending on the
spectral properties of B. This seems to be a harder problem than the upper bound. In particular
this limit behaviour will (in general) also depend on the data v € B, w' € B’. Note that from
limsupy,_, o v/[(B¥~1v,w’)g 5| < 1 one cannot conclude that the spectral radius of B is less than one.
As an example take B = (3 9) which has pspec(B) = 2, but d(k) = (B*“'e;|e1) is a non-zero finite
range interaction: d(1) =1 and d(k) = 0 for all £ > 2. In order to tackle the above problem it might
be a good idea to consider the restriction B’B of B to the subspace B := span{B*v|k € No} C B. In

the above example one has B = Ce; and Pspec (B|z§> =0.

With the preparation of Remark 2.6.4 and Proposition 2.6.5 we can now give a construction scheme
for linear maps which intertwine the Ny-representations a1 and as from Remark 2.6.2 if the distance
function d : N — C is given as d(k) = (B*~1v,w')p 5.

Proposition 2.6.6. Let B : B — B be a bounded linear operator with pspec(B) < 1, v € B, v’ € B'.

(i) Set mp .y : LN — B, mp,(§) := Zzozl & BF1u. Then TR,y 1S linear, continuous, and satisfies
Bw(e1) =v and (0 V &) = Brg ().

(ii) Let B’ : B" — B’ be the dual map of B on the (strong) dual B’ of B. Set wps 4 : {°N — B,
B w (§) == Zzozl & (B))E=Yw'. Then mp v is linear, continuous, and satisfies g/ (e1) = W'
and ﬁ]ﬂg/yw/(o vV f) =B ﬁmlyw/(f).

(ii) Let F C C be a bounded set and (2 = FN,Ng, 7) a one-sided one-dimensional full shift (1.2.6).
Let ¢ be a two-body Ising interaction (1.8.3) with potential q and distance function d : N —
C, k — d(k) := (B*tv,w')g. Then for all o V & € Q we can express the standard Ising
observable (2.1.7) as

Ay (o VE) =qlo) + o(me. (&), w )55 = q0) + o(v, T8 W (§)) 5.5
Proof. Let & € {*°N, then

s, (N < D 16l IBF oll < [[€lleen Y IB5 o)l < fi€llmns foll D IIBF].

k=1 k=1 k=1

The latter series converges by the root test and our assumptions on the spectral radius of B. This
shows the boundedness of g, and ||| < > re; [|B¥~1v||. Recall from Example 2.1.2 that 0V ¢ =
(0,&1,&2,...) is the insertion of 0 at the first position and a simultaneous right shift, hence

M (0VE) =D (0VEB v => &Bbv =Bmg,(9).
k=1 k=1
Similarly one proceeds for mp . noting that ||B|| = |B’||. The standard Ising observable is given as

Ay (o VE) =qlo) + 0> o & d(k) for all o V¢ € Q. Concerning the second term we note that

> Ged(k) =& B v, w)p e = Zék B v, w')p s = (T80 (€), w55
k=1 k=1
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The first part of Proposition 2.6.6 states that the map 7 ,, intertwines the representations a; and as.
Part (iii) shows that the standard observable admits an (S1) - (S3) Ansatz (2.3.3).

Next, we recall that every distance function d € (!N has a representation d(k) = (B*~1v,w')p s for
some v € B, w' € B/, B € End(B) using the shift (2.1.5). We determine its spectral properties which -
unfortunately - will not be sufficient for our purposes.

Remark 2.6.7. Let 7: CY — CN, (7€), := &,41 be the shift from Remark 2.1.5. Note that
(57) d(k) = (7""'d, e1) gy e

for all d € 'N and k € N where e; = (1,0,...) € /**N. We call (57) the trivial representation of
d, since 7 and e; do not depend on d. All powers 7™ (m € N) have operator norm equal to one
on all the sequence spaces PN (1 < p < 00), hence pgpec(7) = 1. Similarly to Remark 2.1.5 we get
7™M (7)™ = id, hence no power of 7 is trace class. O

We want to understand which distance functions d can be represented as d(k) = (B*~1v, w')5 5 with
pspec(B) < 1. Such a representation can be viewed as a subrepresentation of a3 : Ny x /N — (N
defined by asz(n,d)(k) := (7"d)(k) = d(n + k) in (2.6.2). In Example 2.7.7 we will give a couple of
examples of distance functions which have such a representation and give a (partial) classification in
(2.12.3). In particular, we show that there are two types of finite dimensional representations, which
either come from finite range or from polynomial-exponential distance functions (See Sections 2.8
and 2.11, respectively).

The following remark is just the contraposition of one of the statements from Proposition 2.6.5, but
it provides a test which is both simple to handle and applicable in important situations.

Remark 2.6.8. Let d € /'N. If limy_,o {/|d(k)| = 1, then by Proposition 2.6.5 there is no represen-
tation d(k) = (B¥~!v,w')g g for a linear operator B : B — B with pspec(B) <l,veB,w eB'. O

Remark 2.6.8 will imply that, unfortunately, some physically relevant distance functions, which we
introduced in Example 2.2.5, cannot be treated with our method.

Example 2.6.9. We recall that the distance functions introduced in (2.2.5) (i) - (iv) belong to D,
(2.2.4). By Remark 2.6.8 the Examples (i) and (ii) do not have a representation d(k) = (B*~1v, w')5 5,
where B : B — B is a bounded linear operator with pspec(B) < 1, v € B, v’ € B'.

(i) Let a > 1 and d(k) := k=*. Then limy_o &/|d(k)| = (limj_oo V&)™ = 1.
(ii) Plummer potential: Let € > 0, a > 1 and d(k) := (e + |k|?)~%/2. The Plummer potential satifies

ce k™ < d(k) < k™ for some ¢, > 0 as stated in 2.2.5 (ii), hence we have lim_,o, ¥/|d(k)| =
(limg oo Vk)™* = 1.

(iii) Let v, 6 > 0, and d(k) := exp(—yk®). Then

0, ifé>1,
lim &/|d(k)| = lim exp(—yk®~1) ={ 1, if § <1,
hoee hoee exp(—v), ifd=1L1

The exponential case § = 1 can be treated with our method, see Example 2.10.6, the subex-
ponential case § < 1 cannot be treated by Remark 2.6.8. The case § > 1 of superexponential
decay was first solved by D. Mayer via a similar approach for an arbitrary interaction matrix,
but finite alphabet F. We will study this in Section 2.9.

(iv) Let o, v > 0 and d(k) := fol t* exp(—ytk) dt. The estimate given in Example 2.2.5 implies that
limy o {/]d(k)| < 1; a lower asymptotic bound remains open. O

We will now review some results from Section 2.2 and explain them with the methods from this
section. As shown in Remark 2.6.7, the shift 7 : CN — CN, (7€), := &,11 (2.1.5) yields the trivial
representation d(k) = (7*71d, e1) iy goon for all d € /N and k € N. Besides the projection map

Tra LN = N, £ Y ¢ 77d

Jj=1
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associated to the trivial representation via Proposition 2.6.6, we have the projection map 7 defined
in Remark 2.2.2. By looking at their components (7,,a(§), €i)pn oen = 35 & d(j +i—1) = 74 (€);
we see that they coincide. The projection map 7% appeared in the continuous bilinear extension of
the map Wz_ z. : Q< x Qs — C (1.6.3) to (*°(Z<) x £2(N) — C via

“— —

Wooz.(n®§) = —<7Td('f)a5(77)>elN,eocN = —(r(9), S(M))ern,en,

which is a pairing between ¢'N and ¢*N. We will now give a generalisation of this pairing situation
and use its connection with Ruelle’s representation of the leading eigenfunction of the Ruelle transfer

operator. We recall the definition of the inversion map —: C™N — CV, 771: 1—; and the bijective right
shift S = T—1:Np * CNo (CN, (S.T)l =T;_1.

Proposition 2.6.10. Let F C C be a bounded set and (2 = F%,7,7) a two-sided one-dimensional
full shift (1.2.5), Q< = p_n, (), and Qs = pn(Q). Let ¢ be a two-body Ising interaction (1.8.3) with
distance function d : N — C, k +— d(k) := (B*1v,w')g s where B : B — B is a bounded linear
operator with pspec(B) < 1, v € B,w € B'. Let mg, : {*N — B and g : (N — B’ be defined
as in Prop. 2.6.6. Then the map Wy_ 7. : Q< x Q> — C (1.6.3) has a continuous bilinear extension
WZ<,Z> : EOO(ZS) X EOO(Z>) — C vic[

«—

Wz (0 ® €) = —(m8,0(€), (a0 0 S)(M)i,5r = = (78,0 0 §) (1), 7o, (€)1

Let hy be the leading eigenfunction of the Ruelle transfer operator Lga,, : C(2s) — C(s) (2.1.3)
and

hi:B—C, z— eXP(ﬁ (2, (T8 © S)@))B,B') dp<(n),
Q<

then hy belongs to C(B) with hy = hy o TBw-
Proof. Let £ € (N, n € {*°(Z<). By Proposition 2.6.5 the distance function d belongs to Dy, hence
by Remark 2.2.10 the series defining Wz_ 7. (n ® &) converges absolutely and is bounded by

Wiz (0 ®©E] < ||dllp, [nlle @z 1€l een-

For this reason the following sums can be interchanged

oo o0

D> nokg&dk+ )

k=0 j=1

= Zznl_k é-] <Bk+j_2’l},’wl>lg,51

k=1 j=1

= > mew& B, (B) s s

k=1 j=1

= OoEBTY mokB) T ) s s = (T80 (E), (w0 S)(M))85
j=1 k=1

Wz 2. (n®E)

Proposition 2.6.6 shows that the latter expression is well-defined. Similarly one obtains

~Wa g (0@ E) = ((mz,0 0 S) (M), M0 (€)) 5.5

The continuity of &, is straight forward, the representation hi (&) = hy (g, (€)) follows from Ruelle’s
result (48) in Remark 2.2.11. O

In the special case that B = ¢?N we will show that the leading eigenfunction of the Ruelle transfer
operator has a preimage in the Fock space F(¢£2N) under the composition operator Cr, , : F(¢*N) —
Cp(€2). This answers a question raised in Remark 2.2.12.
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Corollary 2.6.11. Let F C C be a bounded set and (2 = F%,7Z,7) a two-sided one-dimensional full
shift (1.2.5), Q< = p_n,(Q) and Q> = pn(2). Let ¢ be a two-body Ising interaction (1.8.8) with
distance function d : N — C, k — d(k) := (B*~'v| W) oy Where v, w € PN and B : °N — £°N is a
bounded linear operator with pspec(B) < 1. Let Bl =B’ : (N — 2N be its dual. Let g, : {*°N — (2N
and gt 4 LN — (N be the linear maps defined in (2.6.6). Let hy be the leading eigenfunction of
the Ruelle transfer operator Lga ,, : C(2>) — C(Qs) (2.1.3) and

BN C oz | exp(B (2] (mar w0 S)(0))) du<(n).
Q<
Then l~11 belongs to ]-"(KQN) with h, = i~L1 o mg,,, where T CN = CN s the inversion map and
S =1_1n, : CNo — CN the bijective right shift.

Proof. For all n € Q< the vector (mgr ,, 0 S)(E) belongs to ¢2N. By Proposition A.4.9 we have
hy € F(£2N). Hence the assertion follows from Proposition 2.6.10. g

Our next goal is the construction of a Ruelle-Mayer transfer operator M such that for all k£ > kg the
operator MF¥ is trace class and a dynamical trace formula holds. By Proposition 2.6.6 the standard
Ising observable admits an (S1) - (S3) Ansatz (2.3.3) using the linear map 7g, : N — B from
Proposition 2.6.6 as a projection map. Definition 2.3.7 directly yields the corresponding (formal)
Ruelle-Mayer operator

(58) Mg : Cp(B) — Co(B) (Mpf)(2) := /FeXp(ﬂtz(U) + Bo(z,w')ss) flov+B2)dv(o),

which formally satisfies Lga,) © Cry ,, = Cr, , 0 Mg, where Cr, , : Co(B) — Cb(Q2), g+ go g,y is the
composition operator associated to g ,. In order to obtain a bounded Ruelle-Mayer transfer operator
one has to identify a suitable small space of functions which is invariant under the operator. The
Ruelle-Mayer transfer operator is a superposition of the generalised composition operators?!

Mg o : Co(B) = Co(B) (Mpof)(2) := exp(Bq(o) + Bo(z,w')sp) flov+Bz).

The spectral properties of the operators Mg, and hence of Mg depend on the space on which the
operator acts. Appendix B addresses this problem. The next Remark 2.6.13 investigates the structure
of the algebra generated by the composition operators M ,) from which the operator M is built up.
We will need a preparatory proposition on the compositions of a special type of affine maps which
arise as linking maps as we have seen in Proposition 2.6.1.

Proposition 2.6.12. Let V be a complex vector space, B : V — V a linear operator, and a € V. For
r€Coputp,: V-V, z+—xa+Bz. Then for allk €N, x1,...,x, € C, 2 € V one has
k—1

(Y2, 0. 09, )(2) =B 2+ > 2,1 Bla.

J=0

Proof. By induction: Let x1,..., 2511 € F, then v, () = 1B + B!z and

k—1 k—1
(g, 0.0ty )(2) =BFyy, , (2) + Z zi1Bla =Bz 4oy BFa + Z zj1Ba.
Jj=0 j=0

O

Remark 2.6.13. Let B: B — B be a bounded operator, v € B, w' € B', FF C C, and ¢ € C(F'). For
all 0 € F we define an unbounded operator

Moy : Co(B) — Co(B), (M(0)9)(2) = exp(q(0) + o{z,w')5,5) g(0 v + Bz).

Then for all g € Cy(B), n € N and all choices oy,...,0, € F one has by Corollary B.1.3 and
Proposition 2.6.12

n n n—k n
(Moyyo...oM(g,)9)(2) = exp( o)+ on(B 2ty O'k+jIBj71'va/>) 9B 2+ oxB ).
k=1 k=1 j=1 k=1

O

21(Generalised) composition operators, their spectral properties and trace formulas will be discussed in Appendix B.
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In addition to the hypotheses of Remark 2.6.13 we will now assume that the linear operator B : B — B
is contractive: If the operator norm of B is strictly less than one, then Proposition 2.6.14 shows
that any affine map of the form B — B, z — Bz + b is strictly contractive on suitable large balls
B(0;p)s := {2z € B;||z|lz < p}. More generally, if the spectral radius of B is strictly less than one,
then at least certain (mixed) iterates of affine maps are contractive:

Proposition 2.6.14. Let F' C C be a bounded set, B : B — B be a linear operator with pspec(B) < 1,
andv € B. Forx € F let ¢, : B — B, z+— xv+ Bz. Then there exists p > 0 and ko € N such that
forallk > ko, x1,...,25 € F

(Y2, © ... 092, )(B(0;p)5) € B(0;p)s.
If |B|| < 1, then this holds for all k € N.

Proof. We start with the special case |B|| < 1. Put cp := sup,c [z and let p > 55 ||||B||“ Then for all
z € B with ||z]| < p we have

19z ()| < llzoll + Bl [[2]] < cr ol + B[ p < p.

Concerning the general case: By Remark 2.6.4 (iii) there exists ko € N such that for all & > ko we have
|IB*|| < 1. Let cx := 25:1 |B/~to|| and p > 72 for all k € N. Then for all k > ko, z € B(0; pi) g

1-IB*|
and z1,...,z; € F we have by the previous Proposition 2.6.12
k—1
(s 00t )@ < 1Y @Bl + [BX] [12]] < crex + 1B pr < pr.
j=0

By induction (¢4, o ... 0%, )(B(0;pk,)5) C B(0; pky)s for all n € N. Then the assertion follows
with p := max;—g,,... 2ko—1 Pj- O

Using the previous propositions we can identify a domain on which the formal Ruelle-Mayer transfer
operator (58) is bounded.

Corollary 2.6.15. Let F' C C be a bounded set and (@ = FN,Ng,7) a one-sided one-dimensional
full shift (1.2.6). Let ¢ be a two-body Ising interaction (1.8.3) with potential ¢ and distance function
d:N— C given asd: N — C, k — d(k) := (B*"Yv,w")5 5, where B : B — B is a linear operator with
pspec(B) < 1, v € B, w' € B'. Then there are p > 0 and ko € N such that for all k > ko the higher
iterates (Mg)¥ : Co(B(0; p)5) — Co(B(0; p)5) of the Ruelle-Mayer transfer operator Mg defined by

(Msf)(z) = /F exp(Ba(0) + Bl ') flo v+ B2) du(o)

are bounded operators with (EQA((P))’c 0 Cr,, = Cr,, o (Mp)".

Proof. By Proposition 2.6.6 the image g ,(£2) is a bounded subset of B. In fact, it is contained in
the ball B(0; pq)p with radius pq := ||mBv|| sup,cp |2z|. By Proposition 2.6.14 we can find an index
ko € N and a radius p > 0 such that for all k¥ > kg the operator (Mg)* leaves Cp(B(0; p)g) invariant,
since

sup ‘((Mﬂ)kf)(z” = sup ‘ ./\/l(al)o...o./\/l(an)f)(z)‘dl/”(al,...,on)

2€B(0;p)B 2€B(0;p)B
n n n—k
< / sup exp(Zq Uk)JFZUMBn*kZJr ZUkJerjilvvw”B,B’)
Fn 2€B(0:p)s k=1 k=1 j=1

sup |f(B"z+ Z B 1)
2€B(0;p)5 k=1

n n n—k
< [ exo(| o aton)] + 3 ol (B 1ot 3 lonrs B ol [0/ " o1...00) [ lescaomme
k=1 k=1 j=1

The property (£a,,, )"0 Cry, = Cry, ©(Mp)* is now an immediate consequence of Proposition 2.6.6
and an adapted version of Remark 2.3.6. O

dv(o1,...,00)
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One could now proceed as in [May80a] and study the spectral properties of the Ruelle-Mayer operator
on certain invariant subspaces consisting of analytic functions on (bounded) domains in the complex
Banach space B. For our purpose it is sufficient to study the Hilbert space setting where we can find
an invariant Hilbert space of holomorphic functions on which the Ruelle-Mayer operator is trace class.
All examples of Ising interactions for which a Ruelle-Mayer transfer operator is known can also be
treated within such a setting.

2.7 Linear models: The Hilbert space setting

In Section 2.6 we have seen a general method how to choose the projection map for Ising interactions
with a special type of distance function. We will now assume that the distance function is of the form

d:N—=C, ks d(k) := (B" | w)y

where B : H — H is a bounded linear operator on a (separable) Hilbert space (H,(-|-)s) with
spectral radius pspec(B) < 1, and v, w € H. Hence the projection map g, : {**N — H (Prop. 2.6.6)
takes values in a Hilbert space. The corresponding Ruelle-Mayer transfer operator (58) is given as

(59) (Mpf)(z) = /F exp(Bq(0) + fo(zlw)) f(ov +Bz)dv(o).

In this section (Theorem 2.7.6) we will show that for a large class of distance functions a dynamical
trace formula holds. The Ruelle-Mayer transfer operator Mg (59) viewed as operator acting on the
Fock space F(¢2N) satisfies the trace formula

Zn" (BAw) = 27y, (B) = det(1 ~ B") trace (Mp)"

for almost all n € N. This is one of the main results of this dissertation and shows that the spectrum of
the Ruelle-Mayer transfer operator gives a complete description of the sequence of partition functions
and thus of many properties of the dynamical system. In Chapter 4 we will use this result to show
that the associated dynamical zeta function has a meromorphic continuation to the entire complex
plane and an Euler product.

We will now aim for conditions on the distance function ensuring that at least a certain power of the
Ruelle-Mayer transfer operator is trace class. We introduce the following classes of distance functions.

Definition 2.7.1. Given a bounded linear operator B : H — H on a (separable) Hilbert space H,
v, w € H, we define a function d : N — C, k — d(k) := (B" 'v|w)s. We define the subspaces

D) c 1IN (for p € [1, 0)) via
(i) d € DY for p < oo iff pspec(B) < 1 and B belongs to the Schatten®? class S, (H),
(i) d € D™ iff pspec(B) < 1.
We call (B,v,w) a generating triple for d and B a generator. O

In Example 2.7.7 we will give a list of examples of distance functions belonging to these spaces. These
will be investigated in forthcoming sections.

We would like to point out that Dgp ) (for each p < o00) is a complex vector space: Let (B;,v;, w;)
be generating triples for d; € Dgp) (¢ = 1,2), then for any ¢ € C the distance function d; + cds
has a representation in the Hilbert space H := Hi & Ha via di(k) + cda(k) = (B*1v|w)y with
B:= (Bl Bz) , U= (eny ), and w := (3} ). By Proposition 2.3.9 it suffices to construct Ruelle-Mayer
transfer operators for each distance function d;, then by tensorising we obtain a Ruelle-Mayer operator
for d1 + Cdg.

The spaces Dgp ) for p < oo will lead to Schatten class Ruelle-Mayer transfer operators, whereas this
fails for D§°°>. This is caused by the qualitative difference of the corresponding operators: Note that
an operator B corresponding to a distance function d € ng) need not be compact. In Example 2.10.4
we show that there are compact operators such that no power is trace class. On the other hand, let

22For the definition of the Schatten classes see Appendix A.2.
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B be an operator with pspec(B) < 1 and B € S,(H). By the theory of Schatten classes the operator
B”™ belongs to Smax(1,p/n)(H) and by Remark 2.6.4 (iii) we find an index ng depending on B with
the property that B™ is trace class and has operator norm strictly smaller than one for all n > nyg.
This last property is essential for the proof of the dynamical trace formula. For other goals a detailed
investigation of (subspaces of) Dgoo) might be advisable.

Proposition 2.7.2. For all1 <p < q < 0o we have D§p> C ng) C Dy, the latter defined in (2.2.4).
Moreover, for all d € DEOO) we have limsup,,_, . ¥/|d(k)| < 1.

Proof. Proposition 2.6.5 implies that limsup,_, ., ¥/|d(k)| < 1foralld € D§°°>, the rest is obvious. O

Remark 2.7.3. Let F' C C be a bounded set and (Q = FN Ny, 7) a one-sided one-dimensional full

shift (1.2.6). Let ¢ be a two-body Ising interaction (1.8.3) with distance function d € Dgoo) (2.7.1).
Since we always assume a Hilbert space to be separable, we can assume that H = ¢?N or at least
H C ¢°N. Let mp, : £°N — H be as in Proposition 2.6.6. Hence by Corollary 2.6.11 the Fock space
F(£?N) contains a preimage under the composition operator Cr, , : F((*N) — C(Q), f +— fomp, of
the leading eigenvector of the Ruelle transfer operator L4, : C(2) — C() defined in (2.1.3). This
observation motivates the study of the Ruelle-Mayer transfer operator as an operator acting on the
Fock space. o

We will now prove the dynamical trace formula for the Ruelle-Mayer transfer operator M (59).
Remark 2.6.13 gives an explicit formula for the mixed iterates M, )o...0 M, ) from which (Mg)"
is built up. It implies that it suffices to prove an analogue of the Atiyah-Bott fixed point formula only
for the case that the linear map B : /2N — (N is a trace class operator with ||B|| < 1. This will be
done in (2.7.4).

The following theorem, which we prove in Appendix B.4.3, will imply that certain powers of the
Ruelle-Mayer operator M : F(£?N) — F(¢?N) (59) are trace class and satisfy a dynamical trace
formula.

Theorem 2.7.4. Let a, b € (?°N and B € S (¢°N) with |B|| < 1. Let
T: F(°N) — F(°N), (Tf)(z) = ™ f(Bz +)
be the corresponding composition operator. Then the trace norm (A.2.2) of T is equal to

exp(5llal? + 5101~ BB)/2(Ba + ))
1|5y (F(e2ny) = det(1 — [B)

and T is trace class with the Atiyah-Bott fixed point formula

exp(m((1 — B)~'bla))

t T =
race det(1 —B)

O

This theorem together with Remark 2.6.4 enables us to weaken the spectral conditions on the linear

map B such that for all d € Dgp ) with p < oo we will get a Ruelle-Mayer operator for which a dynamical
trace formula holds at least for almost all powers.

Lemma 2.7.5. Let F C C be a bounded set with a finite Borel measure v, q € Cy(F), B € S,(¢?N)
for some 1 < p < 0o and pspec(B) < 1, and v, w € £°N. Let

M : F(N) — F(EN), (Mpf)(z) = /F exp(Ba(0) + Botzlw)) f(ov+B2) dv(o)

be the Ruelle-Mayer operator (59). Then there exists n € N such that the operator (Mg)™ is trace
class.
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Proof. For all 0 € F we set
Mg o F(PN) — F(IPN), (Mp.9)(2) == exp(ﬂq(o) + 6o<z|w>) g(ov+ Bz).

For a moment we assume that B € S;(¢2N) with ||B|| < 1. Then, by Theorem 2.7.4 the composition
operator Mg, is trace class with trace norm given as

exp(Re(B4(0)) + 5 Zwl? + 3I|(1 - BB*)~/2(ZLBuw + 0v)|?)
det(1 — |B|)

(60) IMp.olls,(Fe2n) =

and satisfies the Atiyah-Bott fixed point formula (53). The function F' — R, 0 — Mg s||s, (F(e2n) is
a bounded function, hence integrable with respect to a finite measure. By Theorem A.7.6 the operator
Mg : F(£?N) — F(£°N) is trace class. Now we return to the general case: By Remark 2.6.4 there exists
ko € N such that [|B¥| < 1 for all k > ko. For all k > p we have B¥ € Spax(1,p/k) ((°N) = S1(€°N).
We let n = max([p], ko). Then for all choices of o1, ...,0, € F the operator Mg, o...0 Mg, €
End(F(¢?N)) acts by Remark 2.6.13 via

n n—k n
(M 0-0Ms,0,0)(2) = exp (8 (o WZ% B2+ Y 0B o)) g(B" 4+ Y 0B )
k=1 k=1 J=1 k=1

The above argument shows that Mg, o...0 Mg, : F((?N) — F(£2N) is trace class and hence by
Theorem A.7.6 the operator (Mpg)™ is trace class. O

Since 81 (F(¢?N)) C End(F(¢?N)) is an operator ideal, all higher iterates (Mg)™ for m > n are trace
class.

The exact formula (60) for the trace norm of the operators Mg, allows to weaken the condition on
the measure v and on the boundedness of F' C C. This will be used in Proposition 2.10.7.

We now can easily prove our main theorem of this section which states that for all Ising interactions
with distance function d € Dgp ) for some p < oo a dynamical trace formula holds at least for almost
all n € N. In the following sections we will apply this theorem for instance to finite range interactions,

superexponentially decaying interactions, and polynomial-exponentially decaying interactions.

Theorem 2.7.6. Let F' C C be a bounded set and (2 = F~,Ng,7) a one-sided one-dimensional full
shift (1.2.6). Let ¢ be a two-body Ising interaction (1.8.3) with potential ¢ € Cp(F) and distance

function d € Dgp) for some p < oo (2.7.1), say d(k) = (B¥"'v|w)py. Then there evists an index
ng € N depending on B such that for all n > ng the Ruelle-Mayer transfer operator

Mg : F(*N) — F(E°N), (Mﬁf>(z):/ exp(Bq(0) + Bo(zlw)) f(ov+Bz)dv(o)

F
satisfies the dynamical trace formula Z‘;NO (BA@)) = Z?TO_’?H} (8) = det(1 — B™) trace (Mg)™.

Proof. Set mp, : Q — ¢?N (Prop. 2.6.6), A, : (?°N — C, z — Bq(o) + o 3{z|w) and ¢, : (?N —
(N, z +— ov+ Bz. This gives an (S1) - (S3) Ansatz (2.3.3) by Proposition 2.6.6. By Lemma 2.7.5
there exists ng € N such that (Mg)™ is trace class for all n > ng. The operator (Mg)™ is an n-

fold integral over the family of composition operators Mg ,, o ...0 Mg, : F({?N) — F(¢?N). By
Remark 2.6.13 and Theorem 2.7.4 they satisfy the Atiyah—Bott ﬁxed point formula (53). The trace
formula for (Mg)™ now follows from Theorem 2.4.6 and Remark 1.11.5. O

In particular, given a generating triple (B, v, w), Theorem 2.7.6 directly constructs the corresponding
Ruelle-Mayer transfer operator. In the next section we will discuss how transfer operators corre-
sponding to different generating triples are related. The following example gives a list of the types of
distance functions which can be treated with our method. By the remark following Definition 2.7.1 all
finite superpositions of distance functions from these classes lead to Ruelle-Mayer transfer operators
with dynamical trace formula.
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Example 2.7.7. (i) Finite range (Section 2.8): Let d : N — C be a distance function with finite
range po, i.e. d(k) =0 for all k > pg. Then?3

d(k) = ((Sp,)* v | e1)

01
where S, := < ) € Mat(po, po; Z) is the standard po-step nilpotent matrix and v? =
01

(d(1),...,d(po))T € Cro.

(ii) Superexponential (Section 2.9): Let d : N — C, k ~ a(k) exp(—yk°), where v > 0,5 > 1
and a : N — C is a lower order term?* in the sense that limy_, a(k) exp(—e; k2) = 0 for all
€1, €2 > 0. Then

d(k) = (St15 | e1) .

—1)¢ - - % _1\é
where S : (N — 2N, (Sz) := % zg41, and 3¢ : N — C, o¢ := % a(k).

(iii) The classes DE”)’A C D§p> (Section 2.10): Let A € ¢PN for some 1 < p < oo with ||A]jeeny < 1
and ¢: N — C such that Vel : N — C, n — (¢, A\,)'/? belongs to £2N. Set

ch = (diag(A )k_l\/a|\/j>

(iv) Polynomial-exponential (Section 2.11): Let ¢ = (co,...,¢p) € CPTL 0 < |A\| <l and d: N —
C, k— A YP_ ¢ k' Then
d(k) = (\ABPHD)E-1] |2) |
where the matrix BP*D € Gl(p + 1;C) is given in Remark 2.11.1 and 1 : {0,...,p} — C is the
constant function one. O

Given a generating triple (B, v, w), Proposition 2.6.6 shows that 7p ,, : £*°N — 2N, £ — Zj L &BT
is a suitable projection map for a (S1) - (S3) Ansatz (2.3.3). For the sake of completeness and in
order to simplify a comparison with the literature we list the corresponding projection maps for the
known examples and and compute their coefficients explicitly. Hence the reader who is familiar with
the literature can find a new interpretation of the old results.

Corollary 2.7.8. Let d: N — C be a finite range distance function, say d(k) =0 for all k > po, and
vl = (d(1),...,d(po))" € Cro. LetS,, € Mat(po, po; Z) be the standard po-step nilpotent matriz from
Ezample 2.7.7 (i). Then

(&)
ﬂ-Sp - {°N — (CPO é‘ — Zgj J 1 d
)= (€71

Proof. For all 1 < k < py we have (S,,)"er = ery1 and hence, by iteration, e, = (S] ) ter =
(Sk=1)Ter. We compute the coefficients of the projection map 75, wi (€) = PPN Si-to? as

(15, .00 (E)lex) = Zgj Si=Lo | ey) Z@ Si=1yd | Sk ) Z@ (STHE=2yd | )
= Y gdk+j-1),
j=1

which coincides with (m; 4(¢) | ex) = (74(€) | ex) = 7(€) from Remark 2.1.6. O

23Tn Section 2.8 we will find a better representation of finite-range distance functions which uses a generator of smaller
operator norm.
24The assumptions on the lower order term can be weakened.
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The following result is an immediate consequence of the definitions.
Proposition 2.7.9. Let d DE"O)’A (2.10.1), say d(j) =Y 2, ¢ )\g for all j € N. Then
Taingy.vax | N = N, £i= > " diag(2)7 " Vel
j=1
is a continuous linear map with components (T ;.. x) vex (&) | €i) = 01/2 ZJ 16X T2 O

For the superexponentially decaying interactions we have to cite some results from Section 2.9.
Proposition 2.7.10. Letd: N — C, 7% : N — C, and S : /2N — (°N be as in Example 2.9.4. Then
g0t LN = 2N, &> & Sk 1!

k=1
has the components (ms ga(€) | ex) = exp(y(k —1)°) 3272, &5 a(j + k — 1) exp(—(j + k — 1)°).

Proof. By Proposition 2.9.2 we can compute the coefficients of g za explicitly as

exp(v(j — 1)°) .
(M 52 (&) | €5) ng Sk 15 d|ej Z«E o0y (G + ))a(j—i-k—l).

O

In the following we will construct trace class Ruelle-Mayer transfer operators for finite range inter-
actions (2.8) and superexponentially decaying Ising interactions (2.9), D;p ) Ising interactions 2.10,
and polynomial-exponentially decaying Ising interactions 2.11. In view of Theorem 2.7.6 it suffices to
find a representation via a generating triple (B, v, w), i.e., to prove Example 2.7.7. In doing so we will
investigate the limitations of the methods used for each type of distance function.

2.8 Ruelle-Mayer transfer operators for finite range Ising interactions

In this section we return to finite range interactions, for which we gave in Section 2.5 a full description.
We will now specialise to the case of Ising interactions, which can also be treated with the methods
from Section 2.7. Let (2 = FN Ny, 7) be a one-sided one-dimensional full shift (1.2.6). Let ¢ be a
two-body Ising interaction (1.8.3) with a finite range distance function d : N — C, say d(k) = 0 for all
k > po, and potential g € C,(F'). We will construct a trace class Ruelle-Mayer transfer operator such
that the dynamical trace formula holds for all n € N.

We state some obvious facts as a proposition without proof.

Proposition 2.8.1. For pg € N5 let
0 1

(61) Spo = R , € Mat(po, po; Z).
0

(i) Then S,, is a po-step nilpotent matriz, i. e., (Sp, )~ # 0 and (Sp,)* = 0. In particular, the
continuous linear map Sy, : CP° — CP° has spectral radius pspec(Sp,) = 0.

(i) Let d : N — C be a finite range distance function, say d(k) = 0 for all k > po, and v? :=
(d(1),...,d(po))" € Cro. Then d(k) = ((Sp,)*~*v?|e1) for all k € N. O

We will call S, the standard pg-step nilpotent matriz. The disadvantage of the matrix S,, is that the
matrices (S,,)¥ (for k =0,...,py — 1) have operator norm equal to one. Hence the dynamical trace
formula for the Ruelle-Mayer transfer operator built from S,

(62) My :Ch(C™) = Co(T™), (Msf)(2) = /F exp(Bg(2) + B21) F(zv* + Spo2) di(z)

only holds for all n > pg. In this finite-dimensional setting we can avoid this by the following trick.
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Proposition 2.8.2. Let 0 < A < 1 and S,, be the standard po-step nilpotent matriz from (61). Let
d: N — C be a finite range distance function, say d(k) = 0 for all k > py, and w? € CP° with entries
wl(k) = M=% d(k). Then d(k) = ((ASy,)*"'w?|e1) for all k € N. O

An immediate consequence of Proposition 2.8.2 and Theorem 2.7.6 is the following trace formula:

Corollary 2.8.3. Let F C C be a bounded set and (2 = FN,Ng,7) a one-sided one-dimensional
full shift (1.2.6). Let ¢ be a two-body Ising interaction (1.8.3) with finite range distance function
d:N — C, say d(k) =0 for all k > po, and potential ¢ € Cp(F). Let 0 < X < 1, w? € CP with entries
wi(k) = A% d(k), and S,, € Mat(po, po;Z) be as in (61). Then for all m € N the Ruelle-Mayer

transfer operator
Mg : F(CPP) — F(CPo), (Mpf)(z) = /Fexp(ﬂq(z) +32) fxw® + XS, 2) dv(z)

satisfies the dynamical trace formula Z‘SO (BA@)) = Z?TO_’_‘%m} (B) = trace (Mg)™.

Proof. By Proposition 2.8.1 we can write d(k) = ((AS,,)*"'w?|e;) for all k € N. The linear map
AS,, defined on the finite dimensional space C*° is automatically trace class and has operator norm
equal to A\. Hence the assertion follows from Theorem 2.7.6. The determinant factor in the dynamical
trace formula obviously vanishes. O

The naive generalisation of this result to the case of long range interactions fails, since the shift matrix
Sy, is trace class precisely if the interaction range pg is finite. The infinite analogue of S, is the shift
map 7 : £?N — (2N, (7€), := &uq1 from Remark 2.1.5, which has operator norm equal to one and is
not trace class. In the next section we will replace the shift by a so called weighted shift which allows
us to treat a certain class of long range interactions, namely the superexponentially decaying ones.

2.9 Ruelle-Mayer transfer operators for superexponentially decaying Ising
interactions

In this section we will study long range Ising two-body interactions with superexponentially decaying
distance function of a special type. Our class contains in particular distance functions of the following
form:

d:N = C, ks a(k) exp(—yk°),

where v > 0, § > 1 and a : N — C is a lower order term, in the sense that limy_, . a(k) exp(—e; k) =
0 for all €1, €2 > 0. This interaction has been investigated by D. Mayer in [May80a, p. 100]. He worked
with Banach space techniques and nuclear operators, whereas we will use the methods from Section 2.7
and Hilbert space techniques. The essential step in our approach is the finding of a suitable generating
triple for a given distance function. Then by Theorem 2.7.6, a possibly large power (which depends
on the spectral properties of the generator) of the Ruelle-Mayer transfer operator is trace class and
satisfies the dynamical trace formula. We will examine the generating triple in detail which leads to
a slightly larger class of distance functions which can be represented via a so called weighted shift. In
particular for distance functions of the Mayer type introduced above, our transfer operator is trace
class. In this section we restrict to Ising interactions, but allow spin values in a bounded subset F' C C.
By Section 2.13 our results will extend to the case of arbitrary Ising type interactions. If the alphabet
F' is finite, then every interaction matrix is of Ising type, and hence we can reproduce D. Mayer’s
result who worked with a finite alphabet.

The operator S introduced next will serve as a generator for superexponentially decaying distance
functions d. In Proposition 2.9.2 we show a representation d(k) = <Sk_1v|w>. Using the methods of
Section 2.7 we obtain the dynamical trace formula in Corollary 2.9.3.

Proposition 2.9.1. Let g : N — C\{0} with >, , ‘g&(i)l) " < co. We define S : 2N — 2N, (Sz)y, =

_glk) zk+1 and call it the weighted shift operator. Then:

g(k+1)

(i) S leaves invariant the spaces ¢IN for 1 < q < oo and defines continuous operators on these
spaces with ||S||ean—ran < SUPpey }%| for all1 < ¢ < oo,
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(ii) For all z € ¢PN, n € Ng, k € N, we have (S"z); = g&(Jr)n) Zktns

(iii) S: 2N — 2N belongs to the Schatten class Sp((*N), is not normal, and pspec(S) < 1.
Proof. Let 1 < g < oo and z € ¢9N, then

SUPIT_H’ H ||eqN

S — ‘ 9(
(= g T 2

We show assertion (ii) by induction. The case n = 0 is trivial. For the induction step observe that

(8" 2 = % (8%2 )41 = g(i:(i)l) g(z(ii;i)n Fentl = 0 i(fl)+ 1) “entd
From - -
<Sz|w> = ;%zkﬂw_k:zlﬂ—i—;zk%wk_l = <Z|S*w>
one obtains the ¢?N-adjoint S* of S as
S*: 2N — £°N, (S*¢); = { o Z:: 5
g(z Ve 4, i>2.

In particular, ((SS$*)(§))r = ’% ’2 &1, which shows that SS* is diagonal with respect to the standard

basis. We can read off the singular numbers of S being the square roots of the diagonal entries. By
assumption they belong to /PN. On the other hand

0, i=1,

g(i—1) :
’ g(z ‘ 517 7’22

((5™S)(€)w = {

g(k)
g(k-i-n) ‘ g(k+1)

hence one can find ky € N such that ‘ gk(i)l | < 1 for all k > kg. Let C = maxp—1,.. k, ‘g(gk(i)l) ‘
for all k£ € N one has

The sequence k — | ‘ tends to zero,

Then

The operator norm of S™ is bounded by supycy ‘

‘ ‘7‘ gk +1) g(ko) g(ko+1) k+n*1‘ ( )”*’“"*kckofl
glk+n)l lTgk+1)gk+2)"  "glko+1)g(ko+2) " k+n - ’

which tends to zero as n — co. Hence we can find n € N such that ||S™|| < 1 and hence the spectral
radius pspec(S) of S is less than one. O
For any non-vanishing sequence s € (PN one gets by setting g : N — C, g(k) := (Hl 1 s( )) a
function ¢ as required in Proposition 2.9.1. In particular, s(k) = g(k(+1) and |s| : N — C, n — |s(n)]

is the sequence of singular numbers of the corresponding welghted shift operator. A typical function
: N — C satisfying the summability condition Y., ‘g(kJrl) ‘p < o0 is, for instance, g(k) = exp(vk°)

w1th v > 0,0 > 1. In Remark 2.9.5 we will explain the notion of a weighted shift operator.

The interest in the map S is that it allows to express the superexponentially decreasing distance

function d in such a way that we can apply the general theory from Section 2.7.

Proposition 2.9.2. Let g : N — C\ {0} and S : /2N — (2N be as in Proposition 2.9.1 and d : N — C
such that 9 : N — C, o := g(k) d(k) belongs to (*N. Then

1

d(k) = —— (St=1¢¢ .
®=m S e
Proof. As a consequence of Proposition 2.9.1 (ii) we have
k l
(S"od), = 79( P O g(l+n)d(l+n)

g(l+n) Un gl +n)

for all n € Ny, I € N, which immediately implies that (S¥7*37 | e1) = (S*719%)1 = g(1) d(k). O
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From the above propositions and Theorem 2.7.6 we obtain the dynamical trace formula for the Ruelle-
Mayer transfer operator.

Corollary 2.9.3. Let F C C be a bounded set and (2 = FN,Ng,7) a one-sided one-dimensional
full shift (1.2.6). Let ¢ be a two-body Ising interaction (1.8.3) with potential ¢ € Cp(F) and distance

function d : N — C given as follows: There exists g : N — C\ {0} with Y -, ‘%‘p < oo and

g(1) = 1 such that v : N — C, o := g(k)d(k) belongs to ®N. Let S : (?°N — (°N, (Sz); :=
% zk+1. Then there exists an index ng € N such that for all n > ng the Ruelle-Mayer transfer
operator

(63) Mg : F(’N) — F(£*N), (Mpf)(z) = /Fexp(ﬂq(o) + ﬂozl) f(g{;d +S2) dv(o)

satisfies the dynamical trace formula Z,bﬁo (BA@)) = ZbNO’¢n}(ﬂ) = trace (Mg)™.

Proof. By Proposition 2.9.2 we can write d(k) = (S¥~1o¢ | e1) for all k € N, where S € S,(¢?N) with
pspec(S) < 1 by Proposition 2.9.1. With respect to the standard basis of 2N the operator S is an
upper triangular matrix with zeros along the diagonal, hence det(1 — S™) = 1 for all n > ng. The
assertion follows from Theorem 2.7.6. O

This result is similar to Corollary 2.8.3 for a finite range interaction, since there is no determinant
factor in the trace formula, which appears for instance in Corollary 2.10.5 for exponentially decaying
interactions. At this point our Hilbert space approach seems to be more effective than the Banach
space approach of D. Mayer [May80a, p. 106], since we can easily see that the determinant factor
is equal to one. This will lead in Section 4.2 to a simpler form of the corresponding dynamical zeta
function.

We will now investigate which distance functions d : N — C satisfy the assumptions of Corollary 2.9.3
and give an example first which is due to D. Mayer [May80a, p. 100].

Example 2.9.4. Consider the distance function d given as d : N — C, k + a(k) exp(—yk?), where
v>0,5>1and a: N — C is a lower order term, in the sense that limy_ - a(k) exp(—e; k) = 0
for all €1, e > 0. We show that d has a representation as required in Corollary 2.9.3. Let g : N —
C, k— exp('y(k: 1)%). Then g(1) = 1 and g satisfies the summability condition: For § > 1, j, k > 1
we have (j+ k) — kO = (j+ k) (G+ k)P —kkO 1> (G +k—k)k°! = j k1. Hence

(64) Z‘GXP—‘ ZeXp —p (K = (k—1)")) <) exp(—ypk®),

k=0

which is finite by Proposition 2.2.6 for all p > 0. Hence the corresponding weighted shift operator
S : £?N — 2N is trace class. Moreover, S has operator norm bounded by exp(—v) < 1, hence by
Theorem 2.7.4 the Ruelle-Mayer transfer operator is trace class. It remains to show that ¢ € ¢°N
We proceed similar to the previous estimate (64). For 0 < €3 <, 0 < e2 < § — 1, by our assumptions
on the lower order term a we can find a constant C' > 0 such that

5 ans = Zexp — (k=) a(k)| < C 3 exp(—yk 4 ek?) < C S exp(—(y— ek,

k=1 k=1

which is finite by Proposition 2.2.6. Hence 9% € ¢'N C ¢?N. In order to apply the methods of
Section 2.7 it would be sufficient that 7% € ¢2N and (64) for some p < oo. These observations allow
to weaken the conditions on the lower order term. For instance the sequence a might grow like
k — exp(yk°~17¢) for all € > 0. O

Next we explain the notion of a weighted shift operator and discuss the possible weights ¢ (and the
possible distance functions d) for which the Ruelle-Mayer transfer operator satisfies a dynamical trace
formula. It turns out that this approach is limited to superexponentially decaying interactions.

Remark 2.9.5. Let g : N — C\ {0} and S : /2N — ¢°N, (Sz2);, := % zk+1. The operator S is a
weighted shift operator, in the sense that it acts as a left shift composed with a diagonal operator.
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Formal conjugation by the (possibly unbounded) operator diag(g) : £2N — (2N, (diag(g)2)r = g(k) 2

gives

g(k)
g(k+1)
Hence the weighted shift S is conjugate to the (unweighted) shift 7 : £2N — 2N, (72)) := 241 from

Remark 2.1.5. We recall from Remark 2.6.7 the trivial representation d(k) = (7"71d, e1)pn ooy =
(t*=1d|e;)¢2n. By formal calculation we obtain

(diag(g) ™" Sdiag(g)2)x = g(k) ™ gk +1) 241 = 241

d(k) = (r*"1d| 61>€2N = (diag(g) ' Sk~ diag(g)d | 61>42N (Sk=1 diag(g)d | diag(g)ter) .

In order to fulfill the premisses of Theorem 2.7.6 we have to investigate the spectral properties of S
depending on g: By Proposition 2.9.1 the operator S belongs to the Schatten class S, (¢?N) iff

(65) > }
k=1

In this case the spectral radius of S is automatically less than one. In order to satisfy (65) the sequence
g must increase more than exponentially fast. It remains to investigate for which growth rates of d
and g the vector 7 := diag(g)d : N — C, 9 := g(k)d(k) defines an ¢?N-sequence. Thus, given d
with superexponential decay, g must not increase too much in comparison to d. A candidate for the
auxiliary sequence g is the following: Set d(0) = 1 and g : N — C with g(k) =~ ﬁ. The problem
with this point of view are the possible zeros of d. Vice versa, given a weight g, the distance function
d must decay more than exponentially. We can use (65) in two different ways. First, we write

Hadnprw )2 [d(k Z\ k;+1\ l9(k)2~7 gk + 1) d(k)?].

For ¢ € 2N it suffices by Cauchy-Schwarz inequality and (65) that the sequence
N —C, kw— g(k)>Pg(k+1)?d(k)*

is bounded. This happens for instance if d can be written as d(k) = ﬁ with b € />°N.
g Py P

The second approach, which coincides with the first for p = 1, is to write

IIﬁdHeZNfZIQ )| |d(k ZI /<:+1 g(k) g(k + 1) d(k)?|.

By Cauchy Schwarz inequality and (65) we need for ¢ € (2N that Y7, |g(k) g(k + 1) d(k)?|? < oo

for ¢ < +£-. This happens for instance if d can be written as d(k) = % with by € /IN. O
g(k) g

2.10 Ruelle-Mayer transfer operators for a special class of Ising interac-
tions

We will now investigate a new class of distance functions consisting of suitable superpositions of
infinitely many exponentially decaying Ising interactions d : N — C, d(j) := >_:2, ¢; A] for which we
can apply the methods from Section 2.7. Besides finite superpositions of exponentially decaying Ising
interactions as studied in [May80a], [HiMay02], [HiMay04], this class contains for instance the following

distance functions: Let 0 < [A| < 1 and d(k) := = Ij\k , the logarithmic interaction d(k) := — log(1—A¥)
from Example 1.9.7, d(k) := ﬁ, and d(k) == ¢ —1. Due to the special form the limit behaviour

of these distance functions can be analysed in detail. It turns out that these distance functions are
characterised by an exponential decay at infinity.

We define the following operations on sequences: For any two sequences a, b : N — C we define their
pointwise product ab : N — C, (ab); := a;b;.

We fix the branch of the complex square root which is positive on the positive real line. For any
complex sequence a : N — C we define its pointwise square root va : N — C, (vVa); := /a;.
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Definition 2.10.1. Given A : N — D := B(0;1)¢c := {# € C||z|] < 1} and ¢ : N — C such that

Vel € 2N, we define a distance function d : N — C, d(j) := Zci N o= <diag(>\)j71\/a | \/J>€2N
i=1

for all j € N. We define the subspaces Dgp)’A C 0N (for p € [1,¢]) via
(i) d e DP* for p < oo iff || Aflery < oo,

(i) d € DI i ||\l goon < 1. O

In Example 2.10.10 we will show that there are many distance functions belonging to Dgoo)’A (2.10.1)
and its subspaces. The following Proposition 2.10.2 explains the notation A in the definition of the
spaces Dgp ) (2.10.1) as those distance functions coming from diagonal matrices.

Proposition 2.10.2. A distance function d : N — C belongs to D@A (2.10.1) for p < oo if and only
if there exists a generating triple (B,v,w) where € (°N, B € S,(¢*>N) with B=B" and pspec(B) < 1,
such that d(k) = (BF"1v | w).

Proof. Let U : 2N — (N be a unitary operator such that UBU* = A = diag()\) is diagonal with
respect to the standard basis of £2N. Set v’ = Uv and w’ = Uw which both belong to /2N. Then

d(k) = <Bk’1v | w> = <U*Ak71UU | w> = <diag()\)k71v’ | w’> = Z ,\f—lu;E; = <diag()\)k71p | p> ,

i=1

where p := Vo'w’ € 2N, since ||p|lfy = 3272, [pil® = 3272 [ojwi| < v/ [leaw ([0 eaw = [[ollean [|w]] ez
The spectral radius of a diagonal operator is its operator norm which is the supremum norm of the
diagonal entries. The converse is obvious. O

We will now investigate the inclusion relations of the classes DEQ)’A. In particular, we will see that the
distance functions belonging to DEQ)’A decay exponentially at infinity. The second part states that a

generator B of d € D? )2 has necessarily operator norm strictly less than one, hence D?’ WA Dgoo)’A.

Proposition 2.10.3. (i) Foralll < p < q < 0o we have D?)’A C ng)’A C ng), the latter defined
in (2.7.1). In particular, limsup,_, . ¥/|d(k)| < 1 for all d € Dgoo)’A.

(ii) Letp < oo and d € Dgp)’A, say d(j) = > oq ¢ )\f Then ||\ gon = max;en || < 1.

Proof. We begin with the second assertion: Let d(j) = > o ¢ )\g for all 7 € N. If p < oo and

de Dgp)’A with A € ¢PN, then the sequence \; tends to zero as i — oo, hence the maximum max; ey | A4
exists and is strictly less than one. Concerning part (i) observe that || ]|y = ||diag(N)||ezn_ezny < 1

and use Propositions 2.7.2 and 2.10.2. It remains to show that for p < ¢ < oo the inclusion Dgp)’A C

=

DEQ)’A is strict. For instance consider the sequence A : N — C, k +— k~!/P belonging to 4N \ ¢PN.
In (2.10.4) we give an example of a sequence which vanishes at infinity, but does not belong to any
/PN for p < oco. O

We will now give an example of a sequence which converges to zero, but does not belong to any
sequence space /PN for a finite p. This will complete the proof of the preceding proposition.

Example 2.10.4. We show that
U (PN C ¢,

p<oo

where ¢y as usually denotes the space of complex-valued sequences (2, )neny With limy, o 2, = 0. The
stated inclusion is obvious. We have to show that it is strict. The idea is to define a sequence which
looks like a flight of stairs where the length of the stairs increases faster than their height decays.
Let (yn)nen be a monotonically decreasing sequence of non-negative real numbers (the height of the
stairs), which will be specified later. We define (z,,)nen depending on (y,,)nen via

Ton! = ... = Ton+1)! _1 = Yn
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for all n € N. Let p > 1. Then counting the number of equal terms yields
sz _ 2(2(n+1)! _ 2n!) y”p; _ Z 2n! (2n+1 o 1) y”p;

We set z, := 2™ (2"t — 1) y2. Let (yn)nen be a sequence tending to zero with lim,, .o /7 = 1, take
for instance y, = 1/n. Then the root test applied to the z, implies that (x,)nen ¢ PN, since

Vzm = 207D R ontl 1 (/)P = 2020
as n — 0o, independently of p. O

Viewing a sequence as an diagonal operator on £°N, the last example states that there are compact
symmetric operators such that no power is trace class.

We will now apply Theorem 2.7.6 from Section 2.7 to the Ruelle-Mayer transfer operator for the
one-dimensional one-sided full shift (1.2.6) with Ising spin interactions (1.8.3) and distance function

de Dgp)’A. By Proposition 2.10.3 (ii) there is nothing to prove.

Corollary 2.10.5. Let F C C be a bounded set and (2 = FN, Ny, 7) a one-sided one-dimensional full
shift (1.2.6). Let ¢ be a two-body Ising interaction (1.8.3) with distance function d € Dgp)’A (2.10.1),
sayd(j) = > i ¢ )\{, and potential q. Let A(y) be the standard Ising observable (2.1.7). Then for all
n > [p] the Ruelle-Mayer transfer operator

(66) Mg : F(£N) — F(N), (Muf)(z) = /F exp(ﬁq(0)+ﬁa<z|\/j>) £ (o Ver + diag(N)z) dv (o)

satisfies the dynamical trace formula ZﬁNO (BAwg)) = Z??,U.’?,n} (B) = det(1—diag(\)™) trace (Mp)". O

In particular Corollary 2.10.5 includes Ising interactions whose distance function is a superposition of
finitely many exponentially decaying terms, which is a setting which has been investigated for instance
by D. Mayer and J. Hilgert in [May80a], [HiMay02], and [HiMay04].

Example 2.10.6. (Finite superpositions) Let ' C C be a bounded set and (Q = FN, Ny, 7) a one-sided
one-dimensional full shift (1.2.6). Let ¢ be a two-body Ising interaction (1.8.3) with potential ¢ € Cp(F)
and distance function d being a superposition of finitely many exponentially decaying interactions,
say d(k) = 31", ¢; AF with 0 < |A\;| < 1. The distance function d belongs to Dgl)’A (2.10.1) and the
corresponding Ruelle-Mayer transfer operator is given as

Mg : F(C") — F(C"), Mzaf)(z) = /Fexp(ﬂq(o) + Ba<z|ﬁ>) f(J Ve + diag(/\)z) dv(o).

3 — 1 . n n ;
Its conjugate Lg := C’diag(\/)\—/c) oMgoC, ook F(C™) — F(C™) acts via

iag(
(€a)(2) = [ exp(Balo) + Bolele)) £(o A+ ding(3)2) dv(o),

which is precisely the operator discussed?® in [HiMay02]. By Corollary 2.10.5 it satisfies the trace
formula L .
75" (BA) = 20, %1, (8) = det(1 — diag(A)") trace (Lp)".
O

We write the Ruelle-Mayer transfer operator Mg : F(¢?N) — F(¢£?N) defined in (66) as an integral
over a family of Schatten class operators. Then the explicit trace norm formula (60) of Lemma 2.7.5

allows to weaken the condition on the measure v and on the boundedness of F© C C imposed in
Corollary 2.10.5.

25There only the finite alphabet F = {£1} has been considered.
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Proposition 2.10.7. Let F C R be a v-measurable set and (FN,Ny,7) a one-sided one-dimensional
full shift (1.2.6). Let ¢ be a two-body Ising interaction (1.8.8) with real-valued distance function

de Dgl)’A (2.10.1), say d(j) = Yoo Ci )\g, and potential q. Let m := maxX;en: ¢, x, 0 |Ai| < 1. If the
map

2 4
F € o exp(Re(a(0) + 5 (%5 + — (2 11)) 02 [ Ve )

is v-integrable, then the Ruelle-Mayer operator Mg : F(£?N) — F(¢(*N) defined in (66) is trace class
for B eR.

Proof. We write the Ruelle-Mayer transfer operator Mg : F(¢2N) — F(¢?N) (66) as an integral over
a family of trace class operators

Mo s FIEN) = F(EN), (Mg £)(2) := exp(Ba(o) + fo (=) f(ov+Bz)

with v = w = Ve € 2N and B := diag()\). Then the trace norm formula (60) gives

exp(Re(Ba(0)) + 28~ L VeN|? + 25°(2 +1)°)| (1 - BB)~'/2(1 + B)VeX )
det(1 — [B])

[Ms,olls, (7(eny) =

4

Suppose that ||(1 — BB*)~Y/2(1 + B)Vel || %y < T2 |VeA||Zy. Then the integrability assumption
-m

shows that [, [[Mgq|s,(#e2w)) dv(o) < oo and hence by Theorem A.7.6 the Ruelle-Mayer operator

is trace class. Concerning the needed estimate we observe that

(1 —BB*)~'/2 = (1 — diag(\)diag(X))~1/? = diag()),
where A; := (1 — [A;|2)™"/2. Then |1+ \;| < 2 for |A;| < 1 gives the stated bound:
[(1=BB*) Y21 +B)VeN|2y = [diag(\)diag(1 + \)Ved| %y

= ST = P2+ ) (e AV
k=1

_ i |1+ AlPlei Aif
e
4 & 4 Ja2
< {003 D e il = Tz IVeAllen
k=1
where m := max;en: ¢, 1,20 |Ai| < 1 which exists by Proposition 2.10.3. O

We will now give criteria ensuring that a distance function belongs to Dgl)’A defined in (2.10.1) and
give some examples. Let d(k) = Y o, ¢; A¥. First, Prop. 2.10.8, we choose the sequence A : N — C to
be an exponentially decaying sequence times a lower order term. Then we specialise further and look
in Corollary 2.10.9 at purely exponentially decreasing sequences .

Proposition 2.10.8. Let e, g : N — C be complex-valued sequences with r. := limsup,,_, ., ¢/|cy| < 00
and 14 :=limsup,_, o, {/|gv| < 00. For any A € C with 0 < |A| < min(-—=, L) the distance function

d:N—C, k32 ¢ gk X¥F belongs to Dgl)’A (2.10.1).

Proof. At first observe that limg_,o A¥ g, = 0, since the series >, |A\¥ g| converges by the root

test:
limsup {/|A\* gi| = [A|rg < 1.

k—oo

Set \:N—=C, )\ := At g; for all i € N, then for [ = 0,1 we have

limsup v/ |t \i| < || limsup /||t limsup /|gi] < |\ 77,

Our assumptions on the range of A imply that [A|rlr, < 1. Now the root test implies that A e AN
(for I = 0) and Ve € 2N (for [ = 1). O
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Another subclass of the space Dgl)’A (2.10.1) consists of those distance functions which come from
evaluating analytic functions in a neighbourhood of a zero point. Without loss of generality let f be an
analytic function in a neighbourhood of zero with f(0) = 0 and A small enough. Then d(k) := f(\F)

(1),A

belongs to D; as we will show next. For this phenomenon we will give some examples in (2.10.10).

Corollary 2.10.9. Let f be an analytic function, whose Taylor expansion at zero has the radius
of convergence 0 < ry < oo, and f(0) = 0. Then for every 0 < |A| < 1 the distance function

d:N = C, d(k) := f(\*) belongs to D} (1.4 (2.10.1), as long as |A| < min(1,7y).

Proof. Let f be given as f(z) = > .o ¢; z*. Recall that the radius of convergence of the analytic
function f satisfies % = limsup,;_,, v/|ci| = rc in the notation of Proposition 2.10.8. Set g = 1 and
apply (2.10.8). O

We denote the space of holomorphic functions on the unit disk D := B(0;1)c by O(D). A whole zoo
of distance functions of the type described in Corollary 2.10.9 can be obtained by evaluating suitable
analytic functions at points A*. We will now give some examples.

Example 2.10.10. Some examples for distance functions obtained via Corollary 2.10.9 are for in-
stance the following (we retain the wording from there):

(i) Let f € O(D) be deﬁned by f(z) := &= = >0, 2. We have ¢; = 1 and ry = 1. Hence

1—2
d(k) == f(AF) = 22 /\k belongs to D; (1.4 (2.10.1) for all A € D by Corollary 2.10.9.
(ii) Let f € O(D) be defined by f(z) :=log(1 — z) = >_;=; . We have ¢; = + and r; = 1. Hence

d(k) := f(A\F) = —log(1 — A¥) belongs to Dgl)’A for all A € D. This logarithmic interaction was
introduced in Example 1.9.7.

(iii) Let f € O(D) be deﬁned by f(z) = a7 Z) = Y2, iz". We have ¢; = i and ry = 1. Hence
d(k) := f(A¥) = 72555z belongs to D{ for all A € D.

(iv) Let f € O(C) be defined by f(z ) =e*—1=377 l,. We have ¢; = & and ry = co. Hence
d(k) == f(AF) = ™) —1 =522 AL helongs to DI for all A € D, O

Remark 2.10.11. Given a given distance function d € Dy (Def. 2.2.4), we would like to know if d
can be constructed via Corollary 2.10.9. In order to decide this one has to identify the corresponding

holomorphic map f such that d(k) = f(\¥). Since k = lf’ogg)‘;, the naive approach is to set f(z) =

d({ggi), which satisfies f(AF) = d(lfogg’\;) = d(k). Then one has to investigate whether this defines
a holomorphic function f in a neighbourhood of zero (possibly there are restrictions on the choice of
A). For any A € C with 0 < |A| < 1 the set {A\* € C|k € N} has the accumulation point zero. Hence
(for every fixed \) a holomorphic function f, which is defined in a neighbourhood of zero and satisfies
f(AF) = d(k) for all k € N, is uniquely determined. Since limy_,, d(k) = 0, the function f necessarily

belongs to the ideal of holomorphic functions vanishing at zero. O

In the rest of this section we will derive necessary conditions on distance functions belonging to the
spaces DP"* (Def. 2.10.1). By Proposition 2.10.3 (ii) we know that every distance function d € "2
has at least exponential decay at infinity, i.e., limsup,_, ., /|d(k)| < 1. We will show that the non-
trivial distance functions belonging to Dgp )2 have precisely exponential decay at infinity which is
surprising, since Dgp )2 is defined by inequalities. The following proposition is of preparatory nature.

Proposition 2.10.12. Let A : N — C be bounded and ¢ : N — C such that Y .o, ¢; )\f converges
absolutely for all k € N. Then

lim
k—o0

Z|cz)\k|— sup | i

1€N: ¢; #0
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Proof. We set X 1= sup;en. ., 40 | Ai|- By our assumptions the series 7%, [¢; A;| converges. Hence for
all £ € N we have

s

A

oo oo ; k oo /\Z oo /\z
=1 =1 =1 =1

which tends to A as k — oo. For all € €]0, \[ there exists n € N such that ¢, # 0 and |A\,| > A — €.
Hence

oo

S le k12 fleal Pl 2 {leal = 0F = ¥Jeal (A = 0),

=1

which tends to A — € as k — co. Since € > 0 was arbitrary, we have limj_.o {/> 0, [ Af[=A. O

If the supremum sup;cy. ., o |Ai| in Proposition 2.10.12 is indeed a maximum, then we can determine

the limit limg—oo {/| Yioq ¢ A¥| which we interpret as limy_oo {/|d(k)| for a distance function d €

Dgp )2 The maximum is attained for instance if the sequence A = (\;);en converges to zero, which is
equivalent to say that diag(\) : 2N — /2N is a compact operator.

Proposition 2.10.13. Let A : N — C be bounded and ¢ : N — C such that max;en: ¢, -0 |\i| exists
and 32 ¢ e converges absolutely for all k € N. Then

lim c; AFl = max il
koo Z ’ ‘ i€N: ;0 i
Proof. We set A := max;en: ;20 |\i|. By relabelling we can assume that the sequence (|A\,|)nen attains
its maximum only once (change the coefficients (¢, )nen otherwise), without loss of generality |A;| = A.

Let € > 0. Since Ve belongs to £°N, there exists an index ng € N such that »3°° |cZ i | < e for
all n > ng. Since A > |\;| for all i > 2, there exists an index ko € N such that | Y27, ¢; ( ’ < e for
all &k > kg. Then

00 Ai k n Ai k o n A
I TICOREIDSTICORESD SRS I DY €+ )\* o] <2

1=2 =2 i=n+1 =2 =n—+1

Hence for € < |e1]/2 we have, using [A1| = A,

el o 1= (|5 ()= i (1)

This implies that
%) i . i 9
‘E Ci)\i‘Z e ] A {1 — —€]),
i=1 lex

which tends to A as k — oco. The obvious upper bound ’\“/| S e AF < '(/221 lc; AF| also tends

to |[A1] as k — oo by the preceding Proposition 2.10.12. Hence the limit exists and has the stated
value. O

Of course, we would like to prove?S

Conjecture 2.10.14. Let A : N — C be bounded and ¢ : N — C such that Y~ ¢; \F converges

absolutely for all k € N. Then limy oo {/| D02 ¢i AF| = sup;e. ¢,20 | Ail- O

26By Propositions 2.10.12 and 2.10.13 it remains to show the lower bound limyg_.o {/| 3252, ¢; AF| < sup;cy, ci0 [Nl
in the case the maximum max;en: ¢, 0 |Ai| is not attained.
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We summarise the previous results and obtain the following description of the spaces Dgp ) (2.10.1).

It states that the non-trivial elements of D§p )2 have precisely exponential decay at infinity.

Proposition 2.10.15. Let d € Dy (Def. 2.2.4) be a distance function.
(i) Ifd e D?)’A \ {0} for some p < oo (2.10.1), then 0 < limy_o {/|d(k)| < 1.
(ii) Ifd € Dgp)’A for some p < 00 and limg_.o ¥/|d(k)| =0, then d = 0.

Proof. Let d € Dgp)’A for some p < oo, say d(k) = Y. ¢; AF. Since Dgp)’A C Dgp), we know by
Proposition 2.7.2 that lim,_. {/|d(k)| < 1. By Proposition 2.10.3 the sequence (|);]);en attains its
maximum max;en: ;20 |Ai| < 1. On the other hand, the first assertion of Proposition 2.10.13 shows

that limg—oo {/|d(k)| = max;en: ;20 |Ai|. Hence, if limg_,oc ¥/|d(k)| = 0, then maxjen: ;20 |As| = 0
and the distance function is the constant function zero. O

The converse of Proposition 2.10.15 (i) is not true in general, as we will see next.

Remark 2.10.16. Let d € D; (Def. 2.2.4) be a distance function with 0 < limy_,o, {/|d(k)| < 1. Then

d does not necessarily belong to some D§p )2 With p < 0o. One is tempted to think that there should
be a development of d as a sum of exponentially decaying functions by an iterative process. This
however fails: Think of d(k) := A\* +exp(—vk%) with 1 > XA >0, v > 0,6 > 1. Then \* < d(k) < C\*
for some constant C' > 0 and hence limy_.o, 4/|d(k)| = A, but the next order term exp(—~k°) has no

such expansion since limg oo &/] exp(—vk9)| = limg_, oo exp(—yk°~1) = 0. O

In this section we introduced a scale of new classes of distance functions which consist of suitable
infinite superpositions of exponentially decaying terms. Due to the special shape of these distance
functions their asymptotic behaviour can be well analysed. We showed that the (non-zero) distance
functions belonging to these classes have exponential decay at infinity.

2.11 Ruelle-Mayer transfer operators for polynomial-exponential decaying
interactions

In this section we construct the Ruelle-Mayer transfer operator for the one-sided one-dimensional full
shift with polynomial-exponentially decaying Ising interaction, i.e., we consider the distance functions
of the form d : N — C, k+— A3 c; k%, where A € C with 0 < [\ < 1, ¢; € C. We determine
a Ruelle-Mayer transfer operator and prove a dynamical trace formula. In view of Theorem 2.7.6
it remains to determine a generating triple for d. This directly reproduces the results of D. Mayer
and J. Hilgert [May80a], [HiMay02], [HiMay04] on exponentially decaying distance functions and K.

Viswanathan’s result [Vi76] on polynomial-exponentially decaying interactions.

Remark 2.11.1. Let A € C*, x > 0, and p € Ny. A standard basis for the (p+ 1)-dimensional vector
space spanned by 7T-images of the distance function d : N — C, k + (k 4+ 2)P?A¥ are the functions
€ :N—=C, &k):=(k+x)'\F fori=0,...,p. Because of the binomial formula they satisfy

)\kJrl )\k
(k4 1+ z)\F ! (k + z)\F
: = AB(®P*+1) :
(k + 14 z)P~I\k+H (k +z)P~1\k
(k+ 1+ z)PARF! (k + z)PAF

for all k& € N, where B?®+1) € Mat(p + 1,p + 1;R) is the unipotent (lower) triangular matrix with
entries )
) ) i<
BED), ; =
0 ,otherwise.
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Obviously, det B?P*1) = 1. Let 2 = 0, then v, := (€p(1),...,&,(1))T = (\,...,\) = AL € CP*!. By
induction we obtain
)\k
ENF
— )\k(B(pH))kfll

kp.)\k

and hence we have found a generating triple for
p .
d(k) = XY e k' = (ARBEHD)1 |7)
i=0

for all ¢ = (cg,...,cp) € CPTL O

As an immediate consequence of Remark 2.11.1 and Theorem 2.7.6 we obtain the dynamical trace
formula for polynomial-exponentially decaying Ising interactions, a result which has been observed by
K. Viswanathan [Vi76] in the case of a finite alphabet.

Corollary 2.11.2. Let F C C be a bounded set and (F~,Ngo,7) a one-sided one-dimensional full
shift (1.2.6). Let ¢ be a two-body Ising interaction (1.8.3) with potential ¢ € Cp(F) and distance
function d : N — C, k +— AYP_ e k', where A € C with 0 < [A\| < 1,¢; € C. Let B+ €
Gl(p + 1;C) be the matriz given in Remark 2.11.1 and 1 : {0,...,p} — C the constant function one.
Then the Ruelle-Mayer transfer operator

Mg : F(CPT) — F(CPHY), (Mgf)(z) = / exp(Bq(z) + Bz (2[) f(Az 1+ ABPT2) du(x)

F

.....

2.12 Classification

Given a distance function d € Dgoo) (2.7.1), then there are many triples (B, v, w) which generate d.
For instance, say d(k) = (B*~!v|w)s, then d can also be represented as d(k) = (v|(B*)* lw)y =
(BT)*~1%w|[v)4;. Secondly, we can change v into v + v’ with v’ € ker B and, similarly, w into w + w’
with w' € ker B* = BH. Thirdly, for every S € GI(H) one has

d(k) = (B* Mvjw)y = (STHSBS™H) 1 Su|w)y = ((SBS™1)* 1SS~ w)y.

Given two different representations d(k) = ((B;)*~'v;|w;) for i = 1, 2, then the corresponding Ruelle-
Mayer transfer operators

Moy - F(H) — F(Hi), (Mg F)(2) = /F exp(Ba(0) + Bo(elwi)) F(ovi +Biz) dv(o)

are not conjugate in general, even if H; = Hs because of possibly occurring kernels of B; and of B}.
In this section we ask for normal forms. First we will deal with those generators which cannot be
decomposed.

Definition 2.12.1. Let H be a Hilbert space. We call a linear map B : H — H irreducible if there is
no closed subspace V of H different from {0} and H such that both V and V+ are B-invariant. O

Remark 2.12.2. Let d € Dgoo) (2.7.1), say d(k) = (B*'v|w)s, such that B : H — H is compact.

This, for instance, happens if d € Dgp ) (2.7.1) for some p < co. Hence both the sequence of eigenvalues
and the sequence of singular numbers of B converge to zero. Moreover, for all A # 0 the generalised
eigenspaces Fy := {v € H|(In € N) (B — A\)"v = 0} are finite dimensional. For A\ € C, j € N we call

A1
(68) Jong) = R € Mat(j, j; C)

Al
A
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the standard Jordan block of size j and eigenvalue A. A Jordan block is irreducible (in the sense of
Def. 2.12.1) and by the Jordan decomposition theorem the Jordan blocks are (up to conjugation) the
only irreducible maps on a finite dimensional complex vector space. Hence the only other irreducible
maps are congruent to “infinite Jordan blocks” with eigenvalue zero. O

The operators B = diag()\) : £2N — (2N, (Bx)(i) = \; z; corresponding to distance functions belonging
to the class Dgp )’A(see Example 2.7.7 (iii) and Section 2.10), are examples of highly non irreducible

maps. - We make some attempts to give a classification of those generators which can be treated with
our method.

Remark 2.12.3. Given d € D{* (2.7.1), say d(k) = (B*~'v|w)s, with B : H — H compact and
irreducible (2.12.1). Using Remark 2.12.2 one obtains the following classification:

1. 'H finite dimensional: H = C7. The irreducible maps are the Jordan blocks Jiy ;) (2.12.2).

L.a Let Jy ;) € Mat(j, j; C) be the standard Jordan block with A = 0, i.e., J() ;) = S; is the
standard j-step nilpotent matrix. Hence d(k) = ((J(o ;)" 'v|w) is a finite-range distance
function with finite range j. See Section 2.8.

Lb Let J ;) € Mat(j,5;C) be the standard Jordan block with A # 0. The matrix Jiy ;)
is invertible and d is a polynomial-exponential distance function d(k) = p;(k) \* with a
polynomial p; in the variable k of degree degp; = j — 1. See Section 2.11.

2. H infinite dimensional: H =2 ¢2N. Necessarily spectrum of the irreducible maps consists of {0}.
Up to now we know only one example, namely the superexponential distance functions, see
Section 2.9.

Since the generators from (1.a) and (1.b) act on finite dimensional spaces, they are trace class and
hence the corresponding distance functions belong to Dgl) (2.7.1). O

A possible normal form of a generating triple (B, v, w) consists of an operator B written as the direct
sum of its Jordan blocks.

In the following we will give a characterisation of the generators acting on finite dimensional spaces
via the study of shift invariant subspaces of distance functions.

Definition 2.12.4. Let B : B — B be a bounded operator on a Banach space B. A vector v € B is
called B-cyclic if the space spanned by the B-iterates B*v (k € Ny) is dense in B. O

Proposition 2.12.5. Let d : N — C. The following are equivalent:
(i) There is a linear map B satisfying
d(k) dk+1)
(69) Bl ||
dlk+n-1) d(k +mn)
for all k € N and n is minimal with this property.

(ii) The shift operator 7 : CN — CN, (7f)(k) = f(k+ 1) (2.1.5) applied to d generates an n-
dimenstonal complex vector space.

(iii) The functions 7'd : N — C (1 =1,...,n) are a basis of span{7'd| | € Ng}.
(iv) d solves an m-th order homogeneous linear difference equation with constant coefficients.

(v) There ezists B € Mat(n,n;C) and a cyclic vector v € C" such that d(k) = (B¥"1v|e1) for all
k e N.

Proof. Let B = (B ;)i j=1,...,n-
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(ii = iii) Look at the chain of vector spaces?”

0 — span{d} = span{d, 7d} = ... 5 span{d,..., 7" 'd} 5 span{d,...,7"d} 5 ....

By assumption this chain is eventually constant. If 7(span{d,...,7*1d}) C span{d,...,7%d}
for some k € N, then all higher iterates 7'd also belong to this space, hence span{7'd| [ € Ny} =
span{d,...,7""'d} and k = n. The argument moreover shows that dimspan{d, ..., 7'd} =1+1
for all 0 <1<k — 1, hence d, 7d, ..., 7" 'd are a basis in span{7'd| | € Ny}.

(iii = i) Obvious.
(iii=iv) Since d,...,7""!d form a basis in span{d, 7d,...,7"~1d}, there are coefficients such that

d = 37 B T, e, (77d) (k) = d(n+k) = 00 Bug () (k) = S By d(k+1-1)
for all £ € N. Due to the special structure of the basis one has

(70) R R
(77d) (k) d(k +n) Bui oo oo Bun/ \dk+n—1)

By looking on the structure of the equations it suffices to solve the last one, i.e.,

d(j+n) = Burd(j+k—1)

k=1
for all j € N. Introducing ¢ := —B,, g+1 (K =0,...,n — 1), the last equation can be rewritten
as

n—1
(71) d(j+n)+ Y crd(j+k) =0

k=0

for all j € N, being the standard form of a homogeneous linear difference equation of n-th order
with constant coefficients.

(iv=1) Write (71) as (70).
(i=v) By induction we obtain the representation
d(k+1) d(1)
: =B
d(k +n) d(n)

for all k € N. This implies that (7°~'d)(k) = (B*"1v?|e;) for all k € N, i = 1,...,n, where

vt = (d(1),.. .,d(n))T and e; € C" is the i-th standard unit vector. If v? is not cyclic, then
there is a non-zero vector w = (wy, ..., w,) € C™ such that 2?21 w; T ld =0, i.e.,

0= sz (7" td) (k) = sz (B*=1v? | e;) = (BF 1o | w)

for all k € N. Hence the vectors d,...,7" 1d are linearly dependent contradicting (iii).

(v=-iii) Conversely, if there exists a vector w = (w1, ..., w,) € C" such that Y.\, w; 7°"*d = 0, then
<Bkv | w) for all k € N. Hence w is orthogonal to the span of the B*v, which by assumption
is the whole space C", hence w = 0 and the d, ..., 7" 'd are linearly independent. Obviously,
they are spanning. O

27The existence of such a “cyclic” basis does not depend on the specific choice of the shift operator.
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Using the notation of the proof one calls

n—1 n—1
PX)=X"+> e XF=X"=> By X*
k=0 k=0

the characteristic polynomial of the difference equation. By induction one can show that p(X) =
det(B — X) is the characteristic polynomial of B. Obviously, the matrix B is invertible if and only if
co = —Bp.1 # 0 if and only if p(0) # 0. The latter we call non-degenerate.

Next we show that non-degenerate difference equations are in correspondence with polynomial- ex-
ponential functions, i.e., pointwise products of a polynomial and an exponential function, and that
degenerate difference equations correspond to finite range distance functions.

Proposition 2.12.6. Let d : N — C. The following are equivalent:
(i) There is a linear isomorphism B satisfying (69) for allk € N and n is minimal with this property.

(ii) My := span{7*d : N — C|k € No} is a T-invariant complex vector space and the restriction
TIm, : Mg — My of the shift is a linear isomorphism.

111 ere exists B € n; and a cyclic vector v € such that = v|ey) fora € Np.
iii) Th B € Gl(n;C d l cr h that d(k B* f llkeN

(iv) d solves a non-degenerate n-th order homogeneous linear difference equation with constant coef-
ficients.

(v) There exist A; € C\ {0} (i =1,...,1) and multiplicities hy, ..., h € N with 22:1 h; =n and
coefficients ¢;m € C (1=1,...,1; m=0,...,h; — 1) such that for all k € N

I h;—1

dk) =" cim k™AL,

i=1 m=0

Proof. By Proposition 2.12.5 the equivalences between (i), (iii), (iv) are obvious.
(i<1ii) Note that B is the representing matrix of 7|ar, : Mg — My with respect to a special basis.

(ivev) Let A; be the roots of the characteristic polynomial p(X) = det(B — X) with multiplicity h;,
i =1,...,l, then by the non-degeneracy the \; are non-zero complex numbers and the theory
of difference equations [Mi90, p. 127] yields that

fim(k) =k™N (m=0,... b —1,i=1,...,])

is a fundamental system of solutions, i.e., the n functions f; , (m =0,...,h; — ;i =1,...,1)
are linearly independent and their span is 7-invariant. [l

The following corollary considers the irreducible finite dimensional shift invariant subspaces and shows
that they correspond to polynomial-exponential functions.

Corollary 2.12.7. Let d : N — C. The following are equivalent:

(i) There exist A € C\ {0} and coefficients ¢; € C (i =0,...,n — 1) such that for all k € N
n—1
d(k) =AD"k
=0

(ii) My :=span{7*d:N — C|k € No} is an n-dimensional T-invariant complex vector space and the
restriction T|p, : Mg — Mg, (t9)(k) = g(k +1) of the shift is a linear, bijective and irreducible
map (in the sense of Def. 2.12.1).

(iii) There is an irreducible linear isomorphism B € Gl(n; C) satisfying (69).
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Proof. If B is an irreducible isomorphism, then it is conjugate to a Jordan block J( ») € Mat(n,n;C)
with A # 0. Hence the roots of the characteristic polynomial are all equal to A and hence d has the
stated form by Proposition 2.12.6. If d is of this form, then AB(™ is a representing matrix of the
shift operator restricted to My as shown in Example 2.11.1. The matrices AB(™ and J(xn) are both
irreducible and have the same eigenvalues, hence are conjugate showing the equivalence of (i) and
(iii). The implication (ii=-iii) follows from looking at a representing matrix of 7|pr, : Mg — Mg.
It remains to show that given a polynomial f € C[X] and A € C*, the distance function d : N —
C, d(n) := A" f(n) satisfies (ii). First consider the case A = 1, i.e., f = d. For any monomial
mi(X) := X* € C[X] we have
k

(tmp)(X) = mp(X +1) = (X + 1k = Z (?)Xl € span{mo, ... my},
1=0

hence My is contained in the finite dimensional 7-invariant space span{mo, ... M14deg r}. The restric-
tion of the shift 7|7, : My — My is linear and injective, since h € M satisfies (7h)(X) = h(X+1) =0
for all X € N if and only if h = 0. Hence 7|5, : My — Mj is bijective. The space My is T-irreducible,
since for every h € My of degree degh the span of the iterates of h

My, = span{Tkh :N— C|k e Ny} =span{mo, ... Mdegh }

is invariant, but the complement M \ M, is not invariant.
For arbitrary A € C* set Cy : CN — CN, (C\h)(n) := A" h(n). Then C) is a bijective linear map
which almost (up to a constant scalar) commutes with the shift 7, since

(TCx\R)(n) = A" h(n + 1) = A (Cx7h)(n)
for any h € CN and n € N. Hence the claim follows from the first case. O

In other words, Remark 2.11.1 computes the representing matrix of the restriction 7|pz, : Mg — My
of the shift operator with respect to a suitable basis where d(k) = kP \.
In the same spirit of Proposition 2.12.6 one easily shows its analogon for finite range distance functions.

Proposition 2.12.8. Let d : N — C. The following are equivalent:

(i) There is a nilpotent linear map B satisfying (69) for all k € N and n is minimal with this
property.

(ii) My := span{r*d : N — C|k € No} is a T-invariant complex vector space and the restriction
TInmy, : Mag — My of the shift is nilpotent.

(iii) There exists a nilpotent B € Mat(n,n; C) and a cyclic vector v € C" such that d(k) = (B*v | e1)
for all k € Ny.

(iv) d solves a degenerate n-th order homogeneous linear difference equation with constant coefficients.

(v) d is a distance function with finite range n. O

2.13 Ising type interaction

In Sections 2.7, 2.8 - 2.11, we have investigated lattice spin systems with Ising interaction and have
constructed transfer operators for them. We will now use these results to find Ruelle-Mayer type
transfer operators for one-sided one-dimensional full shifts with Ising type interaction. In our next
main Theorem 2.13.8 we will prove the dynamical trace formula which generalises Theorem 2.7.6 to
Ising type interactions. Recall from Remark 1.8.3 that an interaction matrix r : F' x F' — C is called

of Ising type if
1

r(,y) =Y ai@) bi(y)
k=1
for some functions a;, b; : F' — C. As mentioned in Example 1.8.4 many physically relevant interaction
matrices belong to this class, for instance Stanley’s vector models and the finite state Potts model.
We start with some observations on the algebraic and analytic properties of the set of Ising type
interaction matrices.



Transfer operators for the full shift 99

Remark 2.13.1. Let V be a subvector space of F€ = {g: F — C}. A function f : F x F — C is
called decomposable in V, if there exist functions s;, t; € V such that for all z, y € F

M
i=1
where sy = (81,...,8Mm), tay = (b1, tar) + F — CM. The minimal number M € N is called

the rank of f. If the rank is one, i.e., f(x,y) = s(x) t(y), we call f simple.
(i) The space of decomposable functions is a subvector space of all functions F' x F — C.

(ii) If F is finite, then every function f : F' x F — C is decomposable: Using Kronecker’s delta
function J, we have the so called trivial decomposition

f(xay) = Zfz(w) 52(9);

zeF
where f.(z) := f(z,2) and 6,(y) =9, for all z, y, z € F.

(iii) Let F' be compact. Note that C(F') x C(F) is a total subset in C(F x F'), hence every r € C(F x F')
can be approximated by a sequence (r(as)) ey in C(F x F') such that each (5 is decomposable
with rank M.

(iv) Let F be a Hausdorff space. It is known that Cy(F') x Cp(F) is in general not a total subset in
Cy(F x F). O

Remark 2.13.2. (i) The space of Ising type interaction matrices is a subvector space of all sym-
metric functions F' x F — C.

(i) Let F be compact. Note that (C(F) x C(F))?2 is a total subset in C(F x F)%2. In fact, let

r € C(FxF)® and (r(ur)) yyen be an approximating sequence in C(F X F). Set 7(ar) : FXF — C,
Fony (2, y) = 5 (ry(@,y) + 7 (y, 2)) which is symmetric. Then 755y — r in C(F x F), since

. 1 1
sup |r(z,y) — 7 (z,y)| < 5 sup I7(z,y) — ) (z,9)| + 5 Sup I7(y, z) — 7y (y, )|
z,yeF z,yeF z,yeF

which tends to zero as M — oo. O

Example 2.13.3. Let F be a finite set. The Potts model (see Example 1.8.3) with alphabet F' has
the interaction matrix 7pgtts(2,y) = 02,y = D, cp Oz,2 02y, Where 0 is the Kronecker delta function
on F x F. The Potts model interaction matrix has rank equal to |F|. In this example the trivial
decomposition is also symmetric. [l

If F' is finite, then every interaction matrix has symmetric decompositions:

Proposition 2.13.4. Let R € Mat(N, N;R) be symmetric and 0 < rank(R) < N the rank of the
associated bilinear form
Br:RY x RN = R, (z,y) — (z|Ry).

i) For each M > rank(R) one has factorisations R = A, A}, with Ay; € Mat(N, M;C).
MAM
(ii) There exists Ay = AL € Mat(N; N;C) with R = A3;.

Proof. The matrices Ay € Mat(N, M; C) will be constructed using the matrices ¢tp; € Mat(N, M;C)
which we define first. For M < N set

= ( idum > € Mat(N,M;(C)
ON—m, M
and for M > N
LM = ( idy ONﬁMfN) S Mat(N,M;(C).

where Oy is the zero matrix in Mat(k,[; C). Depending on whether M or N is the larger number,
we determine ¢,,¢1,. For M < N we have t,,1}, = ( Mar - O ) € Mat(N, N;C) and for

ON—m,m ON—M,N—M

M > N we have 1,,t}, = idy.
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(i) Denote by p = rank(R) the rank of R. There exists T € O(N) such that R = TDT " where
D = diag(d,...,d,,0,...,0) € Mat(N, N;R). Let \/ be the square root which is positive on
the positive real line. For M > rank(R) set

Ey=VDuy = ( diag(d)  Op.ni— > € Mat(N, M; C),

On_ ON—p,M—
PP P p

where \/diag(d) = diag(v/dy, ..., \/d,) € Mat(p, p; C). By the previous considerations we have
EyEl =VDuyi, VD = D. Set AM := TEy € Mat(N, M;C), then

Ay Ay =TE,E,T" =TDT" =R.

(ii) Set Ay = TVDTT, then A}, = Ay and A%, = TDT" = R. O

The following proposition will be the first step towards Ising type interactions. According to the
decomposition of an Ising type interaction matrix one obtains a decomposition of the corresponding
standard observable. Each summand in this decomposition can almost be represented as in Re-
mark 2.1.7, but decorated with a homomorphism which we will introduce in Remark 2.13.5. In the
second step, Prop. 2.13.7, this will lead to an (S1) - (S3) Ansatz (2.3.3) for Ising type interactions
provided the distance function is of a special shape.

Remark 2.13.5. For any function f: F — C we set f: F' — CN, f(£); :== f(&). The map f is not
linear, but a homomorphism in the following way: For all o € F, £ € FN we have

flove)=flo)V f(&) = flo)er+ (0V f(€)),
where e; = (1,0,...) € CN is the first standard unit vector. O

Proposition 2.13.6. Let F C C be a bounded set and (2 = FN,No,7) a one-sided one-dimensional
full shift (1.2.6). Let ¢ be a two-body Ising type interaction (1.8.3) with potential q, distance function
d € ('N, and interaction matriz r € Cp(F x F) given as r(x,y) = Zgl si(x) ti(y) with s;, t; € Cy(F).
Then for all oV & € Q we can express the standard observable (1.11.1) by dint of the linear map
7l 4°N — C, 7{(&) = > pe & d(k) from Remark 2.1.6 as

M

AoV E) =qlo) + Y si(o) nf (tu(€)).

Proof. For all o € F, £ € FN we have

[eS) M M
> r(o,&)d Zsl Ytu(&k) d(k) = si(0) > ta(&) d Z o) mf (ta(¢
k=1 k=1 =1
O

We specialise to Ising type interactions with distance function of the type investigated in Section 2.6
and obtain the following result which is analogous to Proposition 2.6.6, i. e., the map 7r( ) is the
projection map of an (S1) - (S3) Ansatz (2.3.3) for Ising type interactions.

Proposition 2.13.7. Let B : B — B be a bounded linear operator with pspec(B) <1, v € B, w' € B'.

(i) Lett = (t1,...,tn) : C — CM be bounded and g, : £°N — B, 7 (€)=Y pe & B 1v as in
Proposition 2.6.6. Set

ml € B, g mll) (€)= (mau(ta(©)s- s T (s (€)))
and B : BM — BM | B(z1,...,20) = (Bz1,...,Bzpr). Then for all o v ¢ € CY

FI(B)U(O’\/f) = (ti(o)v, ..., ta(o)v) —|—IB%7T( ) »(&)-



Transfer operators for the full shift 101

(i) Let F C C be a bounded set and (Q = FN,No,7) a one-sided one-dimensional full shift (1.2.6).
Let ¢ be a two-body Ising type interaction (1.8.3) with potential q, distance function d : N —
C, k— d(k) :== (B*1v,w')g 5, and interaction matriz v(z,y) = sz\il si(x) ti(y) with s;, t; €
Co(F). Then for all oV & € Q we can express the standard observable (1.11.1) as

M

A (o VE) = q(0) + D s1(0) (m.0 (1), w'hp.5r = (o) + (), (€), (s1(0)w .. sar(0)w) ) o sy
=1

Proof. The first assertion follows from Propositions 2.6.6 (ii) and 2.13.6. Using the linearity of g,
and the properties 7, (€1) = v and 7p_,(0V &) = B, (£) as shown in Proposition 2.6.6 (i), we obtain

T (oVE) = (meulti(oVE)),...,mu(ta(o VE)))
(M3, (t1(0) + OV E1(E)), .., T, (tar (@) + OV tar (€)))
= (ti(0)v +Bmpy(t1(€)), - - -, tar(0)v + Brg o (s (€))).

O

Since ﬂ](BfL is a projection map of an (S1) - (S3) Ansatz (2.3.3) for Ising type interactions, Defini-

tion 2.3.7 directly yields the (formal) Ruelle-Mayer transfer operator Mg : Cp(BM) — Cy(BM),

Mpf)(z1,. -, 2m) == / exp(ﬁq(o) + ﬁz si(o) (2, w')B,B,) f((tl(o)v, oo tam(o)v) + Ez) dv(o).
4 1=1

Now we specialise to the Hilbert space setting introduced in Section 2.7 and prove the generalisation of

Theorem 2.7.6 to Ising type interactions: For any Ising type two-body interaction with distance func-

tion belonging to Dgp ) (2.7.1) we define a Ruelle-Mayer transfer operator which satisfies a dynamical

trace formula.

Theorem 2.13.8. Let FF C C be a bounded set and (FN,No,T) a one-sided one-dimensional full
shift (1.2.6). Let ¢ be a two-body Ising type interaction (1.8.3) with potential q¢ € Cp(F), interaction
matriz r € Cy(F X F) given as r(z,y) = Zi\il si(x) t; (y) with s, t; € Co(F), and distance function d €
Dgp) for some p < 0o (2.7.1), say d(k) = (B*"'v|w)e,2y. Let Ay be the standard observable (1.11.1).
Then there exists an index ng € N depending on B such that for all n > ng the Ruelle-Mayer transfer
operator MG F((PN)M) — F(((PN)M),

WHMWﬁ%~wm:Lw%%@%iﬂ@%@ﬁﬂmmwwmmw&ﬁmq

=1
. . ~uMo _ 0 _ _ mn\M (M)\n
satisfies the dynamical trace formula Z)," (BA(4)) Z5 0 (8) = det(1 — B")™ trace (M ")".

Proof. We use the map 7T](B;L : Q= FY — /2N from Proposition 2.13.7 as a projection map of an (S1)
- (S3) Ansatz (2.3.3). For all ¢ € F we define A, : ((?N)M — C, 2z Bq(0) + B, s1(0) (z]w)
and the linking maps 9, : ((?N)M — (2N)M | (t,(o)v,...,tp(0)v) + B2z. By Proposition 2.13.7 this
gives an (S1) - (S3) Ansatz. The linking maps 1), are affine and have the linear part B : (¢2N)M —
(CPNYM | (21,...,2p) — (Bz1,...,Bzy) in common. Note that det(1 —B"™) = det(1 — B")™. Apply

Corollary B.4.5 for B; =B, a;(c) = = si(0) w, and b;(0) = t;(c) v, which shows that

exp(Re(Ba(@) + 3 L, (laall? + 11 — BaBp) /2 (Biai + b:) %))

IT;2, det(1 — [Bi])
exp(Re(Ba(@)) + S lwl> S, [si(0) + 3 L0, (1 — BE) 7172 (Lsi(0)Bu + ti(o)v) )
det(1 — [B))M

Mp,olls, (Feenmyy =

(74)=

which is by our assumptions a bounded function in ¢ € F. Then the assertion follows from Proposi-
tion 2.3.9 and Theorems 2.4.4, 2.4.6, and 2.7.6. O
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In the following remark we explain which parameters of the interaction effect the Ruelle-Mayer op-
erator and its spectral properties. Furthermore we comment on the approximation of interaction
matrices.

Remark 2.13.9. (i) Let ¢ be a two-body Ising type interaction (1.8.3) with potential ¢ € Cp(F)

and distance function d € Dgp) for some p < oo (2.7.1), say d(k) = (B*~1v|w) 2y, and interaction
matrix r € Cp(F x F) given as r(z,y) = Zi\il si(x) t;(y) with s;, t; € Cp(F). The generator
B € S,(Ho) of the distance function d € D§p ) determines the space on which the Ruelle-Mayer
transfer operator acts, namely on F(Ho)®M = F(H}!), where M is the rank of the interaction
matrix r. The spectral properties of the generator deeply influence the spectral properties of
the RM operator in contrast to the vectors v, w € Hy. The potential ¢ appears as the v-
density exp(0¢q). Together with the functions s;, t; € Cp(F) its growth effects the finiteness
olf I H./\/l(ﬁj\? |ls, (#ar) dv(o) and hence the question whether the Ruelle-Mayer operator is trace
class.

Formula (74) moreover shows that given an arbitrary interaction matrix r € Cp(F x F') which
can be approximated by a sequence () of interaction matrices of rank M, the sequence of

the corresponding Ruelle-Mayer transfer operators ./\/lgM) s F((PN)M) — F((PN)M) (73) is
a Cauchy sequence with respect to the trace norm if and only if the Fredholm determinant of
the generator is equal to one, i. e., for finite range and superexponentially decaying distance
functions. This is due to the fact that a well approximating sequence of interaction matrices
makes the argument of the exponential in (74) converge, but gives no control on the determinant
factor, unless the latter vanishes. O

We end this chapter by returning to the main examples and commenting on the literature.

Example 2.13.10. Let d € D;p) for some p < oo (2.7.1), say d(k) = (B*~1v|w) 2y, be the distance
function for the following one-sided one-dimensional full shifts (1.2.6).

(1)

(i)

The Ising model (see Example 1.8.3) has the interaction matrix rigne(2,y) = xy. It has rank
equal to one. The corresponding Ruelle-Mayer transfer operator Mg : F(£2N) — F(¢°N) is

(M 1sing F) () = / exp(Bg(z) + Bz {zjw)) f(zv + Bz) dv(z).

F

Let F ={1,..., N} be finite and the measure v on F be identified with its distribution vector.
The Potts model (see Example 1.8.3) has the interaction matrix rpyig : F'xF — {0,1}, (z,y) —
Oz = D .cp 0,202y, Where 6 is Kronecker’s delta on F' x F. It has rank equal to [F| = N.
The corresponding Ruelle-Mayer transfer operator Mg : F((?N)V) — F((2?N)V) is

N
(Mﬁ,[Potts]f)(zla ceey ZN) = Z Vi eXP(ﬂQi + 3 <21|w>) f(((;i,mv + IB3Zm)m:1 ,,,,, N)-

i=1

Remark 2.13.11. In the literature ([Vi76], [May76], [May80a],[HiMay02],[HiMay04]) mostly the
Ising model (rank one case) for finite F' is considered. [May76] shows the generalisation to arbitrary
interaction matrices over a finite alphabet F'. The approach to consider decomposable interaction
matrices in the case of compact F' was proposed in [May80a]. O



103

3 Transfer operators for the matrix subshift

Up to now we have constructed and investigated transfer operators for the one-sided one-dimensional
full shift only. However, for applications this is an inadequate restriction, since the configuration
space is often a strict subset of the full configuration space as we explained in the introduction. In
the following we will treat the case of a one-dimensional matrix subshift as defined in (1.2.8). As
in Section 1.11 we assume the space F' of spin values to be a Hausdorff space endowed with a finite
Borel measure v and the transition matrix A : F' x F' — {0,1} to be aperiodic (1.2.9) and v ® v-
measurable. First we will define the Ruelle transfer operator and then the Ruelle-Mayer transfer
operator. The main idea is to view the transition matrix as a Hilbert-Schmidt operator on L?(F,dv)
and to investigate its tensor product with the Ruelle-Mayer operator for the full shift on the tensor
product of L?(F,dv) with the Hilbert space on which the RM operator acts. In Section 3.3 we will
provide the background on the spectral properties of a special kind of operators acting on tensor
products of Hilbert spaces. In Theorem 3.2.6 we show that given a Ruelle-Mayer transfer operator for
a full shift which satisfies a dynamical trace formula we can find a new transfer operator for the matrix
subshift which satisfies a similar dynamical trace formula. In particular we obtain a generalisation of
our main Theorem 2.4.6 on Ruelle-Mayer transfer operators for Ising type interactions with distance
function belonging to D;p ) for some p < oo (2.7.1). As a second application we consider the hard rod
model which we model as a matrix subshift. We will apply our techniques from Theorem 3.2.5 and
construct a Schatten class Ruelle-Mayer transfer operator for polynomial-exponential interactions and
prove a dynamical trace formula for it.

3.1 Ruelle transfer operator

In this section we will define Ruelle transfer operators for one-dimensional matrix subshifts (1.2.8).
In the first step we assume that the alphabet F' is finite.

Remark 3.1.1. Let F be a finite alphabet, (Qa, F,N,Ny,7) a one-sided one-dimensional matrix
subshift (1.2.8), and A € C(€4) an observable. By Example 2.1.2 the preimage of £ € Q, under the
shift 7 : Qu — Q, consists precisely of those sequences (o Vv ¢) € FN which fulfill Ay e = 1. Then
Remark 2.1.1 leads to a provisional definition of the Ruelle transfer operator L4 : C(Q2a) — C(Qa)
associated with A via

(Laf)©) = D exp(Am) f(n) = Y Age, exp(A(o V) foVE),

n€(ry) 1) ockl
hence L4 f is a function which depends on ¢ and in a special way on its first entry &;. O

In [May91] D. Mayer considers the Ruelle (and the Ruelle-Mayer) transfer operator as operators acting
on a direct sum of vector spaces which is indexed by the alphabet. This introductory section shall
give a motivation for the right generalisation of the Ruelle and the Ruelle-Mayer transfer operator to
matrix subshifts, also in the general case. We suggest to replace this direct sum by tensor products.
We assume A : F' x F' — {0,1} to be v ® v-measurable and put the following definition which shall be
compared to Definition 2.1.3 for the full shift. Our proof of the continuity requires that C(F) x C(FY)
is total in C(FY), which for instance happens if F' is compact. Nevertheless, this Ruelle operator will
lead to the right Ruelle-Mayer transfer operator in the next section.

Proposition 3.1.2. Consider a Hausdorff space F equipped with a finite Borel measure v and
(Qa, F,N,Ng, 7) a one-dimensional one-dimensional matriz subshift (1.2.8). The Ruelle transfer op-
erator

EA : LP(F’ V)®7T Cb(QA) - Lp(Fa dl/)®ﬂ' Cb(QA)a (EAf)(.T,f) = /F‘Aa,z eXp(A(O’ v E)) f(O’, UVE) du(a)

associated to the observable A € Cy(F) is a bounded linear operator, 1 < p < oo.

Proof. We use the fact, see for instance [Scha50], that the projective tensor product can be charac-
terised by the property that every bilinear, continuous map 7' : X x Y — Z can be uniquely and
continuously extended to a linear mapping T : X®, Y — Z with ||T|| = ||T||. Our operator £ can
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be written as £4 = T} o Ty o Ty with T} : L' (F,v)&x Cp(Qa) — LY(F,dv)®, Cy(Q) uniquely defined
on elementary tensors as

(Ty(fr ® f2))(2,€) /F Aoz f1(0) du(0) £2(6),

(Ta2(fr © f2))(,6) = fi(x) f2(x VE),
(T5(f1 @ f2))(x,€) exp(A(£)) f1(z) f2(£).

We will show that ||T1]| < v(F), ||T2]| <1, and ||T3]| < exp(||All¢,,))- We denote the dual exponent
of p by ¢, defined by % + % = 1. First note that 71 = 71 ; ® id with

1Tl = [ | [ s fite)avio)]” avio)

/F(/Fldl/(a))p/q /F|f1(g)|1’ dv(o) dv(z) = v(F)? | f1]P.

For the norm estimate of 7> we use that every fo € Cy(24) can be approximated by a series ), g§k) ®

gék) with ggk) € C(F), gék) € C(FY). On elementary tensors fy = g; ® go with g; € C(F), g2 € C(F™)
we have

IN

Imhenswl = ([ 1@ a@Prae)"” s lao)

EEFN

IN

(/Flf1(o)|de(J))1/p sup |g1(€)] sup |g2(&)|

geFN EEFN

I fillzemwy lg1lleceny llg2lle -

Let T32 : Cp(Q2a) — Cp(Qs) be the multiplication operator (T32f)(§) := exp(A(&)) f(§) which obvi-
ously satisfies ||T3 2| < exp(||All¢c,(q,)). Since T3 = id ® T3 2, this concludes the proof. O

3.2 The Ruelle-Mayer transfer operator

Given an observable A which has properties (S1) - (S3) as defined in (2.3.3), we will define the
(formal) Ruelle-Mayer transfer operator in a way which is similar to (2.3.7). We will transfer the
ideas of Section 2.4 to the matrix subshift case such that for each transfer operator for a full shift
we obtain a transfer operator for the matrix subshift with (quite) the same analytic properties. In
particular we obtain the generalisation of Theorems 2.7.6 and 2.13.8 to matrix subshifts: For all
Ising type interactions with distance function d € Dgp ) for some p < oo a dynamical trace formula
holds at least for almost all n € N. This will be mainly accomplished by tensorising in a clever way
with the space L2(F,dv) of square-integrable functions on the space F of spin values. Note that
we always assume that the set F' has finite measure with respect to the (a priori) Borel measure
v, hence by Cauchy-Schwarz’s inequality a square-integrable function is absolutely integrable, i. e.,
L(F,dv) C L(F,dv).

Remark 3.2.1. Let F be a Hausdorff space carrying a finite Borel measure v and (24, F,N, Ny, 7) a
one-dimensional matrix subshift (1.2.8). Let

La:LP(Fv)®,Cp(y) — LP(F,dv)&. Co(Qn), (Laf)(z,§) = / Aogexp(A(o V&) fo,0VE) dv(o)
F
be the Ruelle operator (3.1.2) associated to an observable A € Cp(2a) which has properties (S1) -
(S3) as defined in (2.3.3). Let 7 : Q4 — E be the corresponding projection map®® into a topological
space E, 1, : E — F the linking maps (o € F), and A, : E — C be the family of new observables.
Set id@7 : Fx Q) — FxE, (2,8) — (2,7(¢)) and id® Cr : Cp(E) — LY (F,dv)®,Cy(E) —
LP(F,dv)®, Cp(Q), f1 ® fi — f1 ® fo o7 the corresponding composition operator. As in the
construction (2.3.6) of the Ruelle-Mayer operator for the full shift, we assume for a moment F to

28The projective = topological m-tensor product X®, Y has nothing to do with this map .
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be finite and apply the Ruelle transfer operator to g := f o (id®w) € LP(F,dv)®,Cp(2s) with
f € LP(F,dv)&, Cy(E).

(Lag)(@,€) = Y Ag.exp(Alo V) (fo(id®m))(o,0VE)

ceF

S Ao exp(Ag 0 7(0)) f(o. %o (7(£).

ceF

i.e. the image of id® Cj is EA—ipvariant and £4 o (id® Cy) = (id® Cy) o M, where we define the
(formal) Ruelle-Mayer operator M : L'(F,dv)&, Cy(E) — LY(F,dv)®, Cy(E) via

(M) (x,2) =Y Agrexp(As(2)) f(0,%0(2)).

ceF
O

Returning to the general case of an arbitrary alphabet F' the previous considerations motivate the
following definition which is related to Definition 2.3.7.

Definition 3.2.2. Let F be a Hausdorff space carrying a finite Borel measure v, (Qa, F,N,Ng, 7) a
one-dimensional matrix subshift (1.2.8), A € Cy(€24) an observable, and 7 : 24 — E a continuous
map into a topological space E with properties (S1) - (S3) (2.3.3). The operator

M i LN(F,dv), Cy(E) — LM(F.dv)o, Cy(E), (M) (x,2) = / Bz exp(Ay(2)) £(0, 60 (2)) di(o)

F
is called the (formal) Ruelle-Mayer (RM) transfer operator for the matrix subshift. O

Hence given a Ruelle-Mayer transfer operator for the full shift, we obtain by Definition 3.2.2 an
associated RM operator for a matrix subshift. For example, if A is the standard observable of an Ising
spin system with distance function d € Dgoo) (2.7.1), we will find such an operator, see Example 3.2.3.
Another example will be discussed in Section 3.5 in which the hard rod model is concerned.

Example 3.2.3. (Cp. Remark 2.6.15) Let FF C C be a bounded set equipped with a finite Borel
measure v and (Q4, F,N,Np, 7) a one-dimensional matrix subshift (1.2.8). Let ¢ be a two-body Ising
interaction (1.8.3) with potential ¢ and distance function d : N — C given as d: N — C, k — d(k) :=
(B¥~1v,w')p 5, where B : B — B is a linear operator with pspec(B) < 1, v € B, w' € B'. Then by
Proposition 2.6.6 the map 7, : ¢°N — B, mp,(€) := Y pe, & B* v is a projection map of a (S1) -
(S3) Ansatz (2.3.3). Let Mg : LP(F, du)®,, Cy(B) — LP(F,dv)®, Cp(B) be the Ruelle-Mayer transfer
operator defined via

Mpf)(z,z) = /FAU,I exp(ﬁq(o) +ﬁa(z,w’>576,) flo,o0v+Bz)dv(o)

and £~A(¢) : LP(F,0)®7 Cy(Qa) — LP(F, dv)@x Cp(24) be the Ruelle operator (3.1.2) associated to the
standard Ising observable A4y € Cy(£24), then EﬁA(¢> (id®Cry,) = ({d®Cry ) o Mpg. O

Also in this context our intention to work with Hilbert spaces simplifies the arguments. Having
identified a suitable Hilbert space H where the Ruelle-Mayer operator for the full shift acts, the
corresponding RM for the matrix subshift acts on L?(F,dv)&H. Using the canonical isomorphisms
L3(F,dv)®H = L?(F,v; H) = f;? H dv the reader can choose its preferred way of thinking.

We remark that in the widely considered case of a finite alphabet F' we have L?(F,dv) = CIF
canonically, hence L?(F,dv)@H = L*(F,v; H) fF Hdy = HIFI

Our next aim is to investigate the spectral properties of the Ruelle-Mayer transfer operator for the
matrix subshift and to prove a dynamical trace formula for it. For this we need the following lemma
which is an immediate consequence of Lemma 3.3.1 proved in the following Section 3.3.

Lemma 3.2.4. Let v be a finite measure on F and A : F x F' — {0,1} a v ® v-measurable transition
matriz. Assume that (Sz)zer is a measurable family of Hilbert-Schmidt operators on a Hilbert space
H with [5]1Su(l5, 2 dv(z) < co. Then

(T f2))(0) = /F Ao f1(2) S fo di(z)
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defines a Hilbert-Schmidt operator on L*(F,dv)®H with

n

(19 )(0) = [ borise B (Sa, 000 8o, f2) flan) ) ()
and (for n > 2)
trace T" = / Api g By 2Dy, o trace (Sp, 0...08,,)dv(zy) ... dv(xy,).

O

A tensorised version of Lemma 3.2.4 in a Banach space setting besides the case of a finite alphabet F’
is not known to us. Such a result could be used to obtain an analogon of Theorem 2.4.4 in the matrix
subshift setting. For our purpose it is sufficient to transfer Theorem 2.4.6 to matrix subshifts.

Theorem 3.2.5. Let (Qu, F,N,No,7) be a one-sided one-dimensional matriz subshift (1.2.8), A €
Cp(Qa) an observable, and 7w : Qy — E a continuous map into a Banach space E with properties (S1)
- (88) (2.3.3). Assume that the maps ¥, : E — E are affine and of the form ¢, : E — E, z —
Yz(2) == ay + Bz for some fized map B € End(E) which admits a Fredholm determinant and has
operator norm ||B||,, < 1. Suppose that the algebra generated by the composition operators

My H—H, (sz)(z) = eXp(Am(Z)) (f sz)('z)

consists of Hilbert-Schmidt operators on a Hilbert space H C C(E) and satisfies the trace formula
(53). Let v be a finite Borel measure on F such that [, HMIH%Z(H) dv(x) < oo. Then the dynamical

partition function (1.11.4) can be expressed as
ZZNO (A) = det(1 — B") trace M"

for all n € N>a, where M is the Ruelle-Mayer transfer operator

M : L(F,dv)H — L*(F,dv)&H, (Mf)(0.2) = / Ao exp(Au(2)) (2,40 (2)) dv(a).

F

Proof. By Corollary B.1.3 and by the assumed trace formula we have

n

trace (M, o...0o My, ) = exp(Z(Azk 0 gy O...0 1/;%)(2;1%))

k=1

for all 1,...,2, € F. Hence the assertion follows from comparing the trace given by Lemma 3.2.4
trace M" = / Apy gy oo By Lz Ay, gy trace (Mg, o...o My )dv(zy). .. dv(zy,)

with the expression for the partition function for the one-sided one-dimensional matrix subshift

n

ZzNO (A) = / Azl,zz e '.Aln717ln 'Azn,zl exp( Z(Awk OwlkJrlo‘ : 'owln)(2;1,...,In,))dy(‘r1) T dy(x")'
" k=1

given in Proposition 2.3.5. O

An immediate consequence of Theorem 3.2.5 is our following result which generalises both Theo-
rems 2.7.6 and 2.13.8 to matrix subshifts: For all Ising type interactions with distance function
de Dgp ) for some p < 0o a dynamical trace formula holds at least for almost all n € N.

Theorem 3.2.6. Let (24, F,N, Ny, 7) be a one-sided one-dimensional matriz subshift (1.2.8). Let ¢
be a two-body Ising type interaction (1.8.3) with potential ¢ € Cp(F) and distance function d € Dgp)
for some p < oo (2.7.1), say d(k) = (B* v|w)pey, and interaction matriz r € Cp(F x F) with
r(z,y) = Zf\il si(x) ti(y) with si, t; € Co(F). Let Ay be the standard observable (1.11.1). Then
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there exists an index ng € N depending on B such that for all n > ng the Ruelle-Mayer transfer
operator Mg : L?(F,dv)@F ((?°N)YM) — L2(F,dv)2F (((2N)M),

(Mﬁf)(z;zla--sz>:/FAozeXp(ﬂq +ﬂZSz Zz|w) flosti(o)v+Ber, ...t (0)v+Ben) dv(o)

satisfies the dynamical trace formula Zb"° (BAwg)) = Z?IO ¢n}(ﬁ) = det(1 — B")M trace (Mg)".

.....

In particular, if ¢ is a two-body Ising interaction (1.8.3), then for all n > n{, the Ruelle-Mayer transfer
operator Mg : L*(F, dv)® F((?N) — L%(F,dv)®F ((*N),

(Maf)@2) = [ oo exp(alo) + fo(clu)) floov+B ) dv(o)

satisfies the dynamical trace formula ZZNU (BA) = 70 n} (8) = det(1 — B™) trace (Mg)™.

{1,..
Proof. By the superposition principle it suffices to prove the Ising case. In order to apply Theo-
rem 3.2.5 we have to show that [, ||M57(z))|\‘292m) dv(z) < oo, where Mg (,) = 1@ IC:W oo.B in

the notation of Corollary B.4.4. We have

) eXp(QRe(ﬂq(x)) + )| Ezw|)? + w((1 — BB L (BLzw + 2v)|BEaw + xv})
1257 0 152 e2m) = det(1 — BB*) '

Since F' C C is bounded by assumption, the function F — R, x — ||K5= 2wy 18 bounded,

ZzTw,TV IBHS2 F(
hence v-integrable. |

To emphasise the importance of the previous theorem we refer to Example 2.7.7 which gives a list
of the classes of distance functions belonging to Dgp ) defined in (2.7.1). The class of Ising type
interactions, introduced in (1.8.3) and discussed in Section 2.13, contains many physically relevant
interaction matrices such as Stanley’s vector models (see Example 1.8.4) and the finite state Potts
model.

The following corollary concerns the non-interacting case § = 0. The transfer operator is given as
(the transpose of) the transition matrix interpreted as an integral operator on L?(F,dv). This was
known for the special case of a finite alphabet F'.

Corollary 3.2.7. Let (24, F,N,Ny, 7) be a one-sided one-dimensional matriz subshift (1.2.8) and v
a finite measure on F'. Then for n > 2 the integral operator

Ga : L*(F,dv) — L*(F,dv), (Gaf)(z) = / Aoy fo)dv(o)
F
associated to the transition matriz A satisfies the dynamical trace formula
b : n n
z2(0) = ZfL oy = V(o (Fix(r™ : Qu — Q4))) = trace (Ga)".

Proof. The operator G, is obviously Hilbert-Schmidt and can be seen as T in Lemma 3.3.1 where all
the operators S, = id : C — C are trivial. The trace of its iterates is given by Lemma 3.3.1 and 3.3.3
and coincides with the (dynamical) partition function given in Proposition 1.11.3. Setting 5 = 0 in
Remark 1.7.2 which together with Proposition 1.3.14 concludes the proof. [l

We end this section with the Ruelle-Mayer transfer operator for the special case of a finite alphabet.

Remark 3.2.8. Let F' = {1,..., K} be a finite alphabet and (4, F,N,Np,7) be a one-sided one-
dimensional matrix subshift (1.2.8). Let ¢ be a two-body Ising type interaction (1.8.3) with potential

¢ : F — C and distance function d € D for some p < oo (2.7.1), say d(k) = (B*v|w)ey, and
interaction matrix r € C**¥ with r(z,y) = vail si(x) ti(y) with s;, t; : FF — C. Then the Hilbert
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space L2(F,dv)@F (((2N)M) on which the Ruelle-Mayer transfer operator acts can be identified with
F(((?N)YM)E and the operator can be written in compenents (I = 1,..., K)

(Mg(fl, .. .,fK)(Zl, . 7ZM))Z

M
fZAkl exp(ﬂq Z k) (z;|lw) ) fe(t1(B)v + Bz, ..., ta(k)v + Bzy).

We introduce the projections pr, : F(((?N)M)E — F((¢(2N)M) onto the I-th component. Hence in
short notation the transfer operator is characterised by

K M
pr;o Mg = ZA“ ePar ® Lgs; (kyw,t; (k)yv,B © Pl
k=1 j=1

where for any a, b € 2N and B : /2N — (2N the composition operator L, s : F(¢’N) — F(£*N) acts
via (Lappf)(2) = e f(b+ Bz). O

3.3 Tensor products

In this section we give a proof of Lemma 3.3.1 which we used in the previous section to prove the
dynamical trace formula for the Ruelle-Mayer transfer operator associated to a matrix subshift. For
this we need a small excursus on a special type of operators defined on tensor products of Hilbert
spaces and their trace formulas. Namely, given a family (S, ).cr of operators on a Hilbert space H
and a measurable function g : F' x F — C, we define

@m®hM®?/ﬁm®ﬁW&ﬁww

F

on L2(F,dv)&H. For the dynamical trace formula one puts g(z,y) = A, ,, where A is the transition
matrix. In our result 3.3.1 we give an explicit formula for the Hilbert-Schmidt norm of the operator
T. We did not succeed to show that it is trace class which seems to be quite likely. We comment
briefly on the occurring problems and cite some known results. We also investigate the behaviour of
this kind of operators under unitary isomorphisms in the H-variable which we will later apply in order
to compute the Bargmann conjugate of the Ruelle-Mayer transfer operator.

First we give a formula for the iterates of T. A simple induction argument shows that

(fn(f1®f2))(o—):/ng(xth)---g(xnfl;zn) (xn,0) fi(21) Sz, 0...08, fadv(xy)...dv(xy,).

In fact,

TT"(hr o 2)(0) = [ gle,0)S,((T"(h @ 12)(@)) dvlz)

F

= /Fg(x, o) Sy an(ZEl,.Tg) e g(Tp—1,70) g(@n, x) (Sz, 0 ... 0 Sy f2) f1(z1) dv™ (21, . . ., T) dv(2)
= /Fnﬂg(xl, 22) .. g(Tn—1,2n) g(Tn,x) g(x,0) Sz (Sy, ... 08z, f2) fr(x1) dv(z1) ... dv(z,) dv(z).
If T is trace class, then one is tempted to think that
(75) trace T" = / g(x1,22) ... g(Xpn—1,2n) g(xn, x1) trace (Sy, 0...0 8, )dv(zy)...dv(zy,)

for all n € N. This formula holds trivially if F' is a finite set by the linearity of the trace, an idea which
has been used for instance in [May91]. We will now extend this idea to arbitrary F. We can prove
the following slightly weaker result which shows that the desired trace formula holds one step later. If
one applies this lemma in the transfer operator setting in order to prove the meromorphic extension
of the zeta function, then this result is sufficient. We add a comment to the trace class situation after
the proof.
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We note that our strategy is quite different from the proof of Theorem A.7.6 which we used for
the dynamical trace formula for the full shift. There we have written the Ruelle-Mayer operator as
an integral over a family of trace class operators, T'f = | 7 Sefdv(x) and showed that trace T' =
[ trace Sy dv(z). In the matrix subshift setting one should think of the operators S, as integral
operators on some L?(Z), say (S.f)(2) = [, se(z,w) f(w) dw. Then write

T1)02) = [ 9ta.0) (S, 5w NG v = [ [ a0y so(ew) flaw) dw v

and investigate the integral kernel (o, z;z,w) = g(x,0) $5 (2, w) of T. This idea yields:

Lemma 3.3.1. Let (F,v) be a measure space, g : F' x F — C a measurable function, and (Sz)zer a
measurable family of operators on a separable Hilbert space H. The formula

(76) (T, f2))(0) = / 9(2,0) f1(2) o fo dv(x)

F

defines a Hilbert-Schmidt operator T : L*(F,dv)@H — L2(F,dv)&H if and only if

(77) /F/F lg(x, o) dv(o) HSr”%Z(H) dv(z) < 0.

In this case T satisfies

ITUS, (22 (pavyor) Z/F/F|9($a0)|2 dv(0) |21, (3¢ dv ()
and

n—1
trace T" = / ( H g($j7$j+l)) g(zp, z1) trace (Sy, ©...0 8y, )dv"(z1,...,xp)
FTIr .
j=1

for all m > 2. Moreover, for these n we have

n—1
n 2 n
112, Lemanor = /F / [(TT 965 2541)) 9@, ) 182,0- 080, [,y V™ (@1, 00) ().
n ]:1

Proof. Suppose first that (76) defines a Hilbert-Schmidt operator. Fix orthonormal bases (&;);en,
(fj)jen for L?(F,dv) and H, respectively. Then, by Parseval’s identity, one has

1712 e ranary = O I1T(e® £
ij=1

oo

_ Z ‘<T(€i®fj>|ek®fl>‘2

1,5,k 1=1

- 3| [ [ stworee) (So5; | ) avie) e (o)

44,k l=1

— Ni:l/F/F’g(z,J) <szfj|fl>\2dy(z)dy(g)

2

= /F/F lg(z,0)|? Niil ‘ <Szfj | fz> ‘le/(:c) dv(o)

- /F /F 192, 0)? dv(0) 11213, 0 dv ().

Conversely, if (77) holds, we reverse this calculation and conclude that not only the integral (76)
converges for almost all o, but also that it defines a Hilbert-Schmidt operator on L%(F, dv)&H.
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Now assume that T is Hilbert-Schmidt. Then for n > 2 the operator T™ is trace class. By the first
part of the proof the S, are Hilbert-Schmidt (for almost all z;), hence the compositions S;,, o...0S5;,
are trace class. Now the trace of T™ can be calculated as follows

trace T" = Z <Tn(61 ®f]) | e; X f]>
ij=1
= > [ [ st gl o) x
ij=17F "

X <an 0...084 f; | fj> ei(x1) dv™(z1, ..., xn) ei(0) dv(o)

= Z/F/ng(:vl,m)---g(wn—lawn)g(fﬂnaa) X

X trace (S, 0...08, ) ei(x1)dv™ (a1, ..., x,) e;(0) dv(o).

We claim that trace T™ can be rewritten as Zfil <gnei | ei> = trace G,, with

n—1

(Gnf)(o) = /n ( H g(xj,xj+1)) g(xn,0)trace (Sy, o...08,) f(x1)dv™(z1,...,2n).

j=1

Note that (by Fourier expansion and induction)

o'} n—1
trace (Spo...081) = > (T] (Sihi, [hisss) ) (Subi, [ B
iyeein=1  j=1

for any orthonormal basis (h;);en for H and Hilbert-Schmidt operators S; on H. Setting

(Giif)(0) = /F o(,0) (Sehi | hy) f(z) dv(z)

for i, 7 € N, we can rewrite G,, as

n—1

@) = [ (TLotwsaen)) alemo)

j=1

01,0 0in=1j=1

The identity
(78) > Gz (rary) = D /F2 lg(z, y)[* | (Schi | hy) |7 dv(z) dv(y)

i,i=1 i,5=1

[ ol 3 1(Sahi 1) dvle) o)

ij=1

= [ ole )P 18:13,00 dv(@) dvly)

implies that the G; ; are Hilbert-Schmidt operators on L?(F, dv). Therefore, for each (i1, ...,i,) € N"
the integral operator G;, ;; © Gi,, i, ©...0G;, 4, is trace class and by [Ka66, Ex. X. 1.18] its trace
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can be obtained by integrating the integral kernel along the diagonal. If G, is trace class, we have

oo

trace G, = Z trace (Gi,, iy ©Gi, 1,in © -+ 9Giy i)

i1,eyin=1

n—1
= / ( H g(xj,xj+1)) g(Xp, x1) trace (Sz, 0...08, ) dv" (x1,...,2p)
Fno N

= trace T™.

Thus, to prove the claim it suffices to show that 337, _ G;, i,0...0G;, ;, converges in Sy (L*(F,dv)).
Using the technical Lemma 3.3.2 below, we obtain the estimate

||g7l||$1 (LZ(F,dV)) < Z H Hgij’ij*lHSg(LZ(F,dll))

i1yeemyin=1j=1

%) n/2
< (X il )

4,j=1

([ ]l 1.1, 00 dvto) i)

which proves the claim. To conclude the proof of the lemma one verifies the formula for Hilbert-
Schmidt norm of T™ for n > 2, which can be done similarly as in the case n = 1. O

If v is a finite measure on F, g : F? — C is bounded, and [}, [|S[|5, (3, dv(x) is finite, Lemma 3.3.1
shows that the associated operator T is Hilbert-Schmidst.

Lemma 3.3.2. Letn > 2 and suppose that the functions aj, : NxN — C satisfy 2?3:1 lak (i, 4)]? < oo
fork=1,....n. Then

> TTastiminn)| < TT (D lon.0)P)
Tl yeens in=1k=1 k=1 1,5=1

using the convention that in41 = 1.

Proof. We proceed by induction. The case n = 2 follows from the estimate

— . . N A L A VL
| Y wliniaatizi)] < S (D latn)l) (3 leatia i)
ir,iz=1 i1=1 ig=1 in=1

2 o) 1/2
< (3 latil)
k=1 i,j=1
To do the induction step consider ay (i, ) :== > _; |an(i,m) ant1(m, j)|. Then
o0 o0 oo 2
S )l = 3 (3 lantim)anaim. )
ij=1 ij=1 m=1
oo oo
< (X lanGiml?) (X lansamg)P),
i,m=1 m,j=1
and induction yields
oo n+1 o) n—1
’ Z Hak(ik,ikﬂ)‘ < Z ’Hak(ik,ikﬂ)’@n(in,h)
i1 yeins1=1 k=1 i yenin=1 k=1
n—1 oo 1/2 oo 1/2
< T eG) ™ (X lanti i)
k=1 ij=1 ij=1
n+1 e8] 1/2
< TT(C latii)P)
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O

The following remark concerns the question whether the last lemma can be adapted to a trace class
setting and discusses trace formulas for integral operators.

Remark 3.3.3. Let v be a finite measure on F and g : F' X F' — C a bounded measurable function.
Assume that (S, ).er is a measurable family of trace class operators on H with [} [|Se||s, #) dv(z) <

0o. One expects that the operator T (76) is trace class and satisfies the trace formula. But one
encounters the following problem which arises from taking the trace on L?(F,dv): Recall, that if
K : L*(F,dv) — K : L*(F,dv), (Kf)(z) = [, k( y)dv(y) is a trace class integral operator,
then the manifest trace formula

(79) trace K = /Fk(x,x) dv(z),

only holds under additional assumptions, say continuity of the kernel [GoGoKr00, Thm. 8.1]. The
reason for this is that the diagonal in F' x F' is a set of measure zero, hence the kernel can be changed
arbitrarily without influence on K, but with influence on the value of the trace integral. A limitation to
continuous transition functions is not appropriate, since continuity forces the function to be constant
on connected components. Formula (79) holds if one finds a (regularised) representant of the kernel.
We present some ideas in this direction: In [K66, Ex. X. 1.18] appears the following: Since every
trace class operator K € S1(H) has a representation as a product K = AB of two Hilbert-Schmidt
operators A, B € S2(H), the formula

trace K = A|B* :Z Aen|B en

for an arbitrary Hilbert basis (e,)nen is an equivalent definition for the trace of K. If K, A, B
happen to be integral operators with integrals denoted by k, a, and b € L?(F?, dv?) respectively, then
by polarising the well-known formula (see for instance [We00])

IKNS, 2 (many) = kN2 (2 002y = /F/F|’€($7y)|2 dv(x) dv(y)

one obtains
trace K:/ / a(x, 2) b(z,z) dv(z) dv(z).
FJF
In other words,

k(z,y) = /Fa(x,z) b(z,y) dv(z)

defines a representant of k which fulfills formula (79). Another technique is Stekov’s smoothing
operator S, see for instance [GoGoKr00, p. 75]. One has also to mention the works of C. Brislawn
[Br91] using the Hardy-Littlewood maximal operator. A more subtle problem is to find conditions
on the integral kernel which guarantee that the corresponding integral operator is trace class. We
mention that there is a well-developed theory for non-negative Hermitian operators For instance, if

v is a finite measure on F and K : L*(F,dv) — K : L*(F,dv), (K f)(z) = [ k( y) dv(y) is an
integral operator with a non-negative Hermitian bounded kernel, then K is trace class [GoGoKr00,
Cor. V. 8.5]. O

The following proposition will be used for the computation of the Bargmann conjugate of the Ruelle-
Mayer transfer operator in Chapter 5. Concerning the vector-valued integration we refer to Ap-
pendix A.7.

Proposition 3.3.4. Let (L,)ycy be an integrable family of bounded operators on a separable Hilbert
space Hy, i.e., [y [|Lylldy < co. Let Lf = [, Lyfdy : H1 — Hy be the bounded operator defined by
Prop. A.7.3. Let A € L*(F?,dv?). Let B : Hay — H1 be an isomorphism of Hilbert spaces and denote
by Ty := B loL,oB:Hy— Ho. We define the operators L: L?(F,dv)&H, — L*(F,dv)®H; via

E(f1® f2))(y) = /F By f1(2) Lo fo d(z)
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and B : L*(F,dv)&Ha — L*(F,dv)&H, via B(f1® f2) := f1®(Bfa). Then B~'oLoB = S Tw dv(2)
and T := B~ o Lo B : L*(F,dv)®Hs — L*(F,dv)&Hs acts via

(Tg)(y) = /F Ay Tog(e) du(z).

Proof. For all f, g € H; one has
(£F|9) :L<fo|g>ﬁl de/Y<TIB*1f|Bflg>H2 de = (TB-1f| BYg), |

hence B~' o Lo B = [, T, dv(z). For all fi, g1 € H1 f2, g2 € H2
<E(f1 ® f2) | g1 g2>L2(F,du)®H1 = / / Az y fi() <Lﬂcf2 | 92>H1 dz g1(y) dy
- / / By Fi(2) (ToB fo | B-'ga),, degi(y)dy

= (fl®f2 |B gl ®92)>L2(F7dl/)®H2,
which shows the second assertion. O

Remark 3.3.5. One way of thinking of L?(F, dv)&H is the so called constant field f;? Hdv(o) over F
which is a very special direct integral of Hilbert spaces. See for instance [Ne00, A II] for the definition
and basic properties of the direct integral f ;? H. dv(o) of Hilbert spaces H,. In our case the fibers
‘H, are constant, but for future transfer operators a non-constant direct integral could be useful. In
particular we have in mind the formal Ruelle-Mayer transfer operator from Def. 3.2.2

(B1)(2,2) 1= [ Ao expla(2)) F0,00()) (o)
F

which has been defined formally on L'(F,dv)® Cy(E). If the nature of A, and 1, depends on the

parameter o € F' drastically, then a direct integral might be an appropriate choice when looking for

a Hilbert space where the operator M acts on. O

3.4 Hard rods model

In this section we introduce a new approach to the so called hard rod model. This will enable us to
use the methods from the previous sections of this chapter to find a Ruelle-Mayer transfer operator
which satisfies a dynamical trace formula as we will show in Section 3.5.

The lattice spin systems as introduced in (1.2.7) consists of a fixed discrete lattice L, where on each
lattice point ¢ € L a spin value £(i) € F is attached. We have a semigroup action on the lattice
inducing an action on the configuration space, see (1.2.3). This allows the spins to “move” on the
(discrete) lattice.

Continuous models allow the spins to move in a non-discrete set. An important example of a continuous
model is the one-dimensional hard rod model which models the situation of one-dimensional particles
(the rods) with a finite positive length moving on the real line. The rods are solid (hard), i.e., they
cannot intersect each other. This model has been firstly investigated by M. Kac, G. E. Uhlenbeck,
and P. C. Hemmer in their series of joint papers from 1963, [KaUhHeG63].

Our general notion of spin values (1.1.1) allows us to mimic this continuous model by a one-dimensional
lattice spin system. Think of an “initial configuration” or “zero temperature configuration” in which
the (left edge of the) i-th rod is at position ¢ € L (with . = N or Z), i. e., a uniform configuration.
As the temperature increases, the particles start to move a little bit around their initial positions.
Having this in mind we give the set ' C R of spin values the interpretation as the set of possible
movements. Mathematically, we will introduce a map which assigns to the spin value ¢; of the i-th
particle the real number p; = i + &; interpreted as the position of the i-th particle. Since the particles
shall not intersect each other, not all configurations are allowed. We use a matrix subshift to exclude
intersections.

In this section we will describe the hard rod model, in the next section we will construct a Ruelle-Mayer
type transfer operator for a specific choice of an interaction and prove that it satisfies a dynamical
trace formula.
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Example 3.4.1. (Hard rods model)

(i)

(i)

Let a > 0 be a constant which will be interpreted as the length of the hard rods. Let F C R be
an interval containing zero and I. = Z. The hard rod model or hard rod subshift is defined as the
two-sided one-dimensional matrix subshift (Qa,, F,Z,Z,7) (1.2.8), with the transition matrix

) |1, fy+l—z>a,
Ba i FXF = {01}, (@,y) = Aa(z,9) = { 0, otherwise
and the usual shift action 7 : Z x Qp, — Q4, (1.2.5). Similarly, one defines the one-sided hard
rod model (Qf ,F,N,Ng,77) to be the one-sided matrix subshift (1.2.8) with this transition
matrix.

With a configuration (£;);ez € FZ we associate via the injective map
(80) p: F? = R”, (&)icz = (Noiez := (i + &)iez

the (which we call) absolute position vector (X\;)icz € RZ. The configuration n° € FZ defined
via n%(i) = 0 for all i € Z corresponds to an “initial configuration” in which the (left edge of
the) i-th rod is at position 4. Interprete &; as the motion of the i-th rod relative to its base point
i, such that A\; = & + i is the absolute position of the (left edge of the) i-th rod.

The classical hard rod model allows the particles to move freely, which corresponds in our mod-
elling to the choice F' = R. Hence we have translated a continuous spin into a discrete model at
the (mathematical) “cost” of an unbounded set of spin values.

Let L=17, 6 <0< d2, F :=[01,62] and 0 < a < 1 be the length of the hard rods. We call
the lattice spin system (Qa,, F,Z,Z,7) with this data a mock hard rod model. We will take F’
quite large to imitate the classical hard rod situation. This allows the i-th rod to move in the
compact set F'+ i so that the methods for discrete lattice systems with values in a compact set
can be applied. O

Proposition 3.4.2 and the following remark will deepen the understanding of the absolute position
map p: FZ — RZ, (&)icz — (Ni)iez := (i + & )iez, which we introduced in 3.4.1 (ii).

Proposition 3.4.2. Let (4, F,Z,7Z,7) be a hard rod subshift (3.4.1) with hard rod length a > 0 and
position map p: FZ — R% (80). Then:

(i)

(i)
(iif)

Let &€ € FZ, then & belongs to Qu, iff p(&) € Py: , where Py, C RZ s configuration space of the
matriz subshift with alphabet F' = R and transition matriz

1, ify—x>a

s ’ 1 _
Aa X — {05 1}7 (1',y) = Aa(z,y) o { 0, otherwise.

Let £ € Qy, andi €N, then & > & + (i —1)(a —1).

If a > 1 and F is bounded from above, then Qy, =

A configuration

L4 ® ® -
is interpreted as pertubing the initial position

into the absolute position

L1l 2] [3]

Figure 10: The hard rod model: Configurations and absolute positions.
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Proof. For the first assertion observe that £ € Qa, by definition iff A,(;+1,&) =1 Vi, i.e., iff
i —&G+l=i+14+&nm —i—&=(+1+&§n) - (+&) >aq,

i.e. iff p(§) € Py,. The second assertion is easily done by induction: Let £ € Qa,, then & > & and
Cir1>2(a—1)+& > (a—1)+& + (i —1(a—1))& +i(a—1). The third is an immediate consequence
of the second. |

The first assertion of Proposition 3.4.2 can be interpreted in such a way that the (¢4 1)-th rod and the
i-th rod do not intersect: Let § € €, then p(£) € Py, and hence by definition p(§)i+1 — p(§)i > a.
The i-th rod has its left edge at p(£);, its right edge at p(£); + a which is a position left to the left
edge of the (i + 1)-th rod at position p(£);+1. In our model the rods are not allowed to change their
ordering. If one wants to allow this, one would have to take in account some combinatorics.

The action 7 : Z x Z — Z as defined in Example 1.2.5 (6) induces via formula (7) Z-actions not only
on the configuration space FZ, but also on R%. Hence we can compare the actions on the configuration
spaces. It turns out that they almost commute.

Proposition 3.4.3. Let (Qy,, F,Z,Z,7) be a hard rod subshift (3.4.1) with hard rod length 0 < a < 1.
Let 71y be the shift on the configuration space FZ, T(2) the shift on RZ wvia formula (7), and p : F? — R?
be the position map as in (80). Then one has on FZ (and hence on Qy, )

T(Q)Op:pOT(1)+1.

Proof.
((12) o P)(§))i = (P(§))it1 = &ir1 +i+ 1= ((por))(§))i +1,

since ((p o 7(1))(€))i =i+ (7(1)(§))i = i+ &it1- O

We will now define a family of two-body interactions for the hard rod model. Having the inter-
pretation via the absolute position map p (80) in mind, we will define the hard rod interaction of
a subconfiguration (§;,¢;) € F {13} as a function which depends on the difference of the absolute
positions.

Definition 3.4.4. (Hard rods interaction) Let I be a subsemigroup of Z which acts by translation
on itself, F' C R an interval containing zero, and (2, F,Z,T', ) a lattice spin system (1.2.7). We will
study pure two-body interactions of the type

OA(r) = w2(i,5;6i,85) = —AG+ & —J — &)

where A = {7, 7} with i # j, &p = (&,&;), and A : R — R is some even function with a certain decay
at infinity which we will specify later. Such an interaction we call a hard rod two-body interaction with
distance function A. According to Remark 1.8.2 a hard rod interaction is translation invariant with
respect to the shift action. [l

We mention that one might consider the line Z as Z x {0} C R™ and spin values FF C R™. Then
one can model a system where particles are allowed to move in a tubular neighbourhood of the line
Z x {0} C R™. Then define a hard rod interaction via ¢2(7,; &, &) = —A(|li + & — j — &) for an
appropriate norm || - || : R” — R on R™ and a function A : R — R with certain decay.

We will now determine the hard rod interactions which are compatible with the periodic boundary
condition. The analogue of Proposition 1.9.6 for the hard rod interactions is the following:

Proposition 3.4.5. Let Z act by translation on itself, F C R be an interval containing zero, and
(Q, F,7Z,7,7) a lattice spin system (1.2.7). Let b* = (b/Z\)AeP(nZ) be the periodic boundary condi-
tion (1.8.9) associated to the family (nZ)nen of subsemigroups of Z. Let ¢ be a hard rod two-body
interaction

©a(i, §; i, &) = =A@+ & — 5 — &),

where A : R — R is even with sup_e(o,11>_,e7 [A(y + 2)| < 0o. Then the total energy UXZ’d) defined
in (1.6.4) converges absolutely, i. e., the boundary condition and the interaction are compatible.



116

Proof. By Proposition 1.9.3 it is sufficient to show (the last inequality of)

Yooty Loyl =Y |AG+a—y—1-y)|=> [Aly+z—y)| < sup > |A(y+2)| < oo

YEZ YEZ ~EZ z€[0,3] ~EZ

Here we made substitutions v/ =y +1—14, v/ = v+ [z — y], and possibly 4/ = —~v to ensure that z
can be chosen in the interval [0, 3]. O

Remark 3.4.6. The term sup.c(o 17>,z |A(y + 2)| in our sufficient condition in Proposition 3.4.5
can be bounded from above by

sup Z|A v+ 2z)| = sup Z(|A v+ 2) |+|A(7+1—z)|) <2 sup Z|A v+ 2),
z€]0, ]'yGZ z€ 1]7 0 z€[0, 1]k 0
which is twice the bound for the corresponding one-sided system. O

Similarly to Example 1.9.7 we get the following examples of hard rod interactions which satisfy the
summability condition from Proposition 3.4.5 and hence are compatible with the periodic boundary
condition.

Example 3.4.7. The following distance functions A : R — R satisfy the summability condition from
Proposition 3.4.5, i.e., sup.¢(o,11 >, ez [A(y + 2)| < o0

(i) Exponentially decaying interactions A(z) = A*l for 0 < |\ < 1.
(ii) Mock polynomially decaying interactions A(z) = (e + |z|)~* for Re(s) > 1,¢ > 0.
(iii) Logarithmic interaction A(z) = log(1 — eAl*l) for 0 < |¢|, |A| < 1.

In fact:

. oo P 2z 00 A
(i) For z € [0,1] we have Y52 o AR = M= 3202 ) AP = 25 < iy < o0

(ii) For z € [0, 1] we have

Z|e+|k+z| 5| = (e 4 z)"Rel®) JrZeJerrk Re(s)gefRe(s)+Zk7Re(s)<oo.
k=0 k=1 k=1

(iii) Using |log(1l — 2)| < —log(1 — |z]|) for |z]| < 1 we get

" l1og(1 — eX**%)| < = 3 log(1 — lef %) = ~1og ( [T (1 Iel ]AI"*9)),
h=0 k=0 k=0
which converges since ZZO:O INFH* < 0. 0

3.5 Transfer operators for the hard rod model

In this section we derive the Ruelle-Mayer transfer operator for the one-sided one-dimensional hard
rod model. By the previous Section 3.4 we have a representation of the hard rod model as a matrix
subshift which makes the methods from Section 3.3 available. We will exemplarily deal with the
polynomial-exponentially decaying hard rod interaction for which we can find a Ruelle-Mayer transfer
operator. This RM operator satisfies a dynamical trace formula as we will prove in Corollary 3.5.2.
Whereas for a mock hard rod model, i.e. the set F' of spin values is a bounded subset of R, the only
condition on the a priori measure v on F' is its finiteness, for unbounded F we have to require a strong
decay at infinity. We mention that in [MayVi77] there has been found a Ruelle-Mayer type transfer
operator for exponentially decaying interactions starting from a different approach. The proof of the
dynamical trace formula presented there is a long and technical computation, whereas our approach
will directly yield the desired formula.

Let a > 0 be a positive number interpreted as the length of the hard rods, F C R an interval
containing zero equipped with a finite Borel measure v, and (Q4,, F,N,Np, 7) a one-sided hard rod
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subshift (3.4.1). Let ¢ be a pure two-body hard rod interaction (3.4.4) with distance function A, i.e.,
¢ is of the form
da(én) = —A>+ & — 7= &), EA={i,j}, éa = (&, &),

where A : R — R is an even function. The standard hard rod observable is given as

(81) A(¢) :QAQ — R, f!—)ZA(fl—fl —l—i—l).
i=2

In order to make this well-defined, one needs certain decay estimates for the distance function A, see
for instance Proposition 3.4.6. Exemplarily We discuss the case of polynomial-exponentially decaying
interactions, i.e., A : R — C, z ~— Al#I 3" Yeilx)t, where 0 < A< 1,and ¢; € C (i =0,...,m—1).
In Proposition 3. 4 2 (ii) we showed that for all £ € Q,, and ¢ € N the estimate §; > & + (i —1)(a— 1)
holds true. Hence

§i+if§1—1>(ifl)(afl)wLifl:(i—l)a>0
For all 0 < € < 1 — A one can find ¢ > 0 such that ’/\\r\z o Yei ) ‘ <c(A+¢€)* for all z € R. This
implies

A (O] < DA+ 81 <03 (A4 0D < ox,
=2 i=2

i.e., Agg) : Qa, — C is bounded by a constant which does not depend on F'.

According to Proposition 3.1.2 we define the Ruelle transfer operator ZA(«») € End(L*(F,v)&x Cp(2))
associated to the observable A4y € Cyp(F) via

(g, ), ) = /F Aoz exp(Agy (0 V E)) (0,0 V E) di(o).

The following proposition is the key step for the construction of the Ruelle-Mayer transfer operator. It
states that 7 is a projection map leading to an (S1) - (S3) Ansatz 2.3.3 and thus provide a factorisation
of the Ruelle transfer operator which we need in order to construct the Ruelle-Mayer transfer operator.

Proposition 3.5.1. Let a > 0 be the length of the hard rods, F' C R an interval containing zero
equipped with a finite Borel measure v, and (Q4,, F,N,Ng, 7) a one-sided hard rod subshift (5. 4 Z) Let
@ be a two-body hard rod interaction (3 4.4) with distance function A : R — C, x> A=l 37 Ve |zl

where 0 < A<1landc; €C (i=0,...,m—1). Let
— (M0, 1) s 2 — R, ( : 'Ufjﬂ')
™= (T0, Tmo1) 1 2 R, £ ;(@ +7) o1
and ID)Q(Em) € Mat(m, m;R) be the lower triangular matriz defined via
= i<

pmy, = ® () .i<i,

(D5 { 0 , otherwise,
forx eRandi,j=0,...,m—1. Then n(c V&) = ((0 + 1)kA”+1)k . ) + )\ID)((Jm)ﬂ(E) and the

standard observable Ay : Q@ — R (81) can be expressed as*
AoV E) =177 (D" r(e) | ¢).

Proof. Note that ID)(()m) =B ¢ Mat(m,m;R) as defined in Remark 2.11.1. For all k =0,...,m —1
and o V & € )y, we compute

m(oVE) = (o4 1)L (g 4+ 1)FAGHH
j=1

(0 41) A“+1+AZ( )Z & + )N T
(o +1)FAH! 4 )\Z (];)m(g),

=0

29(~ | ) denotes the C-bilinear extension of the euclidean scalar product, i.e., (J: | y) =, % Ui
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which shows the first assertion. Concerning the second we note that

A(¢) (O’ V f)

\
3 <
ANk
O
A
Lo
+
.
\
3
%
oo
+
<.
|
Q

S 3DON (1) oyt as

o~

e £ Y S S
- Y ()( Ji~Fme(€) = A~ (DUr(e) | c).

O

According to Definition 3.2.2 we obtain the Ruelle-Mayer transfer operator M acting as a formal
operator on L2(F,dv)®, Cp(C™) via

(M) = [

FA“(‘Tv ) exp((z | )‘_U(D(IZ))TC)) f(o (o + 1)k)‘a+1)k:0

. )\B(m)z) dv(o)

where ]D)g(vm) € Mat(m, m;R) as defined in Proposition 3.5.1. Motivated by the results for Ising type
interactions we will study the spectral properties of the operator acting via this formula on the Hilbert

space L%(F,dv)® F(C™). We will show that this operator fulfills a dynamical trace formula provided
some conditions on the measure v on F' which we explain first.

As an abbreviation we set a, = BA-7(D"™)T¢ and b, = ((0+1)FX7t1), which are

=0,...,m—1’

continuous functions with respect to the parameter o € R. We set
(82) (Mo f)(2) = exp((zlac)) f(by + AB™2).

By Remark 2.6.4 the spectral radius pspec(B™) of B(™) is equal to max{|z| € spec(B™)} = 1.
We have [[(AB™)™|| < 1 for sufficiently large powers n and B(™) € S;(C™) trivially, hence by
Lemma B.3.10 the composition operator M, : F(CPT!) — F(C™) belongs to the Schatten class
Sn(F(C™)). We assume for a moment that [|AB(™)| < 1, hence M, is trace class (the general case
goes analogous to the proof of Theorem 2.7.6). By Corollary B.4.4 the Hilbert-Schmidt norm (A.2.2)
of My : F(C™) — F(C™) is equal to

exp (" | + | (1 — NBOD(BO)) =2 By + by)?)

2 _
(83) Mo |5, Fcmy) = det(1 — AZB0™) (B0 ))

By investigating the coefficients of a, and by, one confirms that ||b,| is bounded as ¢ — oo and of
order A7 as 0 — —oo. Similarly, ||as|| is bounded as ¢ — —oo and of order A\? as ¢ — oo. In other
word, the sum |la,|| + |bs|| is of order exp(|o log A|) as |o| — oo, and the Hilbert-Schmidt norm of
M, : F(C™) — F(C™) growths double-exponentially as |o] — oco.

Corollary 3.5.2. Let a > 0 be the length of the hard rods, FF C R an interval containing zero
equipped with a finite Borel measure v, and (Qa,, F,N,No, 7) be a one-sided hard rod subshift (3.4.1).
Suppose that | ||Mg||§2(f((cp+1)) dv(o) given by (83) above is finite. Let ¢ be a two-body hard rod
interaction (8.4.4) with distance function A : R — C, x s Ml 22161 i |z|', where 0 < X\ < 1 and

c; € C(i=0,...,m—1). Let Ay be the standard observable (81) and D™ e Mat(m,m;R) as
defined in Proposition 3.5.1. Then there exists an index ng € N depending on m and A such that for
all n > ng the Ruelle-Mayer transfer operator Mg : L*(F,dv)® F(C™) — L*(F,dv)® F(C™) acting
via

(M) )= [

F

Ay (o, x) exp (ﬁ( z| )\_”(ID)(:I,))TC)) flo, ((c+ 1)k)\‘7+1)k20 +)\Dém)z) dv(o)

yeeym—1

satisfies the dynamical trace formula ZﬁNU (BA@)) = Z?T?_’_‘f”} (8) = det(1 — A™)™ trace (M)
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Proof. Each of the operators M, : F(C™) — F(C™) introduced in (82) satisfies the Atiyah-Bott trace
formula (53). Then the assertion follows from Theorem 3.2.5 and the fact that det(1 — /\(Dém))”) =
det(1 — (AB™)™) = (1 — A™)™. O

We will now deal with a special case, namely with exponentially decaying hard rod interactions. Let
¢ be a two-body hard rod interaction (3.4.4) with distance function A : R — R, z +— Al*I where
0 < X < 1. In this situation our condition [, HMUH?SQ(HC)) dv(o) < oo on the a priori measure v can

be well analysed. The matrix DIV =BW =1¢ Mat(1,1;R) has operator norm equal to one and the
auxiliary operators M, : F(C) — F(C) simplify to

(Mo f)(2) = exp(BA772) FAAT + 2)).

By Corollary B.4.4 we can explicitly determine the Hilbert-Schmidt norm
) eXp(ﬂ.|ﬂ.715>\76|2 + 7T|(1 . /\2)71/2(7r716>\70 4 /\1+a)|2)
IMalls, ) = =2
exp(m (|8/72A727 + (1 = A2) 7B~ 1A= 4 ALT72))
1—X2 ’

which allows to determine the aflmissible sets F' C C and Borel measures vr on F' such that the
Ruelle-Mayer transfer operator Mg : L3(F, dv)® F(C) — L*(F,dv)® F(C),

(/\;lgf)(x,z) = /FAQ(U, x) eXp(ﬁ)\_‘Tz) flo, AN + 2))dv(o)

belongs to the Hilbert-Schmidt class. Corollary 3.5.2 immediately implies the following:

Corollary 3.5.3. Let a > 0 be the length of the hard rods, F' C R an interval containing zero equipped
with a finite Borel measure v, and (Qa,, F,N,No, 7) a one-sided hard rod subshift (3.4.1). Let ¢ be a
two-body hard rod interaction (3.4.4) with distance function A : R — R, z +— Nzl where 0 < X < 1.
Let Ay be the standard observable (81). If [ HMU|\?92(}-(C)) dv(a) is finite, then for all n € N5y the

Ruelle-Mayer transfer operator Mg : L*(F,dv)® F(C) — L*(F,dv)& F(C),

(/\;lgf)(x,z) = / Ay(o,x) eXp(ﬁ)\_‘Tz) flo, AN + 2))dv(o)

F

satisfies the dynamical trace formula Zb"° (BA@)) = Z?TO’¢H}(6) = det(1 — A") trace (Mp)". O

.....
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4 The Dynamical Zeta Function

In this chapter we study the properties of the partition function by using a method from number
theory. The dynamical zeta function (g has been introduced by Ruelle in [Ru76], [Ru76a], [Ru94],
[Ru02] and is defined as the generating function of the partition functions

o) = o 32400, 002
n=1

From its definition and a standard estimate on the partition functions it is appearend that (g is
a holomorphic function in a neighbourhood of zero with finite radius of convergence. Methods from
analytic number theory allow to relate analytic properties of zeta to average properties of the partition
function and hence yield information about the dynamical system. For this reasoning one needs the
existence of a meromorphic continuation of zeta beyond the first pole.
If the partition functions can be expressed via a dynamical trace formula of a transfer operator, then
we will show that (r has an Euler product and a meromorphic continuation to the entire complex
plane. This will be done using a representation of Ruelle’s zeta as a quotient of (regularised) Fredholm
determinants. Hence the zeros and poles of (g have a spectral interpretation, i.e., can be given in
terms of the eigenvalues of the transfer operator. We refer to Appendix A.1 and A.2 for the definition
and properties of regularised determinants.
In section 4.1 we define the dynamical zeta function and prove its meromorphic continuation in
the easiest case. Section 4.2 investigates a special class of generating functions, which contains the
dynamical zeta function in the case when a dynamical trace formula holds. To prove the meromorphic
continuation in the general case we will also need certain limits of sequences of generating functions.
This will be done in Section 4.3. These results will be applied in Section 4.4, where we show the
following result: Suppose the spin systems satisfies a dynamical trace formula of the form

Z???f.‘fﬂ} = det(1 — A™) trace G™
for all n > ng, where G is a transfer operator of class S,,(H) and A € S1(Ho) with pspec(A) < 1.
Then the dynamical zeta function has a meromorphic continuation to the entire plane and an Euler
product.

4.1 Basic properties

In this section we define the dynamical zeta function and discuss some of its basic properties. Then
we show that the dynamical zeta function can be represented in special cases via regularised Fredholm
determinants which have an Euler product and thus a meromorphic continuation to the entire complex
plane. This applies for the non-interacting case 8 = 0, finite range interactions, and superexponentially
decreasing Ising type interactions due to the dynamical trace formulae proved in Corollary 2.8.3 and
Proposition 2.9.3, respectively.

N,
Definition 4.1.1. Given the sequence (Z?lo'i?n})neN of partition functions (1.7.1) associated to a
one-sided one-dimensional shift, the dynamical zeta function or Ruelle zeta function is defined as

their generating function, i.e.

e = o 32402, %

n=1

where § € C is the complexification of the inverse temperature. For fixed 3 Ruelle’s zeta defines a
holomorphic function in a neighbourhood of z =0 € C (see Remark 4.1.2). O

A similar definition can be made by replacing the sequence of partition functions by the sequence
of dynamical partition functions ZﬁNU (A) (1.11.4) for an observable A. For the standard observable
BAg) (1.11.1) these two definitions coincide since Z??U‘bn}(ﬁ) = 70" (BA(4)) as we have shown in
Remark 1.11.5. We will drop the parameter 3 occasionally and write then (r(z).

In the following Remark 4.1.2 we show that zeta has a finite non-zero radius of convergence, give then
a physical interpretation of the first pole of zeta, and compute the zeta function in a trivial case.
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Remark 4.1.2. (Properties of (r)

(1)

(i)

(iii)

Let 8 € C. We use the representation of the partition function provided by Corollary 1.11.3

.....

Z?lo (ﬁ) ﬁA(¢) / Hsz,zHleXP(ﬁZA (T1(T )))dy (X1, .y Tn),

.....

(84) p(B) := lim ‘ZbNo’d) ‘_1/n_

Suppose the sequence of partition functions consists of positive numbers. This happens for
instance if the interaction and the parameter 3 are real. By a result of Pringsheim?®® a power
series whose coefficients are positive has its first pole at the intersection of the positive real line
and the boundary of the disk of convergence, i.e., precisely at p(3) (84). This quantity is related

to the free energy f = —% lim,, o0 = log Zf?o‘bn}(ﬁ) of the system via p(3) = exp(8 f). Recall
from Theorem 2.1.4 the definition and characterisation of the topological pressure P(A) of a
real-valued observable A as

P(A) = lim — log Zb " (A).

n—oo n

Hence using Definition 1.11.4 of the dynamical partition function ZblNO (A), the topological pres-
sure of the standard observable A4 satisfies p(3) = exp(—P(B8A(4))) = exp(Bf).

In Remark 1.7.2 and Corollary 3.2.7 we have seen that for the non-interacting case g = 0 we
have Z°(0) = Z?l Sy = Vg (Fix(77 2 Qa — Q4))), which measures the number of
closed orbits of with period length n with respect to the a priori measure v. In particular,
this quantity is independent of the specific interaction. The topological pressure of the zero
observable, h := P(0) = —log p(0), is called the entropy.

In particular, if the spin system is a one-sided one-dim. full shift (1.2.6), then Z?lo 0} (0) =
v(F)™. The entropy h is thus h = logv(F'). Using the definition of the dynamical zeta function
(4.1.1) and the power series representation of —log(1 — x), we obtain

1
- v(F)z’

Cr(20) = exp(( D v(F)" 2 ) = exp(~ log(1 — v(F)z) =

n=1

Hence, in this very simple case, the zeta function is rational. We will consider the zeta function
for the general non-interacting case in Remark 4.1.6. O

Unlike other kinds of zeta functions, as for instance Riemann’s, Selberg’s, or Artin’s zeta, our dynam-
ical zeta function is an exponential of a power series, hence itself a power series as the next remark
shows. By considering s — (r(e™*, 3) one obtains a function which is holomorphic in the right half

plane Re(s) > —log p(0).

[o o]
Remark 4.1.3. Lemma A.1.3 leads to an explicit power series expansion of zeta as (r(z Z —7
with coefficients ag = 1 and for n > 1 -
Z n—1 0 0 0
—Zs Z n—2 0 0
z DU
n = det .S . . . ?
(=) Zn_1 (—1)" 1 Zng (=1)" 2Z_s o1
(=)™ Z, (=1)"Zn1 (=) Zn_o ... —Zs 74
where Z,, := Zflo }(ﬁ) for abbreviation. O

30as cited in [May80a, p. 116], there reference to [La29].
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A natural question is to ask whether (g has a meromorphic continuation to a larger disk or even to
the entire complex plane. The following remark gives a partial answer. Since we know the first pole
of zeta implicitely, it can be separated. The remainder can again be written a generating function of
almost the same type.

Remark 4.1.4. We combine the previous considerations of Remark 4.1.2 with an argument appearing
in [PaPo90, p. 81] and obtain that for p(() as defined in (84) we have

cule) = o 35 EO ) (32 (21,0 - ) ) = 220

where 7( -, 8) is holomorphic in a neighbourhood of p(3). O

This splitting idea from Remark 4.1.4 now can be iterated, if the poles do not accumulate. For a
N,
special class of sequences (Zflo,iq,i)n})neN’ namely those for which a dynamical trace formula holds, we

will obtain a complete factorisation of the dynamical zeta function in terms of (regularised®') Fredholm
determinants. The following lemma is the key idea towards proving the meromorphic continuation of
the dynamical zeta functions for systems with exponentially decaying interactions. The case ng = 1
(i.e. G trace class) was observed by Moritz in [Mo89].

Lemma 4.1.5. Suppose there exists a transfer operator G € S,,(H) which satisfies the dynamical

trace formula Z??U_’.‘.bn} = trace G™ for all n > ng. Then

’nofl n

Cr(z) = exp( Z % Z?T?_’_fn}) dety,, (1 — 2G)™*

n=1
gives the meromorphic continuation of Ruelle’s zeta to the entire C — plane.

Proof. We write the dynamical zeta function as

x _n no—1 p e n —
z N z N z
Cr(z) = exp( E o Z?lf""fn}) = eXp( E g Z~l{)1,0.’.<.ﬁ,n}) (exp( — g . trace G"))
n—= n— n=no

Obviously the first factor is an entire function, so we have to analyse the second. For small |z| it is
given as the ng-regularised determinant by Lemma A.1.2 which has a meromorphic continuation to
the entire C-plane. |

When combining Lemmas A.1.4 and 4.1.5 we obtain an Euler product expansion of (g. Our first
application of the previous lemma is the general non-interacting case, i.e., 5 = 0.

Remark 4.1.6. Let (Q4, F,N,Np, 7) be a one-sided one-dimensional matrix subshift (1.2.8) and v a
finite measure on F'. Then by Corollary 3.2.7 the transfer operator

Ga : L*(F,dv) — L*(F,dv), (Gaf)(x) = / Ay flo)dv(o)

F

satisfies the dynamical trace formula Z??,U.’..O,n} (0) = v"™(pqa,....ny (Fix(1™ : Q4 — Q4))) = trace (Ga)"
for n > 2. Hence by Lemma 4.1.5

00

o _n eXp(zZ ’ )
_ pMo 0 z n _é
Cr(z,0) = exp(z Ziy ) eXp(Z ;trace gA) ~ deta(1 — 2Ga)’

n=2

O

As a consequence of Lemma 4.1.5 and Corollary 2.8.3 for finite range interactions and Proposition 2.9.3
for superexponentially decreasing distance functions we obtain the following result.

31Tn Appendix A.1 and A.2 we give an introduction to regularised determinants and their properties.
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Corollary 4.1.7. Let F C C be a bounded set and (FY,Ny,7) a one-sided one-dimensional full shift
(1.2.6). Let ¢ be a two-body Ising interaction (1.8.8) with distance function d and potential g € Cp(F).

(i) If d has finite range po, then the transfer operator
My F(©) = F(O), (Maf)() = [ exp(Ba(a) +52) faw! +38,02) dv(a)

defined in Corollary 2.8.3 satisfies (r(z,3) = det(1 —zMpg)~L.

(i) If there exists v > 0,0 > 1 and a : N — C such that limy_, a(k) exp(—e1 k) = 0 for all
€1, €2 > 0 and the distance function d : N — C is given as d(k) := a(k) exp(—yk°), then the
transfer operator

Mg : F(£?N) — F(?N), (Mpf)(z) = /Fexp(ﬂ q(o) + ﬂazl) f(o 9% 4 Sz) dv(o)

defined in Corollary 2.9.3 satisfies (r(z,3) = det(1 — zMpg)~L. O

As a side remark: The provisional Ruelle-Mayer transfer operator

M s F(E) — FE), (Maf)(z) = [ exp(Ba(o) +52) Fla v+ 82) dv(a)

F

for a finite-range interaction defined in (62) of Subs. 2.8 satisfies

po—1

Gl ) = exp( 22 2200 1 (5)) dety, (1~ 2Mg)

With the motivation of Lemma 4.1.5 we can now formulate the program of this chapter:

Remark 4.1.8. We suppose that there exists a transfer operator GG such that for all n > ny we have
the dynamical trace formula

Z?T0¢n} = det(1 — A") trace G-

In Chapter 2 we made a lot of effort to obtain such a situation. We will now benefit from this as
follows: We proceed as in the proof of Lemma 4.1.5 and write

0 n no—1 p 0o n
Cr(z) = exp( Z % Z?T0¢n}) = exp( OZ % Z?Tii?n}) exp( Z % det(1 — A™) trace G").

n= n= n=ngo

The first factor on the right hand side is an entire function, so we are left with second one. In the
following we will investigate under which conditions (g has a meromorphic continuation. The answer
needs some preparation which will be done in the following Section 4.2. Finally the result be proved
in Corollary 4.4.2. We would like to point out that this method only depends on the fact that a
dynamical trace formula holds. Hence this result can also be applied for the dynamical zeta function
associated to a sequence of dynamical partition functions. O

4.2 Generating functions

In order to implement the program formulated in Remark 4.1.8 we will investigate generating functions
of a special kind. In this section we will provide some first tools which will be further developed in
Section 4.3. In Proposition 4.2.4 we will prove that the dynamical zeta function has an Euler product
and a meromorphic continuation to the entire complex plane if the dynamical trace formula

N,
Z~l{)1,0.’.<.ﬁ,n} = det(1 — A™) trace G™
holds for all n > ng, where G € S,,,(H) and A is a matrix. A typical example for this situation is
the case of Ising type systems with polynomial-exponentially decaying distance function for which we
showed this trace formula in Corollary 2.11.2.

We will now introduce this class of generating functions and discuss some basic properties.
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Proposition 4.2.1. Let a = (an)nen be a sequence of complex numbers with r(a) := 17% #*
imy, oo an
0. ForueN, G e S,(H), z€C let

n

(85) gu(z,a,G) := exp( i % an trace G”)

be the generating function associated to a. Then gu(-,a,G) defines a holomorphic function on the ball
B(0;7(a)/||Glls.r))c = {z € C; |z| <7(a)/||G||s, (1)} with the properties: Let a, b € CV, then

(i) gulz,ca,G) = gu(z,a; G)¢ on B(0;r(a)/||G||s, ) for all c € C,
(i) gu(z,a+b,G) = gu(2,a,G) gu(z,b,G) on B(0;7(a)/[|Gl|s,20) N B(O0;7(0)/|Glls, (), and
(iii) gu(cz,a,G) = gu(z,b,G) on B(0;r(a)/(c||Gls,(n))), where by := " an, c € C*.
Proof. We recall that ||Alls, ) < [[Alls, ) for all A € S;(H) and p > q. Then by standard estimates

<3 Bl 1618, 00) < exp( 32 5 1618,

hence g, (z,a, G) converges in a neighbourhood of zero with the claimed radius of convergence. Prop-
erties (i) - (iii) now follow from standard arguments:

X _n
z
|gu(z,a,G)| < eXp‘ g = n trace G"
n=u

n

o n 0 n 0 S
z z z ¢
gu(z,ca,G) = exp( E . Can trace G”) = exp(c E ~ On trace G”) = exp( E - On trace G”) ,

hence g, (z,ca,G) = gu(z,a,G)°. Let a = (an)nen, b = (bn)nen, and |z| be small, then

X _n X _n X _n
z 2z z
gu(z,a+b,G) = exp( Z g (an + by) trace G”) = exp( Z —n trace G™ + Z g by, trace G")
n=u n=u n=u
n

= exp( i % a, trace G") exp( i % b, trace G”) = gu(z,0,Q) gu(2,b,G),

n=u n=u

and finally

gu(2,0,G) = eXp( i % c" ay, trace G”) = exp (c i (cz)” ay, trace G") = gu(cz,a,G).

O

The following proposition considers how the difference of two generating functions depends on their
coefficients. This will be used for the approximation of generating functions in Section 4.3.

Proposition 4.2.2. Let ¢ > 1 and p be the dual exponent of q defined by % + % =1. Let a, b € 9N,

u €N, and G € S,(H). Then for all |z| < min(r(a)/||G|s, 7, r(6)/|Glls. ), 1) one has the following
estimate for the difference of two generating functions (85)

|9u(2, @, G) = gu(2,b, G)|
< lla = bl | 0g(1 = G137 exp (1oL = G115, t)|'"* (lalln + lla = bllsr)).
Proof. Using e* —1 < xze® for z > 0, one gets
le® —e¥] = |e¥][e* Y — 1| < |eY] (elz—yl —) < |z -y elvl+lz—yl

With this preparation we conclude that

o0 o0 b
lgu(z,a,G) — gu(2,0,G)| = ‘exp Ik & trace G*) — exp -k ¥ trace GF ‘
(555 e ) oo 55 2 e o)
< ‘ Z ak k¥ trace Gk‘ exp(‘ Z =F o trace Gk‘)exp(‘ Z Jzzktrace GkD
k=
56) < Z(@Hzcugw) exp(z%nzcnzm) exp(z@wa”gm).
— k=1 k=1
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Hence an estimate for the inner series is needed. For any small ¢ > 0 and (dg)ken € ¢9N one has by
Holder’s inequality (% + % =1, hence p < o)

S Gl < (3 () (X er) ™ < (30 F) ™ Ml = log(1 =) o

k=1 k=1 k=1 k=1
This estimate together with (86) gives the assertion. O

In the applications we have in mind, the coefficients (a,)nen of the generating function g(-,a,G)
(85) have a special form. In this section we assume them to be special values of a fixed polynomial.
For those coefficients the generating function g,(-,a,G) (85) can be represented as a quotient of
u-regularised determinants.

Proposition 4.2.3. Let N € N, by,...,by, ¢ € C and oY) = (a%N))neN be defined via N =

Zszo b ™. Then for any u € N and G € S, (H) the generating function g,(-,a™N),G) (85) can be
written as

N
gul(z,a™), @) = H dety, (1 — zc"G)~b*.
k=1

Interpretation: Let f(z) = Zszo bi 2% € C[z], then ol = ().

Proof. This follows for small |z| from Proposition 4.2.1 and the calculation

gu(z, a(N) G) *gu Zbkc neN’ ng bkc neN’ ng c z,l,G

Then Lemma 4.1.5 concludes the proof. O

We are now ready to compute the generating function g,(-,a, @) whose coefficients a = (a,)en are
given as a, = det(1 — A™), where A is a fixed matrix. This follows immediately from Proposition 4.2.3
for an appropriate polynomial function.

Proposition 4.2.4. Let A € Mat(M, M;C) be a matriz with eigenvalues A1,..., Ay € C. Define
a:N—C,n+— a,:=det(l —A"), then for any u € N and G € S,,(H)

gu(z,a,G) = H dety, l—zH)\a" )WH.

ae{0,1}M

Proof. We expand the determinant in terms of the eigenvalues of A and apply Proposition 4.2.3 to

M M
an =det(1 - A" = JJa-an) = > (~pll(J]re)"
j=1 ae{0,1}M v=1

O

Proposition 4.2.4 performs the task of Remark 4.1.8 in the case where A is a matrix. We add a
corollary for a specific form of coefficients which arise for polynomial-exponentially decaying Ising or
Ising type interactions. In the first case the occurring M is linked to the degree of the polynomial, in
the second case M is the rank of the interaction matrix.

Corollary 4.2.5. Letu e N, G € S,(H), A€ C, M € N, and oM = (1 =AM for alln € N. Then

M
gu(z,aM @) = H dety (1 — 2\l G)(_l)‘a‘+1 = H det,, (1 — z)\kG)(’l)kH(NkI).
ac{0,1}M k=0

1
det, (1 — ZG(O))

det, (1 — 2\G)

(1) — ul T A
) gu(zaa aG) detu(l —ZG) .

In particular, g,(z,a”,G) =
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Proof. This is a direct consequence of the binomial formula ai") = (1—AmM = lecw:o (W) (=1)k\En
and Proposition 4.2.3. O

As an immediate consequence of Corollary 4.2.5 and Example 2.11.2 we obtain a representation of the
dynamical zeta function for polynomial-exponentially decaying Ising interactions.

Corollary 4.2.6. Let F C C be a bounded set and (F~,Ny, 7) a one-sided one-dimensional full shift
(1.2.6). Let ¢ be a two-body Ising intemction (1.8.3) with potential g € Co(F') and distance function
of the form d : N — C, d(k) := A*>°7_ ¢; k' for some 0 < |\ <1,¢; €C. Let Mg : F(CPH) —
]:((Cp-i-l)’

(Msf)(z) = /F exp(Ba(x) + Bz (2]c)) F(Ax 1+ AB®HD ) du(z)

be the Ruelle-Mayer transfer operator from Example 2.11.2. Then

p+1
Cr(z,8) = [ det(1 — 2XFMp) D)
k=0
gives a meromorphic continuation to the entire complex plane. 0

Propositions 4.2.3 and 4.2.4 and Corollary 4.2.5 show that for special coefficients a = (ap)nen the
generating function g,(-,a,G) (85) can be represented as a quotient of u-regularised determinants.
This motivates the following definition.

Remark 4.2.7. Let G € S, (H). We say that the generating function g,(-,a,G) (85) associated to
a is of rational type p, q if there exists polynomials p, ¢ € C[z] with p(0) = ¢(0) = 1 such that

dety p(2G)
gu(2,0,G) = dety, q(2G)”
If u = 1, then the Fredholm determinant is multiplicative: det((1+ A)(1+ B)) = det(1+ A) det(1+ B)

for all A, B € Si1(H). Hence
det p(2G)
det q(2G) = det? q (zG)

This is wrong if u > 1.

(i) Let alM) = (1 — XM then by Corollary 4.2.5 the generating function g,(-,a™) G) is of
rational type par, qu where

(41 L4

57 ()= [ (-2 gy = TTa - 2280,
k=0 o
since
M
Hdet e )( l)kﬂ(%[) _ Hk 0;k= 1(2)det — k@ (k)
Hk 03k=0 (2) detu (1 —22*G) (jlvcj)

,Efokl det, (1 — 2A2FF1@) (Qk 1)
L5 det (1 —22%kQ) )
k=0 €l

Examples: M = 0: po(z) = 1,q(2) = 1—2; M =1: pi(z) =1 =Xz, 1(2) = 1 — z;
2 go(2) = (1— 2)(1 - X22).

(ii) Euler product: For every polynomial p and compact operator G with eigenvalues (p, )nen, the
operator p(G) has eigenvalues (p(pin))nen. Let G € Sy,(H) and gu(-,a,G) be a generating
function of rational type p, g. Then by Lemma A.1.4 we have

0o u—1 (=1)*
_ detyp(zG) p(zin) exp( 401 S (p(zpn) = 1Y)
detuq(2G) 15 q(zpn) exp( 21 S (alzin) = 1)F)
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Hence g,( -, a, G) extends to a meromorphic function with poles of finite order. If one writes the
polynomial g as ¢(z) = Hij\il(l —¢;2), then the poles of g, are contained (not necessarily all such
points are poles because of possible cancellations) in the set {(png;) 'R €N, j=1,...,¢}.

(iii) In particular, if G is a trace class operator on H, then for every g (-, a, G) of rational type p, q,

we have N
N det(1— AizG) S
91(2,a,G) = det - (zG) Hﬁl et( ) 2 (24n).
q [T;=) det(1 —g;2G) ;54
(iv) Let

) = e 3 ), o =3

Suppose g(z,b) = %(z) for some polynomials p and q. Then for every G € S, (H) the operator
f(zG) =307 b2 2™ G™ belongs to Si(H) and the generating function g(-,b, G) satisfies

o Doy 2 _ Do o) (10 _
g9(z,b,G) = exp(; 2 trace G ) = exp trace (; - (2G) ) ) det exp f(2G) = det q(zG)
and hence is of rational type. |

We have seen a class of examples leading to generating functions of rational type 4.2.7. One may ask
which sequences a = (a,)nen lead to generating functions g( -, b, G) of rational type. A desired result
would be a result similar to [BoLa70, Lemmas 3, 4] which concerns the power series expansion of a
rational function. However, we did not succeed in that direction.

4.3 Limits of zeta functions

In the last section we have studied generating functions g,( -, a, G) (85) whose coeflicients a are special
values of a fixed polynomial. For applications this is a very restrictive requirement. Recall for instance
Theorem 2.4.6 and its application in Corollary 2.10.5 to Ising interactions with distance function of
class Dgl)’A (2.10.1). There we showed that the partition functions can be expressed via a dynamical
trace formula of the form

(B) = det(1 — diag(A\)") trace (Mpg)",

where Mg is the Ruelle-Mayer transfer operator defined in (66) and diag()\) : £2N — 2N is a trace
class operator. This motivates the investigation of the following situation: Let A be a fixed trace
class operator on a Hilbert space Hy with spectral radius pspec(A) < 1 (2.6.4) and let the coefficients
of the generating function be given as a,, = det(1 — A™). In Theorem 4.3.4 we will show that under
these assumptions the generating function g,(-,a,G) has a meromorphic continuation to the entire
complex plane and can be represented as an Euler product.

Before proving the meromorphic continuation we make sure that the generating function g,(-,a,G)
(85) is at least holomorphic in a neighbourhood of zero. In view of Proposition 4.2.2 we need the
following estimates on the coefficients (a,)nen-

Lemma 4.3.1. Let A € S,(Ho) with pspec(A) < 1 and G € S,(H). Let ng € N be such that
G" € §1(H), A™ € S$1(Ho) and ||[A™|| < 1 for all n > ng. Set a,, := det(1 — A™) for all n > ng. Then
gm(z,a,G) (85) converges for any m > ng at least for |z| < HG”Sm(H

Proof. By Proposition 4.2.1 we have to investigate the limit behaviour of |a, |~'/™ = | det(1—A™)|~1/"
as n — oo. We expand the determinants in terms of the eigenvalues and split the infinite product into
two parts which will be considered separately. Observe that all eigenvalues of A have modulus strictly
less than one by Remark 2.6.4. Choose ko € N such that 777, "[Ar[" < 1. Then using standard
arguments from the subject of infinite products one obtains for n > ng

ko—1 ko—1

ko—1 n = ko
H 11— )\Z|1/" < H (1+ |)\k|")1/" < (exp Z |)\k|") < eXp(g Z |)\k|"°) < exp(;),
k=1 k=1 k=1 k=1
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which tends to one as n — oco. The tail product can be estimated by

00 el e /n >
H 11— APV < H (1 + |\ < (eXp Z |)\k|")1 Sexp(% Z |)\k|"°);

k=ko k=ko k=ko k=ko

which also tends to one as n — oo. Hence

ko—1
lim sup |a,|"/™ < lim sup H |1 — A2 Y™ lim sup H I1— 7Y/ <1
and the generating function g.,( -, a, G) converges at least inside the stated disk. O

We want to investigate the generating function g,( -, a, G) whose coefficients a = (an)nen are given as
the Fredholm determinants a, := det(1 — A™) of a trace class operator A € S (Ho) with pspec(A) < 1
and where G € S, (H). We will approximate the generating function g,( -, a, G) via approximating its
coeflicients a%N) = det(1 — A%,), where Ay is an approximating finite rank operator. We will choose
AN :=pryoAopry where pry € End(Hy) is the orthogonal projection onto the space spanned by the
first N generalised eigenvectors of A. Hence M) = =det(l1 —A%) = Hévzl(l —A}). We now estimate

the differences a, — a%N) of the coefficients. In the forthcoming step, Lemma 4.3.3, we will consider

the associated generating functions and estimate their differences.

Lemma 4.3.2. Let A € Sy(Ho) with pspec(A) < 1 and eigenvalues (\j)jen. Let ng € N be such
that A™ € S1(Hp) and ||A™]] < 1 for all n > ng. Let pry € End(Ho) be the orthogonal projection
onto the space spanned by the first N (generalised) eigenvectors and Ay := pry o A o pry. Let

a, a™) : Ns,, — C be defined via a, = det(1 — A™) and ailV) = det(1 — A%). Then

(i) a and a™) belong to (N and ||a—a™ || < exp(2[|[A"( s, (o)) Z [Aj]"° — N—oo 0, and
J=N+1

(ii) For N sufficiently large one has (aN) — a) € 'N and |[a™) — al|piy — N 00 0.

Proof. Let (A;)ien be the eigenvalues of A. By assumption they all are in modulus smaller than one.
Hence for n > ng and all N € N we have the estimate

N N N

aVl =TT = < TTa+ 1) H (14" < exp( D [N1™) < exp([A™ s, (740))
Jj=1 j=1

Jj=1 J=1

by arguments similar to the proof of Lemma 4.3.1. Thus a/¥) and a belong to />°N. We expand the
determinants in terms of the eigenvalues and obtain the following identity

oo [eS) N
an —a = [ -2 H (1— A7) —( I a-»- ) [T -
Jj=1 Jj=1 j=N+1 j=1
Hence for all n > ng, N € N we can estimate the difference |a,, — a,(zN)| by
oo N
an—a™ = | TT @=xp-1) TT-x
J=N+1 j=1
o) N
< (e D0 ) = 1) exn(3 1)
J=N+1 j=1
< I en( D M) ep(D N7
J=N+1 J=N+1 j=1
<

Do Il exp(2) I\l
j=1

J=N+1
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which converges to zero as N — oo, showing part (i). Since by assumption A™ € S;(Ho) we can
choose a (sufficiently large) N such that 3°7% ) [A;|™ < 1. Summing up the previous estimates we
obtain - using the definition of the spectral radius (2.6.4) in the last step -

Y odan—al < >N N eplA s, 40))

n=ng n=ng j=N-+1

exp(2[A™ |s,100) D Y l”

<
j=N+1n=ng
. = gl
= exp(2[[A"|ls, (Ho)) Z _]|)\|
j=N+1 7

2||A™ >
< exp( || ||81(Ho)) Z |/\j|"°,
1= pspec(d) 57,
which tends to zero as N tends to infinity. o

The previous result will now imply that in a neighbourhood of zero the generating function g,,, (-, a, G)
can be approximated by the sequence of generating functions gm(-,a(M),G) under quite general
conditions. In particular, g, (-, a,G) is a holomorphic function near zero.

Lemma 4.3.3. Let A € Sy(Ho) with pspec(A) < 1 and G € Sy,(H). Let ng > u be such that
A" € §1(Hp) and ||A"|| < 1 for all n > ng. Let pry € End(Hg) be the orthogonal projection
onto the space spanned by the first N (generalised) eigenvectors and Ay := pry o A o pry. Let

a, a™) : Ns,, — C be defined via a, = det(1 — A™) and o) = det(1 — A%). Then the generating
functions defined in (85) converge

Nlim gm(z,a(N),G) = gm(z,a,G)

for any m > ng at least for |z| < ||GH§1(H).

Proof. By Proposition 4.2.2 for ||2G|[s,, (1) < r < 1 the difference of the generating functions can be
estimated by

|gm(z, a, G) - gm(z, a(N)a G)|
o — a® s [Tog(1 ~ [12G s, )| exp(108(1 = [12G 5, (allene + fla = a0

IN

< fla— a® en [10g(1 = )] exp(|10g(1 = )| (lalle=n + o = ™ =) ).

The latter tends to zero by Lemma 4.3.2. Hence g,,(z, a™) G converges to gm(z,a,G)as N — co. O

Now we are prepared to prove our main result of this section: The generating function is holomorphic
in a neighbourhood of zero by Lemma 4.3.3 and can be approximated by a sequence of generating
functions with polynomial coefficients. These have meromorphic continuations, and the sequence of
the meromorphic continuations converges locally uniformly in the entire C-plane.

Theorem 4.3.4. Let A € S1(Ho) be a trace class operator with pspec(A) <1 and ay = det(1 — A™).
Let (N\;)ien be the eigenvalues of A. Then for any G € S, (H)

gu(za,G) = Tim ] det,(1 - 22" @)V _ im0 [lae oy ara=1 9 detu(l = 227 &)

M—oco ac 01} limps— oo HaG{O,l}M:\MEO ) detu(l — 2\ G) )

where we set A% := H]uwzl X for a € {0,1}M. In particular, the generating function g.(-,a,Q)
extends to a meromorphic function on the entire C-plane.
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Proof. By Lemma 4.3.3 the generating function g, (-, a, @) (85) can be approximated by the sequence
(gu( S a) G)) Nen A neighbourhood of zero. For each N € N the generating function g, (z,a™, G)
has an Euler product. We now show that the limit g,(z, a, G) can be represented in the stated form.
Hence one has to show that the infinite product converges. For any ¢ € C with |¢| < 1 one has the
estimate

(109)
|dety(1-2qG)—1] < [[2qGlls, ) expleu (1+[24G||s,)") < 124Glls, (1) exp(eu (142G || s, (7)) ")-

Let M € N. Since |\;| < pspec(A) < 1, we can apply the previous estimate for each ¢, = Hﬁil A%v
and then sum up over all a € {0, 1}M:

M M
S faen (=22 6) —1] < explea (14 12Gls,00)") 12Glls.co Do TTIAI™

aef{0,1}M v=1 ac{0,1}M v=1
M
(88) = expleu (1+ 2G5, 10)") 12Glls, 00 [T+ X))
v=1

The last expression is bounded as M — oo, since

M 0o
[Ta+mnp< H L+ [A]) <exp ZIA ) < exp([[Alls, (r0)) < 00
v=1 v=1

v=1

due to the assumption that A is trace class. The boundedness ensures the existence of the following
infinite products

gu(z, a, G) = I\/}Enoo gu(za a(M), G)

. Otu ( 1)‘(“‘+1
Jim QE{OHI}M det,, (1 -z H AS
— lim [acqo137:jaj=1 (2) detu(l — ) ppyae)
M= [T,eq0,13M:al=0 (2) detu(l — 2 JrpYaye)
limar—oo [ae 0,133 o= 2) detu(l = 2T[0, Av G)
limar—oo [Tae (0,133 al=0 (2) detu (L = 2T, A G)

Moreover, this limit exists locally uniformly in z € C. Hence g,(-,a,G) is the locally uniform limit
of meromorphic functions and thus itself meromorphic. O

We note that our proof essentially depends on the fact that A is trace class. We did not succeed to
weaken that condition as we were able to do in the previous lemmas. For instance, look at the trivial
example G = v € C. Then the estimate (88) becomes |det(1 — z¢G) — 1] = |(1 — zqy) — 1| = |2¢7]

and
M
o et -z [ M@ =1 =1z D> HI/\IQ"*IZVIH1+I/\|

ac{0,1}M v=1 ac{0,1}M v=1

is bounded in the limit M — oo if and only if A is trace class. We think that our estimates are
optimal also in the general case. - As an immediate consequence of Lemma A.1.4 and Theorem 4.3.4
we obtain the location of the poles and zeros of the generating function g,( -, a, G):

Corollary 4.3.5. Let A € S1(Hy) be a trace class operator with pspec(A) < 1 with eigenvalues (A;)ien
and a,, := det(1 — A™). Then for any G € S, (H) with eigenvalues (u;)ien, the poles of the generating
function g, (-,a,G) (85) are contained in the set

Pyi= (J {Q%) " a € {0,1}Y, o] = 0(2), j € N}

MeN
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where A% = HII,V[:l Xev for o € {0,1}M; its zeros are contained in the set

Ny o= J{Q%) e e {0,1}Y, o] = 1(2), j € N}.
MeN
O

Note: Because of possible cancellations we cannot show that all elements of Py, IV, are poles or zeros
respectively. In a remark following Corollary 4.4.3 we will give an example.

4.4 Transfer operator method

With the preparation of the two previous sections we can now answer the question raised in Re-
mark 4.1.8, namely the properties of the dynamical zeta function (r as introduced in (4.1.1) in the
presence of a dynamical trace formula. In Section 2.4 we have found two types of dynamical trace
formulas. In the first case, Theorem 2.4.4, the partition function can be expressed via a family of
transfer operators. This will result in a product representation of Ruelle’s zeta, one factor for each
transfer operator. In the second case, Theorem 2.4.6, one has a dynamical trace formula of the type
Z?10’¢n} = det(l — A™)trace G™. We show that in both cases the dynamical zeta function has a
meromorphic continuation to the entire complex plane and a representation as an Euler product. The
zeros and poles of zeta have a spectral interpretation. This result is one of the main applications of
the transfer operator method.

The following result was observed by D. Mayer in the case ng = 1, n; < oo. It is designed for spin
systems for which one has a family of transfer operators as for instance in Theorem 2.4.4.

Corollary 4.4.1. Suppose there exists a family of transfer operators G*) € S, (HY)) (v =1,...,n;
with possibly n1 = oo0) such that for all n > ng we have the dynamical trace formula

N el
700 = Y (1) trace (GM))"
v=0

and Y01 |G| < oo. Then

no (H®))

Cr(z) = eXp(nUz:l 2 bNO ¢n}) H (detn0 (1- zG(”)))(

_qyvtt

gives the meromorphic continuation of Ruelle’s zeta (g (4.1.1) to the entire C-plane.

Proof. First we assume nq < co. In this case the condition I [|G¢ < oo is void. For

M, e

small z, i.e., for |z] < min{HG(V)Hgl (H®) |v=0,...,n1}, one calculates similarly to Lemma 4.1.5
no
o 2™ N
0 en
Cr(z) = eXP( Z ?1 "i’,n}) exp( Z Z —trace (GW) )
n=1 =m0 =0
no—1 o No ni 0o n
= eXp( Z _Zfl 7¢n}) eXp(Z(—l)V Z — trace (G(l/))n)
n seeey ”
n=ng =0 =
no—1 Z No Zn (_1),/
= eXp( Z — Z‘l{)l d)n}) H exp( Z Z_trace (G(u))n)
n=1 nemo

-1

= exp(tj;l % Z?To¢n}) ﬁ (detno(l - zG(”)))

(-1

By Lemma A.1.2 this is a finite product of meromorphic functions. We now turn the case n; = oo.
Let n € N. For each factor in the following product we apply the estimate (108) from A.2.6, hence

H |detn0(1 - ZG(U))| < H eXp(CnoHZG(U)HZ:O(H(V))) = eXp(cn0|z|"° Z HG(V)HZ:O(H(V)))a
v=0 v=0 v=0
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which is bounded by assumption as n — oco. Hence the infinite product

ﬁ (detno(l - zG(”)))

v=0

(-1t

converges absolutely and locally uniformly. The sequence |G| S (1) tends to zero as v — oo,
hence the minimum min{||G(”)H;1(H(U)) |v € Ng} > 0 exists, and thus zeta is holomorphic in a
neighbourhood of zero. |

Using Lemma A.1.4 the previous corollary gives an Euler product expansion of (g.
Our following corollary is an important result for systems for which Theorem 2.4.6 holds.

Corollary 4.4.2. Suppose there is a transfer operator G € Sy, (H) which satisfies the dynamical trace
formula

Zf??.’.‘fn} = det(1 — A™) trace G™

for all n > ng, where A € S1(Ho) is a trace class operator with pspec(A) < 1. Set a, := det(1 — A™)

and a = (ap)nen. Then
’nofl

Cr(2) = eXP( Z % Z?T(,)ﬁn}) Gno (2,0, G)

gives the meromorphic continuation of zeta (4.1.1) to the entire complex plane.

Proof. We write the dynamical zeta function as

o) n no—1 o0 n
z N z N z
Cr(z) = exp( E - Zfl?.’.‘fn}) = exp( E - Zfl?.’.‘fn}) exp( E o det(1 — A™) trace G").
n=1 n=1 n=no

Obviously the first factor on the right hand side is an entire function. The second one has a mero-
morphic continuation by Theorem 4.3.4 via an Euler product. O

As a direct consequence of Corollaries 4.3.5 and 4.4.2 we can locate the poles and zeros of the dynamical
zeta function. Recall, for (\;);en € CY and a € {0, 1} we set A\* := Hﬁil A%,

Corollary 4.4.3. Let A € S§1(Ho) be a trace class operator with pspec(A) < 1 and eigenvalues (A;)ien-
Suppose there exists a transfer operator G € Sy, (H) with eigenvalues (1;)ien such that for all n > ng

.....

function (4.1.1) are contained in the set Pe := Jyen{(A%u;) "' o € {0,1}M, |a| = 0(2) j € N}, its
zeros are contained in the set Ne =y en{(A%1;) 7' [ € {0, 1}, o] = 1(2) j € N}. O

As above, Cor. 4.3.5, we cannot prove that each point in the sets P, N¢ is indeed a pole (a zero,
respectively) because of possible cancellations. For example consider the situation of Remark 4.1.2:
If B = 0, then we know that (gr(z,0) = (1 — v(F)z)~! and hence almost all poles and zeros of the
dynamical zeta function cancel.

As an immediate consequence of Theorem 3.2.6, Corollary 2.10.5, Theorem 4.3.4, and Corollary 4.4.2
we obtain the following main result of this chapter. It contains the Corollaries 4.1.7 and 4.2.6 as
special cases.

Corollary 4.4.4. Let F C C be a bounded set and (Qa, F,N,Ng, ) be a one-sided one-dimensional

matriz subshift (1.2.8). Let ¢ be a two-body Ising interaction (1.8.83) with distance function d € Dgl)
(2.7.1), say d(k) = (B*"1v|w) ey, and potential q¢ € Cp(F). Denote by (\;)ien the eigenvalues of B.
Let Mg : L*(F,v)@F (0?N) — L*(F,v)@F (£2N),

(Maf)(w2) = [

; A, . exp (ﬂq(a) + ﬂa<z|w>) flo,ov+Bz)dv(o)

be the Ruelle-Mayer transfer operator defined in Theorem 3.2.6. Then there exists ng € N depending
on B such that the dynamical zeta function satisfies

’nofl

2"~ 0 . @ _1ylel+1
Crl(z0) =exp( Y = Z0°(BAw) Jim  J[  detny(1— 22" Mg) D",

n=1 046{0,1}]\/[

and the right hand side has an Euler product and a meromorphic continuation to C. O
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Analogously, by Theorem 3.2.6 the same result holds for Ising type interactions (say of rank M) when
replacing the sequence ) := (\;);en of eigenvalues of B : /2N — ¢2N by the sequence \,, of eigenvalues
of the M-fold direct sum By : ((2N)M — (¢2N)M of B. Obviously, Bys has the same eigenvalues as
B, but with the M-fold multiplicity. Note that if F' is finite, then every interaction matrix has finite
rank.

Corollaries 4.4.3 and 4.4.4 show that in order to understand the zeros and poles of Ruelle’s zeta one
has to investigate the spectrum of the Ruelle-Mayer transfer operator in detail. Whereas the spectrum
of a generalised composition operator is well-understood, the spectrum of the Ruelle-Mayer operator
is more difficult, since the operator is a sum (an integral) of composition operator which in general do
not commute. For a certain class of interactions we will do a step of preparation in the next chapter.
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5 The Extended Fock Oscillator semigroup and Kac-Gutzwiller
transfer operators

In Chapters 2 and 3 we have shown the following result: Let ' C C be a bounded set and (Q =
FN Ny, 7) a one-sided one-dimensional full shift (1.2.6). Let ¢ be a two-body Ising interaction (1.8.3)
with potential ¢ € Cp(F) and distance function given as d(k) = (A*~1v|w) for some A € Mat(n, n;C)
with ||A|| < 1, v, w € C". Such a distance function belongs to the class Dgl) (2.7.1). There are
two types of such distance functions (and the superposition of the two): Either d has finite range
(Subs. 2.8) or it is polynomial-exponentially decaying. By the latter we mean a distance function
d: N — C given as d(k) := \* Z?;(} c; k' for some fixed n € N, ¢;, A € C with 0 < |\| < 1. By
Theorem 2.7.6 the Ruelle-Mayer transfer operator

Mg - F(C") — F(C"), (Maf)(Z):/FeXp(ﬂtz(U)Jrﬂﬂ(ZIW)) flov+Az)dv(o)

satisfies the dynamical trace formula Z‘;NO (BA@)) = Z??U‘bn} (8) = det(1 — A™) trace (Mg)™ for all
n € N and Theorem 3.2.6 gives the analogue result for matrix subshifts.

There is a completely different type of transfer operators for Ising spin systems with exponentially
decaying distance function, which is due to M. Gutzwiller [Gu82] building upon results of M. Kac
[Ka66]. This integral operator satisfies the same dynamical trace formula as the Ruelle-Mayer operator
for the same system. In [HiMay02] and [HiMay04] it was shown a correspondence which implies that
the spectra of the both operators coincide, without proving that the operators are conjugate. The
argument of J. Hilgert and D. Mayer uses the fact that there is a unitary isomorphism B : L?(R") —
F(C™), called the Bargmann transform. By conjugating the Ruelle-Mayer operator with the Bargmann
transform they obtained an operator which is closely related to the original Kac-Gutzwiller operator.
In this chapter we want to understand this correspondence better in the hope that this may lead to
new classes of transfer operators for spin systems. Another application of this chapter arises from
the fact that the spectral properties of the Ruelle-Mayer transfer operator can better be analysed via
the corresponding Kac-Gutzwiller transfer operator and hence opens up the possibility to study zero
statistics of the dynamical zeta function.

We use our results of the preceding chapters and define a Kac-Gutzwiller transfer operator to be a
Bargmann conjugate of a Ruelle-Mayer transfer operator, i.e., B~'oMgo B acting on L?(R™). In this
chapter we will compute the Kac-Gutzwiller transfer operator explicitly and study its properties. We
consider both full and matrix subshifts with Ising type interaction, both with polynomial-exponential
and finite-range distance function. In particular, we will compute the Kac-Gutzwiller transfer operator
for the Potts model.

For this purpose we write the Ruelle-Mayer transfer operator as an integral over a family of generalised
composition operators of the following type: For any a,b € C", A € Mat(n,n;C) with ||A]] < 1 we
define a generalised composition operator Lq p A := Mexp, © Cp © T—p acting via

(Lapaf)(z) = e f(Az +1D)

on the Fock space F(C™) as a trace class operator. Thereby is 7, : F(C") — F(C"), (rpf)(z) :=
f(z — b) the translation operator, Mmexp, : F(C") — F(C"), (Mexp, [)(z) = €9 f(2) the multi-
plication operator, and Cp : F(C") — F(C"), (Caf)(2) = f(Az) the composition operator. Our
strategy is to show that L, A belongs to the so called extended Fock oscillator semigroup. Via
the Bargmann transform the Fock oscillator semigroup is conjugate to the oscillator semigroup and
explicit conjugation formulas are known in the literature.

In Section 5.1 we compute the conjugate of the composition operator C'y under the Bargmann trans-
form. It turns out that for A belonging to the unit disk {X € Mat(n,n;C) ||| X|| < 1} the operator
Cy is an element of the Fock oscillator semigroup (2, 7(cn) which is well-understood. In Section 5.2
we introduce the oscillator semigroup 2,,. It consists of trace class integral operators with Gaussian
kernels. The Fock oscillator semigroup and the oscillator semigroup are conjugate via the Bargmann
transform, Q,, r(cny = {BoT o B7!|T € Q,}. The precise relation between the integral kernels of
T € Q, and BoToB™' € Q,, F(cny is given by the Cayley transform. This general result directly yields
the Bargmann conjugate B~ o Cp o B of the composition operator Cy. Exemplarily, we compute
the conjugate integral operators corresponding to A = J() ») being a Jordan block with eigenvalue
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0 < |A] < 1 and, secondly, A = s.J(g ) for some small scalar multiple of a Jordan block with eigen-
value zero. The first matrix corresponds to Ruelle-Mayer transfer operators for the one-dimensional
Ising model with polynomial-exponentially decaying interaction. The second example corresponds to
Ruelle-Mayer transfer operators for the one-dimensional Ising model with finite-range interaction.

In Section 5.3 we define the extended oscillator semigroup Ef2,, consisting of integral operators with
(general) Gaussians as integral kernel. We introduce the extended Fock oscillator semigroup to be the
image EX, rcny :={BoTo B7!|T € EQ,} under the conjugation with the Bargmann transform.
During this section we will compute the conjugates of translations and of multiplication operators
Bot,.0B™, Bomey,, o B! both acting on F(C™) and B~' 0 meyp,, 0 B, B~! o7_; 0 B both acting
on L?(R™), which will lead to an explicit description of the extended Fock oscillator semigroup. These
results show that L, a € EQ, 7») and lead to an explicit formula (Prop. 5.3.5) for its Bargmann
conjugate B~ o L, 0 B € EQ,.

In Section 5.4 we will finally compute the Kac-Gutzwiller transfer operator for two-body Ising inter-
action with distance function d € Dgl) given as d(k) = (A*~lv|w) for some A € Mat(n,n;C) with
IA]l < 1, v, w € C*. We apply this to the two main cases of such distance functions, namely the
polynomial-exponentially decaying interactions and the finite-range interactions. The action of the
general linear group Gl(n;C) on Mat(n, n;C) by conjugation leads to the fact that for each distance
function d(k) = (A*~1v|w) there is a family of generating triples parametrised by Gl(n;C). We show
that for certain generating triples (a, b, A) the corresponding integral operator B! o L4540 B has a
special form. This will lead to Kac-Gutzwiller transfer operators whose integral kernels are of a simple
form. This fact can be used to investigate the spectral properties of the Kac-Gutzwiller operator and
hence of the Ruelle-Mayer transfer operator. This allows to determine the spectrum of an integral (or
a weighted sum) of composition operators, for which we do not know another method. We end this
chapter by giving examples of Kac-Gutzwiller transfer operators for the Potts model.

5.1 Composition operators on the Fock space

We briefly recall the definition of the Bargmann-Fock space as introduced in A.4.5. It consists of

F(E) o= HIHE") = {1 € O 1 reny = [ I exp(=rlel)dz < )

where dz denotes Lebesgue measure on C". The inner product is given by

(1) reny = [ 1) T expllel?)dz

The Bargmann-Fock space is a reproducing kernel Hilbert space with kernel k(z, w) = exp(r (z | w)).
We will now introduce an operator semigroup acting on the Fock space.

Definition 5.1.1. (i) We equip Mat(n, n;C) with the operator norm. The symmetric unit ball
A, = B(0; Dgym(nicy = {W € Mat(n,n; C) [W = W T, 1 = W*W > 0} C B(0; 1)Mat (..
called the Siegel disk. Here 1 — W*W > 0 means that ((1 —W*W)x|z) >0 for all z € C” {)

(ii) For any D € As, the integral operator Sp acting on F(C") is defined via its integral kernel3

o=l ()]2(6))

(iii) The Fock oscillator semigroup is defined as the space €2, zcn) := {c¢Sp|D € Agy, c € C*} of
integral operators with I'p-kernels. O

We will now show that the composition operator Cp : F(C") — F(C™), (Crf)(z) = f(Az) belongs
to the Fock oscillator semigroup €2, z(c»y (5.1.1) if A € Mat(n,n; C) with ||A[| < 1. Therefor we need
an embedding of the unit ball {A € Mat(n,n;C)| |A|| < 1} into the Siegel disk Ag, (5.1.1).

32The Hermitian inner product on C™ is denoted by (-|-), the Euclidean inner product on R™ and its C-bilinear
extension are denoted by (-|-), for z € C" we set 22 := (z|z) as an abbreviation.
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Remark 5.1.2. The map

89 X Mat n,n,((: Ht;ym 2”,((: = YEMa,t 2”,2n,((: Y 7Y 5 1&’_’X/\ =
A 0

is injective and linear, it defines an embedding of the unit ball {A € Mat(n,n;C)| |A]| < 1} into the
Siegel disk Ag, (5.1.1)

X 2 B(0; D)Mat(n,nicy) — Sym(2n; C) N B(0; 1Mat(2n,2n:0) C Dan, A= Xa
with (using [Fo89, A. Lemma 4]) det X = det(0 — AAT) = (det A)2. O
Remark 5.1.3. Let A € B(0; 1)Mat(n,n;C)- Using Remark A.6.1 the composition operator
Cp: F(C") = F(C"), (CaF)(2) := F(Az)

can be written as an integral operator with kernel

exp(r{Asfu)) = exp(r(Asfm)) = exp( ((;) ‘ (X AOT) (;)) ).

This shows Cy = Sx, using the shortly introduced notations and hence this composition operator
belongs to the Fock oscillator semigroup €, 7(cny (5.1.1). O

5.2 The oscillator semigroup

In this section we introduce the oscillator semigroup €2,,. It consists of trace class integral operators
with Gaussian kernel. The Fock oscillator semigroup and the oscillator semigroup are conjugate via
the Bargmann transform B : L*(R") — F(C") as follows

Qe ={BoToB T €y}

Usually the Fock oscillator semigroup is defined to be the image under the conjugation with the
Bargmann transform, but we preferred to define both semigroups separately. The precise relation
between the integral kernels of T4 € €2, and BoTq0oB™! € Q,, F(cn) is given by the Cayley transform
which is a conformal map between the Siegel upper half plane & and the Siegel disk Ay, (5.1.1). We
end this section by computing the Bargmann conjugate B~! o Cy o B of the composition operator
(Caf)(2) = f(Az) (5.1.3) which is our main motivation for introducing the oscillator semigroup.
For two types of examples we compute the corresponding integral kernels in detail. The first example
concerns A = J(, ) being a Jordan block with non-vanishing eigenvalue 0 < [A| < 1 which corresponds
to Ruelle-Mayer transfer operators for the one-dimensional Ising model with polynomial-exponentially
decaying interaction. The second type of examples concerns finite-range Ising interactions. By the
generating triple found in Proposition 2.8.2 we have to study A = sJ(g ) for some small parameter
0<s< L

Definition 5.2.1. (i) Let &, := {a € Mat(n,n;C) |a = a", Im(a) positive definite} C Gl(n;C)
be the Siegel upper half plane.
(i) We introduce the unnormalised Gaussian33

g:C"x &, = C, (2,A4) = g(z,A) := ga(z) :== exp(—7 (2| A2)).

(iii) For A € &2, we define T4 to be the integral operator acting on L?(R™) with kernel

st oo (2)|4(2)

(iv) The oscillator semigroup is defined as the space Q, = {cTa| A € Ga,, c € C*} of integral
operators with Gaussian kernels. O

33In [Fo89] this function is denoted by v4.
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Remark 5.2.2. For A = AT € Mat(n, n; C) one has the equivalent characterisations
AEG, + gacL*R") < gqcSR"),

where we denote by S(R™) the Schwartz space of rapidly decaying smooth functions f : R" — R. By
the second characterisation €2,, consists of Hilbert-Schmidt operators, whereas the last characterisation
implies (see for instance [CoGr90, A.3.9]) that 2, consists of trace class operators. O

We will now show the relation between the oscillator semigroup €, (Def. 5.2.1) and the Fock oscil-
lator semigroup €2, 7(cn) (Def. 5.1.1) which is given via the Bargmann transform. The Bargmann
transform®! B,, : L*(R") — F(C"),

™

(90) (Bnf)(2) = /n exp<27r (z]z) =7 (x| ) 5 (z|z)) f(z)dx

is a unitary ismorphism, see for instance [Fo89, ch. 1.6].

The Siegel upper half plane &,, (5.2.1) is the higher dimensional analogon of the upper half plane
S; = {z € C|Im(z) > 0}. As in the case n = 1 there is a conformal map between the upper half
plane &,, and the unit disk A,, (5.1.1), which is called the Cayley transform.3>

Proposition 5.2.3. ([Fo89, 4.67]) The Cayley transform

Cn:6, = A, cu(Z):=0+iZ)1—iZ) ' =1 -iZ)" (1 +i2)
is conformal. Its inverse acts via c,;* (W) =i(1 — W)(1+ W)~L O
Proposition 5.2.4. ([Fo89, 4.70]) For all A € &g, (5.2.1) one has

B,oT 0 (Bn)_1 = 2n/2 det(l — iA)_1/2 Sch,(A)a
O

Because of this proposition the Fock oscillator semigroup Q,, 7(cn) (Def. 5.1.1) is often defined as the
image under the conjugation

Q. rcny ={BnoTo(B,) '|T €}

of the oscillator semigroup €,. In Section 5.1 we have seen that for A € B(0; 1)Mag(s,n,c) the com-
position operator Cp : F(C") — F(C"), (Caf)(z) = f(Az) (5.1.3) belongs to the Fock oscillator
semigroup £, 7(cny. We will now use the previous Proposition 5.2.4 to compute its Bargmann conju-
gate acting on L?(R").

Proposition 5.2.5. Let A € Mat(n,n;C) with |A]] < 1 and Cy : F(C™) — F(C™) (CAF)(z) =
F(Az) be the associated composition operator (5.1.3). Then its Bargmann conjugate on L*(R™) is the
operator

B oCpoB=2"2det(1 - AAT) VAT ay
which has the integral kernel

2n/2
ka(z,y) = mgc;}(m)(x,y)

- gy o2 ()] (T e e ) ()

Proof. Using Remark 5.1.2 one has Cy = Sx,. Solve c2,(A) = Xy, i.e., A = ¢, (X)), and use
Proposition 5.2.4 on the relation between the oscillator semigroup and the Fock oscillator semigroup.
In order to avoid long computations we have to make a little excursus using the notation of [Fo89,
ch. 4.5]. For A= (4 B) € Sp(m;R) C G1(2n;R), Z € {W € Mat(n,n;C) |CW + D € Gl(n;C)} set
m(A, Z) = det(CZ—i—D)_%. Then for C,, := % (%;1) € GI(2n; R) being the so called Cayley element,

34We will omit the index n for the dimension most of the time.
35Folland writes au, (Cr), where we write cp,.
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one obtains m(Cp, Z) = 2*/*det(1 —iZ)~2 The inverse of the Cayley element is C;;! = \/ig (77%) and
its multiplier acts via m(C;*, Z) = 2"/*det(1 + Z)~2. The determinant factor in Proposition 5.2.4
is thus m(Cay,, A) = 22 det(1 — i,A)~"/2. The multiplier satisfies a cocycle identity which implies
formula [Fo89, 4.63] which we use at ()

97/4 det(1 — ic: 1 (2)) Y2 = m(Cu, e 1 (2)) E m(Co Y, Z)~ = 27/ det(1 + 2)V/2.

Hence for A as chosen above one has
(91) m(Can, A) = m(Cap, Xp) ™" = 272 det(Xp +1)2 =272 det(1 — AAT)3.

Concerning the explicit formula for ¢5, (X):

con (Xp) = i(l—XA)(l-l-XA)_l:i(lA _jlﬁ)(ll\ AlT)_l

(1 AT (1-ATA)™T  —AT(1—AAT)!
’(A 1 ><AOJUAJ1 (1—AAT) )
A4+ ATAA=ATA)TT —2AT(1 - AAT)?
(92) = Z( —9A(1— ATA)! (1+AAT)(1AAT)1>
O

We end this section by studying two types of examples of composition operators Cx (5.1.3). The first
example concerns A = Ji, ,,) being a Jordan block (68) with eigenvalue 0 < |A| < 1. It corresponds to
Ruelle-Mayer transfer operators for the one-dimensional Ising model with polynomial-exponentially
decaying interaction (see 2.11). The second type of examples concerns A = s.J(g ,) for some small
parameter 0 < s < 1. It corresponds to Ruelle-Mayer transfer operators for the one-dimensional Ising
model with finite-range interaction (see 2.8).

The following proposition is of preparatory nature.

Proposition 5.2.6. Let J(y ) be a standard Jordan block of size n as defined in (68). Then

14+ A2 A
A 142
T _
JomyIon) = VT ’
A TN A
A A2
A2 A
A 1422
T _
Jomydoan) = SV
A 14N A
A 142

Proof. The Jordan block J := J() ) has the entries J; j = Ad; j + di11,;. Hence

NIE

(JIT)i; = Jik ik

~
Il
—

I
M=

(A +0ir1,x) (AN 05k + 6j11,k)

~
Il
—

[
M=

()\2 0ik 0k + A0k itk + A0k Ijr1k + g1k 6z'+1,k)

E
Il

1
5]',1' + )\6i+1,j + )\5j+1,i + (1 — 51771) 5i,j

I
>
S
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Let @ € Gl(n;Z) be the flip matrix with ones along the main antidiagonal and zeros otherwise, i. e.,
®; ; = 0itjn+1. Then one confirms that (PB®);; = B,+1-;n+1—; for all B = (B; ;) € Mat(n,n; C).
Hence ®2 =1, ®J() ,)® = J(T\ »y and thus JTJ =0JdJ = &(J®JP)® = ®(JJ )P, which together
with the first part gives the stated form of J.J. O

Let d : N — C be a polynomial-exponential decaying distance function, say d(k) = \* p(k), where
A € C with |A\| < 1 and p € C[X] is a polynomial of degree n — 1. Then by Section 2.11 d has
a representation d(k) = ((Jn))" 'v|w) for some v, w € C", where J(5 ) is the standard Jordan
block (68) of dimension n with eigenvalue A\. The corresponding Ruelle-Mayer transfer operator
is an integral over a family of generalised composition operators with composition part Cy, , :
F(C") — F(C™). By Proposition 5.2.5 its conjugate on L*(R") is the operator B~' o Cy, ., o B =

27/2 det (1 — J(,\,n)J(T\,n))_l/Q Tc;nl(XJ()\,n))’ which has the integral kernel
k 2n/2
J(xn) (az,y) = det(l — J()\ n)J(—E\ n))l/Q gcgnl(X"(x,n))(x’y)'

The computations become much more complicated as the dimension n increases. Thus we exemplarily
treat the cases n =1 and n = 2. The following one-dimensional example has been studied in [Gu82]
and [HiMay04].

Example 5.2.7. Let A be a complex number with 0 < |A\| < 1. Then by Proposition 5.2.5 the integral
kernel of H := B~1 o Cj o B : L*(R) — L?(R) is given explicitly as

22 (7 m(1 4 A?)

4\
2 2
(1—x)F TP e (2 +y7) + 2“’)'

h =
(z,9) Tx
For ¢ € RY let R.: L?*(R) — L*(R), (R.f)(x) := \/c f(cx) be the scaling operator. Then for the
special choice ¢ = (47)~'/2 we obtain from Lemma A.6.3 the integral kernel of the scaled operator
H.:=R.oHoR;! as h.(z,y) = ch(cx,cy). Similarly to [HiMay04] we write A = e=7 and conclude
that

(2/m)~1/2 11+, A
hamy-12(,y) = ESSH eXP( T e @ ) o )\zwy)
/2 1 1
_ — 2 (coshn (z2 2 )
v4m sinhy eXp(Qsinh'y( 2(COS 7@y +ay)
e1/? L (z—y)°
- & — Z(tanhZ (22 2y, \ LY )
/4 sinh~y exp( 4( Aty (@ +y) + sinh ~y )
which both can be interpreted as variants of Mehler’s s formula, cp. [Fo89, 1.87]. |
In Example 5.2.7 we have discussed the case n = 1. We will now compute the integral kernel

KJs. (w,y) for the next easiest case n = 2. This will take much more computational effort.

Example 5.2.8. Let A € C and A := J(, ;) be a Jordan block (68). The inverse Cayley transform of
X is given explicitly by (92)

_1 (A HATAA-ATA)TE —2AT(1 - AAT) T
Can (Xa) =1 ( “2A(1—ATA)TY (L AAT)(1 - AAT)—l) '

Thus we have to compute its (block) entries. Let ® € Gl(n;Z) be the flip as introduced in the proof of
Proposition 5.2.6. This proof also implies that (1 —AAT)™! = (®(1 — ATA)CID)f1 =®(1-ATA) 'O,
where ® is the flip. Thus the lower right entry of c;,'(X4) is

i(T+AAT)A - AAT) P =i®d(1+ATA) (1 - ATA) D

a flip-conjugate of the upper left entry of cgnl(X A). The remaining off-diagonal entries are also flip-
conjugate and their mutual transposes, since

(ATA—=AAT)Y ™) = (1 —ATA) A= A1 —ATA) L = AT (1 — AAT) &
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Thus only two blocks are unknown. We will now study the smallest non-trivial example A := J(y o).

By Proposition 5.2.6 we obtain ATA, hence 1 — ATA = (1_”\2 -2 ) , whose inverse is given as (1 —

X =N
ATA)! -\ /\/\2) . Thus the upper left entry of c;,! (X4) is

_ 1

= st (31

AT AV AT Al i 1+ A A2
TR UTSp—— A TE Y

7 i At 2)
oAz —2) \ 24 2 )

For the off-diagonal entries observe that

AT(lAAT)_lm(T ?\) (1—)\)\2 _§2>m<)\(1;)\2) )\(1)‘_2)\2)>.

Thus finally

A —2) 2)\(1 _ )\2) 9
1 (92) 1 —2A A9 2)2 2A(1 — A2)
1Cy,, (XA) - m 2)\(1 _ )\2) 9)\2 Mo T
2 2M(1 — \?) —9)\ A
and the integral kernel of B! o CJinm © B =2det(l - J(AQ)J&Q))—UQ TCQI(XJO\E)) is
2
I{/’J(A,z) (-Tla X2, Y1, 92) = m gcgnl(XA)(.’L'l, T2,Y1, 92)
2
N W gc;nl(XA)('Tl’ T2,Y1, 92)

2 ( -7

e e o | (L —
A2 — )12 TP —g)
—+x9 (2)\.1‘1 + 229 — .Tg)\4 — 291 + 2y2)\3 — 2y2)\) + Y1 (2)\31‘1 — 2 x1 — 229 4 2y1 — yl)\4 + 2y2)\)

—Yo A (2)\.1‘1 — 21‘2)\2 + 229 — 2y; + y2)\3) ))

( — 1A ()\31'1 — 29 — 2y1)\2 + 2y; + 2y2)\)

This long expression may be the reason that - unlike the case of a (pure) exponential distance function
(5.2.7) - no (neither direct nor indirect) construction of this integral kernel was known before. |

Let d : N — C be a distance function with finite range n for some fixed n € N. For all 0 < s < 1 the
distance function d has a representation d(k) = ((sJ(o,n))" *v|w) for some v, w € C", where J(g )
is the standard Jordan block (68) of dimension n with eigenvalue zero. In the next example we will
compute the integral kernel of B~! o Cyy,, ., © B =2"/2det(1 — (SQLJ(O’H)J(TO,H))*1/2 TC;(XSJ(O )
Example 5.2.9. Let 0 < s < 1 and n € N. The Bargmann conjugate B~ o Csiom B L?(R") —
L?(R™) of the composition operator Cy Jeo.ny has the integral kernel

2n/2 g n—1
(93) ks (2,y) = A=y exp(m((1+52)(||$H2+||y||2)—252($%+y3)—45 > yz‘+1))-
i=1

In fact: The integral kernel of B~'oCy .  oBis ks, (2,y) = 272 det(1—AAT)"Y/2 gc;}(XA)(x, Y).
We set A := 5.Jn) € Mat(n,n;R) and show that

el (xy @ (QFATMO-ATATE 28T - AT
1Con (An) = —2A(1— ATA)! (1+AAT)(1—AAT)?
. 52 52 S _
(a1, i, ) —2e o |
— 125 T diag(1£%,. .., 155, 1)

_ 1 diag(l —s2,1+s%,...,1+5?) —25J(0,n)
T T2 *25J(T0n) diag(1 +s2,...,1+s%1—52) |-
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By Proposition 5.2.6 we have J(T),n)J(Om) = diag(0,1,...,1). One easily confirms that (1 £ATA) =
14 52 J(To,n)J(o,n) = diag(1,14 s%,...,1+ s?) which we use for the upper left entry of c;,1 (X4). The
lower right entry is the flip conjugate of the upper left entry, hence 1=AAT = diag(1+s2,..., 1452 1).
Hence the determinant is equal to det(1 — AAT) = detdiag(l — s%,...,1 —s2,1) = (1 — s2)"~!. For
the off-diagonal blocks we note that AT (1 — AAT) ™! = = J(—Byn)diag(l, L1 =8 = 2 J(—Byn).
By the symmetry of ¢3! (Xx) this implies that A(1 — ATA)™! = (AT(1 = AAT)™)T = =25 Jo.n).
The sparse shape of the matrix c2_n1 (Xa) reduces the number of terms in the quadratic form

()l (7))

-1
= 1= ((ac|diag(1 —s2 1+ .1+ 52)90) — 4s(x|Jo,n)y) + (y|diag(1 + $2, 14+ 8%1— 52)y))

n—1

-1

= = (+ )l + ) - 25 @3 +92) =45 Y wiyisa ).
=1

5.3 Extended oscillator semigroup

In the previous two Sections 5.1 and 5.2 we have investigated the composition operator (Ca f)(z) =
f(Az) (5.1.3) acting on the Fock space and its Bargmann conjugate. As explained in the introduction
of this chapter our motivation for this is the study of the generalised composition operator

Lapa : F(C) — F(C"), (Lapaf)(z) = e f(Az +b)

(for some fixed a, b € C*, A € Mat(n,n;C) with ||A|| < 1) from which the Ruelle-Mayer transfer
operator is built up. It turns out that £, ; a belongs to the so called extended Fock oscillator semi-
group. We will first define the extended oscillator semigroup Ef, consisting of integral operators
with (general) Gaussians as integral kernel. We introduce the extended Fock oscillator semigroup to
be the image

EQ, 7cny == {BoToB™"|T € EQ,}

under the conjugation with the Bargmann transform. The task of this section is give an explicit
description of this space of operators and to compute the Bargmann conjugate of L4 4. For this
purpose we will compute the conjugates of translations and of multiplication operators Bor,0oB~!, Bo
Mexp, © B~! both acting on F(C") and obtain as a consequence an explicit formula for the operators
B™! 0 meyp, © B, B~!o7_ 0 B both acting on L*(R™).

Definition 5.3.1. (i) For s € C" (resp. s € R™) let 75 be the translation (75f)(z) = f(z — s) on
F(Cm™), respectively on L?(R™).

(ii) For any s € C" one defines the (unbounded) multiplication operator mexp, via (Mexp, f)(2) =
e(#1%) f(2) which acts both on L?(R™) and on F(C") via this formula.

(iii) For p, ¢ € C", A € Gy, we set TH? := Mexp, i, © TA© Mexp, .-

(iv) The extended oscillator semigroup is defined as the space of integral operators with (general)
Gaussians as integral kernel, EQ,, := {¢T4?| A € Ga,, ¢c € C*, p,q € C"}. Similarly to Re-
mark 5.2.2 one shows that the extended oscillator semigroup consists of trace class operators.

(v) Via the Bargmann transform B : L?(R") — F(C") from (90) one defines the extended Fock
oscillator semigroup as EQ,, rcny :={BoT o BT € EQ,.}. O

Occasionally, we will use the abbreviation mcesh, := %(mexps + Mexp__)-

Our next aim is to give, similar to Proposition 5.2.4, an explicit description of the extended Fock oscil-
lator semigroup E€Q,, zcn) (5.3.1), i.e., one has to compute the image of E,, under the conjugation
by the Bargmann transform. This will be achieved in Corollary 5.3.4. We start with some commu-
tation relations of compositions, translations, and multiplication operators, the latter ones defined in
(5.3.1).
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Proposition 5.3.2. For A € Mat(n,n;C) let Cp : F(C") — F(C"), (Caf)(z) = f(Az) be the
associated composition operator (5.1.8). For s € C" (resp. s € R") let 75 be the translation (75 f)(z) =
f(z—s) and (Mmexp, [)(2) = e©12) f(2) be the multiplication operator. Then

(i) 7 0 Cn = Cp o Tar,
(ii) CA © Mexp, = Mexp,r, © Ca,
(i) 77 0 Mexp, = €1 M, 0 7.
Proof. This follows from the following straight forward calculations:
(0 Caf)(2) = F(A(z = 7)) = f(Az — Ar) = (Ca 0 7ar f)(2),
(Mespy =, © Oaf)(2) = €719 f(Az) = 189 F(A2) = (Ci © M, £)(2),

(0 mexpsf)(z) — e(s|z—r)f(z —r) = e—(rls)e(s\z)f(z —r) = e (rls) (mexps o1, f)(2).
O

We will use the following lemma from [HiMay02]. It states that the Bargmann conjugates both of
a translation 7, : L*(R") — L?(R"), (7.f)(z) = f(z — r) and a multiplication operator meyp_ :
L2(R™) — L*(R™), (Mexp, f)(z) = e*1¥) f(z) are combinations of a translation and multiplication by
an exponential.

Lemma 5.3.3. ([HiMay02, (5.5),(5.6)]) Let r, s € C™. Then on F(C™)

(i) Bor,oB™' =exp(— g (r|r)) Mexp,.. ©Tr,

1
(i) Bomep, 0 B~ =exp(g=(5]5) ) Mexp. ., © s/ (2m)- D

As a combination of Proposition 5.2.4 and Lemma 5.3.3 (ii) we obtain a full description of the extended
Fock oscillator semigroup £, zcny (5.3.1):

Corollary 5.3.4. Let p, ¢ € C", A € Gy,. Then the Bargmann conjugate of TR € EQ,, (5.8.1) on
F(C™) is given as
- ™
BoTﬁaqoB—l = 9n/2 det(1—1iA) 1/2 exp (— 5[(}7 |p) + (q | q)]) Mexp,.,., OT—ipOSczﬂ(A) O Mexp,,, © T—ig-
O

As an immediate consequence we obtain the Bargmann conjugate of the generalised composition
operator

(94) Lapa = Mexp, ©Cp o7 F(C") — F(C"), (Lapal)(z) = e?1%) f(Az+b),
where a, b € C", and A € Mat(n,n;C) with ||A]| < 1 are fixed.

Proposition 5.3.5. Let a,b € C", A € Mat(n,n;C) with |A|| < 1. Then the Bargmann conjugate of
the composition operator Lgpa @ F(C™) — F(C™) from (94) is given as

2n/2 i a a Ua(ah)
det(1 — AAT)1/2 eXp( ) ((b) “I’A (b)) ) Tzl (xa)
where W := —i(1+ X))~ L.

Proof. Let A :=c5}(Xa) and m(Capn, A) = 2"/? det(1 — iA)~'/2 be as in Proposition 5.2.5. Then by
Corollary 5.3.4 and Proposition 5.3.2

B_l o £7ra,b,/\ oB =

+
q | q)]) m(62n7 A) mexpm-p OT_ip© mexpm/\—rq © C’A O T_iq

(p | ATQ)]) m(C2"’ A) LS

( 2
1 AT
(A 1 ) <§)> ) m(Can; A) Mexp_piaTe) © CA ©T_i(Ap+q)-

0 OA 0 T_i(Ap+q)
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Observe that - .
D (p+Ag) (1 A DY\ _ . D
(Q)HZ(APH)_Z(A 1)((1)_’(1+XA)((1)

defines a linear isomorphism C2" — C2", since the estimate ||ATA|| < ||A||> < 1 makes its determinant
det(i(1 4+ X)) = 72" det(1 — AAT) non-vanishing. Let ¥, : C2" — C?" be its inverse

o (1 AT (1=ATA)TT SAT(I—AAT)?
a = (14 X)) __’(A 1) __’(—A(1—ATA)1 (1—AAT)! )

W, is symmetric, hence \I/X(l + XA)¥p = —(1+ Xp)" ! = —i¥, and

e (G
e (AIOIE

which together with Proposition 5.2.5 and formula (91) gives the claim. O

Bil o Ewa,b,A oB

In particular, Proposition 5.3.5 shows that L, o belongs to the extended Fock oscillator semigroup
EQ, 7cny. - Lemma 5.3.3 has the following converse statement, which seems to be new in the
literature: The (inverse) Bargmann conjugates both of a translation and a multiplication operator
by an exponential function on F(C™) are combinations of a translation and multiplication by an
exponential on L?(R™). The proof is based on our observation that the correspondence between the
coefficients in Lemma 5.3.3 is linear and bijective.

Proposition 5.3.6. Let a, b € C". Then on L?(R")

(i) B~'o Mexp, © B = exp( - % (a | a)) Mexp, © Ta/(27)5

(ii) B~'or 0B = eXp( (b|b)) Mexp., © T—p/2-

Proof. We multiply the equations of Lemma 5.3.3 and use Proposition 5.3.2 (i) on the commutation
relations of the multiplication and the translation operator. This yields

B °© mexpﬂs °© T_T © 371 - eXp(g (S | S) - g (T | T) ) TrLeXpﬂ's/2 © T75/2 © mexp7WT °© T_T
= exp (% (s]9) = 5 (1) = 3019) ) mexp,. oy 0 Tsj

Set Vb := Mexp_, o 7—p for all a, b € C", then the last equation reads as follows

(95) BoV,yoB~! :eXp(— % ((Z) ‘ (11/2 ;) (‘;))) Vitan):

1/2
1/2

pran= (12 ) (0) = (e ) (3)
Hence we can invert (95) to get
(El(a,b)‘ ( 11/2 1) E~a, b)>) VE-1(a,b)

(DG 2) G
()= () (e ) - (3 7))

where E(a,b) := < _11> <Z) defines a linear isomorphism C?* — C?" with inverse

B! oVepoB = exp(+

=

(96) = exp(

|
=
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Proposition 5.3.5 gives an explicit description of the image
{371 oLgpaoBla,beC" A e Mat(n,n;C) with ||A]| <1} C EQ,

of the set of composition operators L, 5 4 (94) under the conjugation. In particular, this image is small
inside the extended oscillator semigroup, compare for instance the dimensions of the corresponding
parameter spaces. This in turn lights our hope that also other types of operators from the extended
(Fock) oscillator semigroup may serve as builing blocks for future transfer operators.

In the following we will discuss special cases of pairs (a,b) € C" x C" (depending on a given matrix
A) such that the integral operator B~! o £, 5 A o B has special properties. Namely, we will determine
the pairs (a,b) € C"* x C™ such that

()0 ) )

satisfies that either 1.) ¢ = 0, 2.) p =0, or 3.) p = ¢. These pairs (p,q) € C* x C" correspond to
integral operators T%? (5.3.1) where either one of the multiplication operators vanishes 1.), 2.), or the
multiplication operators are equal 3.). The corresponding integral kernels are of a simple form: 1.)

galz,y) exp(2mi (z | p)), 2.) gal(z,y) exp(2i (y|p)), or , 3.) ga(z,y) exp(2mi (z +y|p)). Since the
correspondence C? — (C2 (§)— (4):=Tx(2) is bijective, there is a unique solution in each of the
three cases.

Corollary 5.3.7. Let a,b € C", A € Mat(n,n;C) with |A]| <1 and Lgpa : F(C") — F(C™) be the

corresponding composition operator (94). Then

/2 eXP( -3 (a | a)) —ia,0
det(1 — AAT)1/Z “egl(Xa)’

2n/? exp(— % (b | b)) 70,~ib
det(1 — AAT)I/2 ey (Xa)’

(1> 371 o Eﬂ'a,Aa,A oB =

(11) B_1 [e] ‘Cﬂ'ATb,b,A [e] B =

2"/2exp(— Z(b|(14+A)"")) 1 1
1 o 2 —i(14+A) b, —i(14+A) ™ b
() B0 Laquramyen) om0 B = det(1 — AAT)1/2 Teziox)

Proof. By the Proposition 5.3.5 we have

gn/2 i a a 1\
. o o m a(a,d)
B o Lrapao B = det(1 — AAT)1/2 exp( 2 ((b) “I]A (b)) )TCQ" LX)

A(a,b) has the stated form for the
A(8)). Concermng the first case we
Aa)|

;IIA £a)) = (&) | () =

and

where ¥y = —i(1 4+ XA)_l. Hence it remains to check that ¥
special choices of (a,b) and to compute the inner product ( |

note that (4 ) =i(1 —I—XA) (de), hence Wy (4,) = (7¢*) and (( 4,
—1 (a | a) . Similarly, ( b ) =i(1+ Xa) (ﬂb) hence Uy ( ) ( o

() (30) = ()] () = e

—i(1+A) "t

For the third case we observe that <(1+AT)(b1+A)7lb) =i(1+ Xa) <7i(1+A)71b

Ty ((1+AT)(b1+A)*1b) — (:zgiﬁgjz) and hence

(05 CRI) = (%) )
= —2i(b|(1+A)"'D).

) , which implies that

Corollary 5.3.7 will imply in the next section that certain generating triples (a,b, A) lead to Kac-
Gutzwiller transfer operators of a simple form.
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5.4 Kac-Gutzwiller transfer operators for the Ising model

Let I C C be a bounded set and (FN,Ng,7) a one-sided one-dimensional full shift (1.2.6). Let
¢ be a two-body Ising interaction (1.8.3) with potential ¢ € Cp(F) and distance function given as
d(k) = (A¥=1v|w) for some A € Mat(n,n;C) with ||A|| < 1, v, w € C*. Then by Theorem 2.7.6 the
Ruelle-Mayer transfer operator

M F(T) = FE), (Maf)(2) = [ exp(alo) + Brlelu)) f(o v+ A2) dvio)

satisfies the dynamical trace formula Z0"° (BA@)) = Z?T?_’_‘fn} (8) = det(1 — A™) trace (Mg)™ for all
n € N. The conjugate integral operator B~ o Mz o B on L*(R") is called a Kac-Gutzwiller transfer
operator. In this section we will use the results 5.3.5 and 5.3.7 from the previous section for the
computation of the Kac-Gutzwiller transfer operator. We apply this to the two main cases of distance
functions which have a finite-dimensional representation d(k) = (B*~!v|w), namely the polynomial-
exponentially decaying interactions and the finite-range interactions. These results will be generalised
in the next section to matrix subshifts with Ising type interactions. In particular, the finite state Potts
model will be considered.

Using Propositions 3.3.4 and 5.3.5 we compute the corresponding Kac-Gutzwiller transfer operator

B l'o MgpoB = / efa@) p=1 4 L3ow,ov.a 0 Bdv(o)
F

2n/2 mio? 8 8 .
- - - @@ Bq(o) _ o w =W o WA (L w,v)
det(1 — AAT)1/2 /Fe eXp( 2 (( v )‘WA( v ))) Tt @),

where Uy = —i(1+X,)~!. We will now emploit the ambiguity of the generating triples. Namely, once
one has one representation of a distance function, one obtains by conjugation a family of generating
triples: Let v, w € C™ and A € Mat(n,n; C) with ||A]| < 1. For all S € Gl(n;C) one has

d(k) = (A*1o|w) = ((ST'AS)F 151w | STw) = (A5 ug | ws)

with wg = STw, vg := S~ v and Ag := S~'AS. For ecach S € Gl(n;C) one has a Ruelle-Mayer
transfer operator Mg.s = / PN L50s ovs s Av(0) : F(C") — F(C") acting via
F

(Mo = [ exp(a(e) + Bozhus)) Flous + A 2) dv(o).

Let Cs : F(C™) — F(C™), (Csf)(z) = f(Sz) be the (unbounded) composition operator associated
to S € Gl(n;C), then Mg.g = Cg 0o Mg o Cg' formally. We mention that between suitably weighted
Fock spaces C's becomes a bounded operator.36

Theorem 5.4.1. In the above setting set Gg.s := B! o Mg.g 0 B : L*(R") — L*(R").
p

(i) If v € AC™, then there exists S € Gl(n;C) such that v==ASS w and
7r

20_2

exp (ﬂq(a) L

5 (ws | ws)) MexPa g dv(o)oT, S (Xag)

8.5 = on/2 det(l — ASAg)il/Q /
F

2 2

Jes 1 (xpo) (T V) 3
. . n/2 Con (XAS) . o
with integral kernel 2 det(1 = ASAg)l/Q /Fexp (ﬁq(o) o

(ws | ws)—l—QBa (z | ws)) dv(o).
(i) If w € ATC", then there exists S € Gl(n;C) such that éw =AT(SST) " and
T

2
_ o
Gp.s = 22 det(1 — AgA L) ~1/? Tc;}(XAS) o/ exp(ﬁq(o) ahre (vs | vs)) Mexpy s dv(o)
F

ez (Xag) (,9) no?
det(1— AgAL)/2 /FeXp(ﬁ‘J(") - - (vs | vs) +270 (y| vs) ) dv(o).

36Qet for instance f(cnyﬂSS*) = {f c O((Cn) | ||f||‘27__(Cn”uSS*) = f|f(z)\2 |det(S)|2 exp(f7r<z|SS*z>)dz < OO}
Then Cg : F(C™, p1) = F(C™) — F(C™, pss+) is unitary because of the substitution rule.

with integral kernel 2"/?
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(iii) For all v, w there exists S € Gl(n;C) such that (1 + AT)(SST)"Y(1 + A)~tv = %w. Set
0:=8"Y1+A)"tv. Then

2
__ on/2 _ T\—1/2 _ o — —400,—100
Ga.s = 2" det(1 — AgAg) /Fexp(ﬁq(a) N (vs | (1+As) 1w )) TCETLI(XAS) dv(o)

with integral kernel

P00 ) (o)~ 2 (0 |1+ As)Pas) 20 o+ |1+ As)e5)) i)
det(1 — AgA L)1/ Fexp a\o 5 \Us s) vs mo (T +Y s) vs))av(o).

Proof. For the proof we will assume that S solves the linear equation. The next lemma shows that
one can always find such a matrix S. - If v = gASSTw, then vg = S~ 1v = %S‘lASSTw = %Asws.
Proposition 3.3.4 and Corollary 5.3.7 (i) applied for a := a%ws yield

Gss = B'oMgoB = / 1) B~V 0 L0 ovs.as © Bdu(o)
F

27/2 det(1 — AgAL)~1/2 /F exp(ﬂq(o)fg(ahz)) 770 dqy(o)

-1
Con (XAS )

n _ 202 —i8%wg,0
22 den(1 = 25232 [ exp(Bato) - T (wslu)) 115 Vvt
20.2

2"/2 det(1 — AgAJ)~Y/? /

p
| exp(Balo) = 5 (ws [ ws)) mespy () T,

If %w = ATS~ TS 1y, then %ws = %STw = STATS= TS~ = Alvg and hence by Corollary 5.3.7
(ii) with b := ovg one obtains

Gps = / 74 B0 Lgpuys usns © Bd(0)
F

wm

(b|b)) 07 du(o)

Con (Xag)

= el = AsAD) 2 [ exp(ato) -
F

n/2 B T\—1/2 o 0,—iovs
27/2 det(1 — AgAl) /Fexp(ﬂq( o) - o (us|us)) T,l(XAS)d V(o)
on/2 det(1 — ASAT) 1/2 T 1(Xag) / exp (ﬁq vs | vs)) Mexpy g dv(o).

If Bwg = (1+AL)(1+ AS)—IUS, then (1+ Ag) lvg =
and hence (1 +AJ)(1+Ag) log=ST(1+AT)(SST)~ X
applied for b := ovg yields

S(1+ A)S‘l)_lS‘lv =S 1+ A =7
1+ A)~'v = Zwg and Corollary 5.3.7 (i)

Gss = 2"/2det(1fASAg)71/2/

exp(Ba(o) = S(bI(1+ As)~10)) T (A 0TI gy ()
F

el
Con (XAS)

= 2"/2det(17ASAg)*1/2/

2
exp(ﬂq(o) — —W; (vs | (1 + As)flvs)) T jlau,—wudy( ).
F

(XAs)
|

In order to complete the proof of Theorem 5.4.1 we have to investigate if the occurring linear equations
for the matrix S can be solved. We answer this question with the help of the following lemma.

Lemma 5.4.2. Let a, b € C™. Then there exists a symmetric matriz ¥ € Gl(n; C) such that Ya = b.

Proof. Let V be the (at most) two-dimensional space spanned by a and b. We define ¥ on V+
to be the identity. By change of basis in V = C? (the case dimV = 1 is trivial) we can assume
that a = (gL), b = (Z;) We make the Ansatz ¥ = (3, ¥) and obtain a system of linear equations

(y9)(a2) = (Z;) in the unknowns x, y and z. This can be rewritten as

a1 ag 0 r _ b1
0 al ag Z o bQ
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from which it is appearent that it is solvable. Except for z = zc—z the matrix ¥ is invertible. O

Since every symmetric invertible matrix ¥ can be written as ¥ = SST, we obtain as an immediate
consequence of the previous lemma that the equations for S in parts (i) and (ii) of Theorem 5.4.1 can
be fulfilled provided v belongs to the image of A (i) and w belongs to the image of AT (ii), respectively.
Since ||A]| = ||AT|| < 1, both (14+AT) and (14 A) are bijective. Hence the equation for S in part (iii)
can always be solved. This concludes the proof of Theorem 5.4.1.

In particular, if one considers a two-state Ising model with spin values in F' = {£1} equipped with the
uniform distribution on F', then the integrals in Theorem 5.4.1 simplify and one obtains the following
expressions.

Corollary 5.4.3. Let F = {41} be equipped with the uniform distribution and (F™,Ng,T) a one-
sided one-dimensional full shift (1.2.6). Let ¢ be a two-body Ising interaction (1.8.3) with vanishing
potential and distance function given as d(k) = (A*~lv|w) for some A € Mat(n,n;C) with |A]| < 1,
v, w € C". For all S € Gl(n;C) set wg := S w, vs:= S v and Ag = ST'AS. Let

Mp.s - F(T") = F(C"), (Mpsf)(2) = /F exp(Bq(0) + Bo(zlws)) f(o vs + As 2) du(o)

be the corresponding Ruelle-Mayer transfer operator and Gg.s :== B~' o Mg.s 0 B : L>(R") — L?*(R")
the Kac-Gutzwiller transfer operator.

p

(i) If v € AC™, then there exists S € Gl(n;C) such that v==ASS w and
T

n - Ca
Gos = 2"/ det(1 — AgA§) ™1/ eXP( T o (ws | ws)) Meoshagug © Lozl (xag)

with integral kernel 2"/ det(1 — AgAL)™1/% exp(— ﬁ —(ws|ws)) cosh(28(z|ws)) gcgl(XAS)(x,y).
(ii) If w € ATC", then there exists S € Gl(n;C) such that ﬁw =AT(SST) v and
™
n _ 7r
Gpis =2 /2 det(1 — AsAg) 12 GXP( D) (US | Us)) TCQJ(XAS) O Mecoshyry g
with integral kernel 2™/2 de‘u(lfASA:g'—)_l/2 exp(f% (vs | vs)) gc;}(XAS)(:c, Y) cosh(27r (y | ’Us)).

(iii) For all v, w there exist S € Gl(n;C) such that (1+AT)(SST)71(1+A)~tv = %w Then

G — exp(— 2 (vs| (14 Ag)"tvs)) (Ti(1+As)*1vs,i(1+As) vs | pilAs)” us,—i(1+As)—1us)
BT T2 det(1— AgAL)/Z Ve (Xag) ezt (Xag)

with integral kernel

exp( -3 (vs | (1+ As)flvs) )
27172 det(1 — Aghd)1/2

gc;}(XAS)(z, y) cosh(27r (z+y|(1+ AS)_lvs)).
(]

As shown in Remark 2.12.3 there are only two types of distance functions which have an irreducible
representation d(k) = (Bk’lv | w) on a finite dimensional space, namely the polynomial-exponentially
decaying and the finite-range distance functions. First we consider polynomial-exponentially decaymg
distance functions: Let A € C with 0 < |\ < 1,¢; € Cand d : N — C, k — \FY —0 ci kY,
then by Remark 2.11.1 d can be represented with the help of the matrix IB(" € Gl(n;C) (2.11.1)
as d(k) = A(AB™)*¥=11 | ¢), where 1 : {0,...,n — 1} — C is the constant function one and ¢ =
(coy- .. ¢n_1) € C™. Since B™ € Cl(n;C) is invertible, we can find generating triples by conjugation
such that each of the three cases of Theorem 5.4.1 can be applied in order to obtain a Kac-Gutzwiller
transfer operator with a simple integral kernel.

We specialise to two-state Ising interactions with exponential decaying distance function d(k) = JA*,
which is the model firstly studied by M. Kac and later (for periodic boundary condition) by M.
Gutzwiller, D. Mayer, and J. Hilgert in [Gu82] and [HiMay04]. In the context of the dynamical zeta
function the question arised whether the Ruelle-Mayer transfer operator has real spectrum. We will
now give a direct answer to that question.
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Example 5.4.4. (Two-state Ising model with pure exponential interaction) Let FF = {£1} and
v be the uniform distribution on F. For every s € C* we have a representation d(k) = JA\F =

A
)\k_léJs and a corresponding Ruelle-Mayer transfer operator (Mg.sf)(z) = ePs f (— + )\z) +
s

-2
e Pz f <— + )\z) for the two-state Ising spin model.
s

(i) Let 51 = B—’TJ, then Gg.s, := B™! 0 Mg.s, o B has the integral kernel

21/2
(1—A2)1/2

325272 B 91/2,—JB/2
exp( 5 )gA(x,y)cosh(QleJz) BB O ga(z,y) cosh(2v/7pJ x).

(ii) Let so = 723—{‘]2, then Gg.s, := B™! 0 Mg.s, o B has the integral kernel

21/2
(1—\2)12

27r)\y) 21/2¢=7B/2

A
exp( — 523) 9aley) cosh(ZE) = T 9aley) cosh2y/TBT y)

(iii) Let sp = %’ then Gg.5, := B~ 0 Mg.s, o B has the integral kernel

21/2 A2 27\
(ry) = —2 SR AN— , h(——2
gB7 0(:6 y) (1 . )\2)1/2 eXp( 253(1 + )\)) g.A(:E y) COS (50(1 + )\) (‘T + y))
21/2 BJI\

= T e exp( - m) ga(z,y) cosh(2y/mBJIN (z +y)),
which is symmetric. Hence for 8J € RT, X €] — 1, 1] the corresponding Kac-Gutzwiller transfer
operator Gg.s, is symmetric and hence has real spectrum.

As in Example 5.2.7 we prefer to write A = e~7 for some complex number ~ which will lead to a
Mehler type kernel. In combination with scaling by ¢ = (47r)_1/ 2 one obtains the kernels the scaled
integral operators R, o Gg.s o R;! corresponding to (i) - (iii) as
(i) P ,
e’ 1 Y2 2 (x—y)
—_— — —(tanh— —_— ) h(+/BJ x),
V4w sinhy exp( 4( Aty (@ +y7) + sinh )) cosh(V3] )

which is one of the asymmetric Kac-Gutzwiller type operators occurring in [HiMay04].

/2

\/WTIW eXp( — l(tanhg (2% + y2) + M)) cosh(\/ﬂ_Jy),

4 sinh v

M)) cosh(m (x+ y)),

/2 1 v
— Z(tanh= (22 2 -~
eXp( (tanhy (27 +y7) + sinh ~y

VA4 sinhy 4 2

i.e. one has a natural symmetric Kac-Gutzwiller operator which was not known before. |

14+

Remark 5.4.5. It is quite easy to see, cf. [HiMay04], that the operators Ga.s, : L*(R) — L?(R) from
the preceding Remark 5.4.4 have the same spectrum as the original Kac-Gutzwiller operator given in
[Gu82], which is the symmetric integral operator G : L?(R) — L?(R) given via its integral kernel

eV/2 )2
i (Ut 07+ ) eosh(Te)  eosh (V).

O

We will now use our machinery developed in this chapter to compute the Kac-Gutzwiller transfer
operator for finite range Ising interactions.
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Example 5.4.6. Let d : N — C be a finite range distance function, say d(k) = 0 for all & > n.
Let J(,n) = Sn be the standard n-step nilpotent matrix from (61) and 0 < A < [[J(g )|/ ~!. Define
w? € C™ with entries w?(k) = M=% d(k). Then by Proposition 2.8.2 d(k) = ((AS,)* " tw?|e;) for all
k € N. The integral kernel of the corresponding Kac-Gutzwiller transfer operator Gg = B~'o Mgo B
is given as

2n/2
(1= \2)n/2 exp(

w00 = TG o255 ((3) | (5 i) ) e

where ¢y g := (1 — A?)7( (w? | w?) — A2(w?(n))?). In fact: By Proposition 5.3.5 the Kac-Gutzwiller
operator is given as

n—1
—z 1+ N2)(ll? + [[yll*) — 23% (2T +y7) — 4/\2 ;i ym))

B 'oMgoB = / ef1@) p=to Lsoer owi A © Bdv(o)
F

gn/2 o2 8 8 . o
- Bq(o) _ €l €l ) A (0om)
(1— A2)n/2 /Fe eXp( 5 (( " d ) “I’)\J(U,n) ( " )) T, . G ) dv (o),

where \I/)\J(Oyn) = 7’L'(1 + X/\J(o,n))il
Applying some ideas of the proofs of Proposition 5.2.5 and of Example 5.2.9 we obtain

—1
o (U AT A-ATATT SAT(I - AAT)

(1+XA) - (A 1 - 7A(17ATA)71 (1 7AAT)71
[ diag(1,1 - X%, 1 =A%) — 25 Jom
N -2z JI0m) diag(1 —A2,...,1 =A%, 1) !
_ 1 dlag(l 7)\2517'--;1) 7)\‘](0,71)
1= X A6 diag(1,...,1,1—-X?) ) -

From this expression we deduce that
diag(1 — \2,1,...,1) —AJo,n) g e\ %(1 — M)y — )‘J(O,n)wd
A0 diag(1,...,1,1-2%) ) \w? ) = \o % diag(1,...,1,1 = M)t )’

hence

Be, . B\ _ i Be B1—2)er — N Jgnmyw?
wd AMowd )] 712 (L w? diag(1,...,1,1 — A?)w?
. 2
= 2\ a3 o dy  2BA (T
= ((1—)\) (w |d1ag(1,...,1,1—)\)w)—7<w ‘J(O7n)€1))

w | w A2 N
(1 _| )\2) Y (wh(n))? + 0) = —Z% —icrd

\

~.
—~
LR

and the integral kernel of the Kac-Gutzwiller transfer operator Gz = B™! o Mgo B is
n—1

2n/2
(1 —A2)n/2 € ( 2 ((1 +A)[|z]* = 22 (2F + i) + (L +X%)[lyl? — 4)\2 Ti yi+1))
i=1

[ eo(Bat) - - (o) exp(zm((;”) ‘pr (i 31)))dy(a—>

on/2 -7
= Ty eXp(l e (@4 M)[2]® = 232 (@F +y2) + (L+ X)) [lyl® — 43 yz‘+1))
=1

no? 32 2ro x A=) e —\J d
(== - ™ (O,n)w
/FeXp(ﬂ‘](”) 7 (2 “A’d)) xp(7 5z <<y) diag(1,...,1,1 — A2)uw? ) dv(o).

n—1
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In order to apply Theorem 5.4.1 (i) and (ii) we have to investigate the range of J(,) and of its
transpose, part (iii) is always applicable. Clearly, J(g ,,)C™ = C"~!x{0} and (J(,,,)) TC™ = {0} xC" 1,
but w?(n) # 0 and e; ¢ {0} x C*~. Hence we cannot apply the first two cases of Thm. 5.4.1 without
any adaptations. However, we observe that d(k) = (AJ(0,»))* tw?|e1)cn = (AJ(0,nt1))*  0%]e1)ener
gives a representation suitable for case (i), where w? € C"*! is the vector with entries @ (k) = wi(k) =
M=Fd(k) for k < n and zero otherwise. - Using Example 5.2.9 the corresponding Kac-Gutzwiller
transfer operator can be written out explicitely, but the formulas become quite long. [l

5.5 Kac-Gutzwiller transfer operators for Ising type interactions

In this section we generalise the results of the previous section to matrix subshifts with Ising type
interactions. Recall Theorem 3.2.6 which provides us with a Ruelle-Mayer transfer operator for the
one-sided one-dimensional matrix subshift (1.2.8) with two-body Ising type interaction (1.8.3) if the

distance function d belongs to Dgp ) (2.7.1) for some p < oo. In this section we suppose that d is
given as d(k) = (A""'v|w) where A € Mat(n,n;C) with |[A|| < 1 and that the interaction matrix

r € Cp(F x F) has a decomposition r(z,y) = Zﬁl sj(x)t;(y) with s;, t; € Cp(F'). By Theorem 3.2.6
the Ruelle-Mayer transfer operator Mg : L2(F,v)QF((C")M) — L2(F,v)QF((C*)M),

(/\;lgf)(x;zl,..,zM) Z/FAUIeXp(ﬁq —l—ﬁZs] z]|w) flosti(o)v+Azy, .. ta(o)v+Azp) dv(o)

satisfies the dynamical trace formula égNO (BA@)) = Z?lon‘én}(ﬁ) = det(1 — A)M trace (Mp)™. In this
section we compute the corresponding Kac-Gutzwiller transfer operator by which we mean the partial
Bargmann®’ conjugate of the Ruelle-Mayer operator ./\;lg with respect to the z-variable, i. e., the
operator Gg := (id ®Bpar) "' o Mg o (id @Bpar) : L2 (F,v)QL*(R™M)M) — L2(F,v)&L*((R™)M).
First we will consider the transfer operators for the full shift. The Ruelle-Mayer transfer operator
Mg : F(CM) — F((C™)M) is given by Theorem 2.13.8 as

(./\/lgf)(zl,...,zM):/Fexp(ﬂq +ﬂZsl zl|w)f((tl(o)v,...,tM(o)v)+Ez) dv ().

We recall Definition (94) of the generalised composition operator L4 p 4 : F(C™) — F(C™), (Lf)(z) =
e(#19) f(b 4 Az) where a, b € C™ and A € Mat(n,n; C) with ||A| < 1. We rewrite My as

M
Mﬁ = /Feﬁq(ff) ®£ﬁsj(g)w7tj(g)mmg du(o).

Jj=1

This expression allows us to apply Propositions 3.3.4 and 5.3.5 and to compute the corresponding
Kac-Gutzwiller transfer operator Gz = (Bya) ™! o Mg o Buyr € End(L2((R™)M)) for the full shift

M
gﬁ = /Feﬁq(a) ® ((Bn)_l © ﬁﬁsj'(a)w,tj(a)'u,]Bﬂ o Bn) dV(U)
(97) = 2"M/2det(1— AAT)TM/2
i~ ([ 2 E M\If( (o)w,t; (o))
e ;Sj(a)w)‘ (;Sj(o')w))) A5 sj(o)w,t;(o)v
[ e (Batn) - 5 () o (5527))) @7EH (o),
where Wy = —i(1 + XA)~!. We now consider the transfer operators for the matrix subshift. The

. ~ M
Ruelle-Mayer transfer operator is pr,Mg = fF Ay efalo) (®j:1 Egsj(a)wytj(g)vﬁ) opr, dv(o). By
Proposition 3.3.4 we have the following characterisation of the corresponding Kac-Gutzwiller transfer

37In order to clarify the arguments we will use a lower index to indicate the dimension of the base space on which
the Bargmann transform acts, e.g. By : L2(R™) — F(C").
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operator G : L?(F,v)&L*((R")M) — L2(F,v)&L*((R*)M) via

przgﬁ = prz((Bn]\/I)_l o Mﬁ o Bn]\/l)
(98) = 2"M/2qet(1— AAT)"M/2

oo (=5 3 () | oa () (@7 ovny vt

Since the Kac-Gutzwiller transfer operator is by definition conjugate to the Ruelle-Mayer transfer

operator, it satisfies the dynamical trace formula ZZNU (BA) = Z?TO'i?n}(ﬂ) = det(1—A)M trace (G)"

for the matrix subshift, 22" (8A.) = Zfld’n} (8) = det(1 — A)M trace (G3)" for the full shift,
respectively. The integral kernel of Gg is a Schwartz function, hence the trace of (Gg)™ can be

evaluated by integrating the integral kernel over the diagonal, see Remark 3.3.3 or [CoGr90, A.3.9].
We ask whether one can find a direct way to show that the occurring integrals express the partition
function. This could be used to construct new types of transfer operators.

We recall a couple of techniques introduced and used throughout this dissertation and compute the
transfer operators for the M-state Potts model.

(i) The decomposition of an operator as an integral over a family of basic operators, Theorem A.7.6,

(ii) The superposition principle: The integral over the tensor product of the basic operators for the
treatment of Ising type interactions, Proposition 2.3.9 and Subsection2.13,

(iii) The tensor product with the transition matrix for the treatment of matrix subshifts, Lemma 3.3.1,

(iv) The choice of a suitable generating triple leading to a transfer operator with nicer properties,
Theorem 5.4.1, and

(v) The scaling of an integral operator, Lemma A.6.3 applied in Example 5.2.7.

Example 5.5.1. (Potts model) Let F' = {1,..., M} be finite and v the a priori measure v identified
with its distribution vector. Let ¢ be a two-body Potts interaction with potential ¢ € Cp(F) and
distance function d(k) = (B*~'v|w) where B € Mat(n, n; C) with ||B|| < 1.

(i) Example 2.13.10 yields the Ruelle-Mayer transfer operator Mg : F((C™)M) — F((C™)M),
M
(Maf) (1, zn) = D vy exp(Ba; + 8 (23] w) ) £((05.mw + Azt )
j=1

for the full shift Potts model. Introducing the notation ®’ A = A®...® A (j-times) for the
j-fold tensor product of an operator A, we can write Mg = Z]Ai1 v; P ROy ® Lwu,a®
®M_j Ch. By the above formula (97) we get the Bargmann conjugate of Mg as

e Moo B = e (- 5 (32 [ (30))

M Jj—1 v (B ) M—j

B Alzw,v
> vie ®Tc;;<XA> BT 1%,y © X Tesrxay
j=1

(ii) We now generalise (i) to matrix subshifts. Since the alphabet F is finite, the Hilbert space on
which the Ruelle-Mayer transfer operator acts is F((C*)M)IFl = L2(F,v)&F((C*)M) as pointed
out in Remark 3.2.8. By Remark 3.2.8 the components of the Ruelle-Mayer transfer operator
Mg - F(CHYMYM s F((C")YM)M for the matrix subshift Potts spin model are

k=1
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for I = 1,..., M. By formula (98) we get the corresponding Kac-Gutzwiller transfer operator
Gs = (i[d®@Bny) toMgo(id®@Bpar) : L2(R™)MYM — L2((R™)M)M | in components written as

2nM/2

R (=5 () [oa (4))) =

v w,v
S g (@ ey ST @ Teriny) o

(iii) Now we specialise (i) to Potts interactions with distance function d(k) = JA¥ where 0 < |\| < 1.
In order to reduce the notational effort we restrict to the one-sided one-dimensional full shift.
As in Example 5.4.4 we consider the scaled Kac-Gutwiller operator R,0Gg.s0o R;' = R, o B~}
Mg,s 0 Bo R;! where Mg, : F(CM) — F(CM) is the Ruelle-Mayer transfer operator

A
(Mg f)(z Zuk exp(Bax + BJs(z|er)) (— ex +Az).
k=1
Let v be a complex number with A =e™" and ¢ := (4#)_1/2.
(a) Let sy = /45, then R o0Gg, o R has the integral kernel
eM/2 1Y ~ (
(47 sinhy)M/2 exp( 1 Z(tanh§ (x3 +y3) + L smhfy ) Z vj P exp(\/BJ ;).
k=1
(b) Let s3 = ﬁJ , then R_ o Gga.s, o R ! has the integral kernel
eMv/2 1 M ~y (
(4 sinhry)M/2 exp( — 3 D (banhg (af + o) + S smh'y ) ZV e exp(v/B7 y;)-
k=1
(c) Let s = ﬁJ, then R, o Gg.s, o R.! has the integral kernel
eM~/2 1M . hv o ov (K —yk)? Bq; GBI L
(47 sinhry)M/2 exp(f4 Z( Ay (@)t = sinh -y ) ZV € exp( 14+ A (ijFyJ))'

k=1
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A Miscellaneous topics from functional analysis

In this chapter we collect several ingredients from functional analysis we used in this dissertation.
The first three sections deal with classes of operators which admit a spectral trace and a determinant.
First we recall the axiomatic approach of embedded subalgebras with the approximation property. In
Section A.2 we recall the normal form of a compact operator on a Hilbert space and define in this way
the singular numbers and the Schatten classes, in particular the trace class and the Hilbert-Schmidt
class. We state the Lidskii trace theorem as an example of a spectral trace, i. e., the trace is given
as the (absolutely convergent) sum over all eigenvalues. In Section A.3 we comment on the situation
in Banach spaces and briefly recall the concept of nuclear operators and Grothendieck’s 2/3-trace
theorem.

In Section A.4 we introduce reproducing kernel Hilbert spaces and discuss some important properties.
We give a couple of examples and then focus on the classification of Fock spaces. The use of the Fock
space the context of Ruelle-Mayer transfer operators has been proposed in [HiMay02] and [HiMay04].
In section B.3 we will essentially emploit the properties of a reproducing kernel Hilbert space for the
determination of the trace norm of certain composition operators acting on the Fock space.

The short fifth section provides some identities on Gaussian integrals which we need at several points
in this dissertation.

Section A.6 collects some tools dealing with integral operators. Integral operators arise in this dis-
sertation, since every bounded linear operator on a reproducing kernel Hilbert space can be written
as an integral operator and, secondly, by the study of the Kac-Gutzwiller transfer operator and the
extended oscillator semigroup.

In the last section we give a proof for a folklore theorem which states that an operator defined as an
integral over an integrable family of trace class operators is trace class and its trace can be computed
by integrating the family of traces, i.e.,

trace / Ly, dy :/ trace L, dy.
Y Y

A.1 (Regularised) determinants

We briefly recall the definition and properties of regularised determinants of higher order. Our repre-
sentation is based on [GoGoKr00, Ch. XI]. We will use the theory of regularised determinants in cases
where the dynamical trace formula (only) holds for sufficiently large powers of the transfer operator,
a phenomenon which appears for instance for all transfer operators for matrix subshifts.

Let B be a Banach space and B’ its dual. An operator F : B — B of the form F = Y | ¢|. ® fi
with fi € B, ¢}, € B’ is called a finite rank operator. Denote by A;(F) its eigenvalues (counted with
multiplicity). Let trace F' = Y1 (dx, fr)s,5 = D_; Aj be its trace®.

For any finite rank operator F' acting on a Banach space B and any u € N one defines the u-regularised
determinant

u—1
1
(99) dety (1 — F) := det(1 — F) eXp( - trace Fk)
k=1

A natural question concerns the (continuous) extension of the trace and the u-regularised determinant
to wider algebras of linear operators. For this continuity we need other norms than the operator norm
for which neither trace nor determinant are continuous on the finite rank operators acting in infinite
dimensional spaces. The right setting is the following:

Definition A.1.1. Let B be a Banach space. We denote by End(B) the algebra of bounded linear
operators on B and by Endy(B) the subalgebra of finite rank operators. We say that a subalgebra
& C End(B) is an embedded subalgebra, if £ carries a norm || - ||¢ such that

[AllEnds) < celAlle,  [1ABlle <[|Alle [|Blle

for all A, B € €. If, in addition, the set £ N End(B) is dense in £ with respect to the norm || - ||¢,
we say that £ has the approximation property. o

38The second equality is [GoGoKr00, Thm. 1.3.1].
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[GoGoKr00, Thm. 1.1, Ch. XI] gives a characterisation when the u-regularised determinant det,, (1+-)
from (99) admits a continuous extension to an embedded subalgebra & C End(B). In this case also
the functions £ N End;(B) — C, F + trace F¥ admit continuous extensions to & for all k > u.

Lemma A.1.2. Let £ C End(B) be an embedded subalgebra with the approzimation property. Suppose
the function dety, (1 4 -) from (99) admits a continuous extension to €. Then the function z —
det, (1 + zA) is entire for every fivred A € £ and has the following representations:

=, cx(A
det,(14+zA4)=1+ Z % 2",
k=u ’

where the coefficients c,(A) are defined by

bi n—=1 0 .. 0 0
b by m—2 .. 0 0
cn(A) :=det |
bt b bay e by i
bn bn—1 bp—2 ... b2 by
and
by trace A*, ifk>u,
=00, otherwise.
For |z| sufficiently small one has
100 dety (1 — zA) = (— Z g A).
(100) ety (1 —zA) = exp kz - trace
Proof. [GoGoKr00, Theorem XI.2.1]. O
The proof of Lemma A.1.2 uses the following analytic lemma.
L A.1.3. Let g(2) ia”"f() i(_l)nﬂb""b lytic functions i igh
emma A.1.3. Let g(z) = —z z) = 22" be analytic functions in a neigh-
g Z ol 2 " Y g
bourhood of zero with g(z) = exp f(z). Then ag =1 and forn > 1
bi n—=1 0 .. 0 0
b by mn—2 .. 0 0
NSk (n—1! b3 Do
=) (U b gy =der ) B
a bn1 bno bn_g .. by 1
bn bpn_1bn_2 ... bz b1
Proof. [GoGoKr00, Lemma 1.7.1 and its proof]. O

One has the following generalisation of the theorem of Lidskii (Prop. A.2.4), which is contained as the
special case u = 1. In particular the zeros of z — det, (1 4+ zA) are in one-to-one correspondence with
the eigenvalues of A.

Lemma A.1.4. Let £ C End(B) be an embedded subalgebra with the approximation property. Suppose
the function dety (1 + ) admits a continuous extension to £. Then dety (1 + ) has the Fuler product

dety(1+4) =[] ((1 + ) exp(w (7;)]6 Af)),

j k=1

where \; are the eigenvalues of A € £. O

This representation of the regularised determinant is true on the level of finite rank operators and
hence by continuation on an embedded subalgebra with the approximation property.

In the following two sections we will introduce two families of examples of embedded subalgebra with
the approximation property and their (regularised) determinants. We consider the Schatten classes
Sp(H) € End(H), which we use for throughout this dissertation. We also comment on the space of
nuclear operators, which has been used by D. Mayer in his basal work on this subject.
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A.2 Schatten classes

As we pointed out in the introduction chapter we prefer to use Hilbert space techniques in this
dissertation. Of particular interest are the Schatten classes S,(H) C End(H) which are embedded
subalgebras with the approximation property. For the definition of the Schatten classes we recall (see
for instance [We00, p. 245]) the normal form of a compact operator on a Hilbert space.

Proposition A.2.1. (Schmidt expansion) Let K : H — H be a compact operator on a Hilbert space
H. Let (8n,(K))nen be the sequence of singular numbers of K, i. e., the eigenvalues of |K| = VK*K,
(en)nen the orthonormal system consisting of eigenvectors of K*K, and (fn)nen the orthonormal
system consisting of eigenvectors of KK*. Then the expansion

(101) K=Y salK) (- |en) fn

converges to K in operator norm. O

The singular numbers can be characterised by an approximation problem, too, cf. Lemma A.7.4
and [GoGoKr00, IV.2, IV.3]. If K happens to be an integral operator, the Schmidt expansion leads
to an expansion of the integral kernel which is often called Mercer expansion.

The sequence of singular numbers of a compact operator tends to zero. If one moreover requires a
certain summability, this leads to definition of the so called Schatten classes, named after R. Schatten.

Definition A.2.2. For 1 < p < oo the Schatten ideal S,,(H) is defined as the space of all operators
K such that

1K s, 20) := 150 (K))nenllery < o0
The elements of Sy (H) are called trace class operators, the elements of So(H) are called Hilbert-Schmidt

operators. For K € S;(H) (¢ = 1,2) the Schmidt expansion converges in S;(H) to K. Given a trace
class operator in Schmidt expansion, K =" s,(K) < : | en> fn, one defines its trace via

trace K = an(K) <fn | en>.
O

Remark A.2.3. Let K be a compact operator on a Hilbert space H. Computing the adjoint of
K via (101) gives K* = 3 5,(K) (- | fn) €n, hence the operators K*K and KK* have the same
non-zero spectrum (counted with multiplicities). O

Let H be a Hilbert space. As shown in a side remark following [GoGoKr00, Theorem XI.2.1] the
Schatten classes Sp(H) C End(H) for 1 < p < oo are embedded subalgebras and have the approxi-
mation property. Hence we can apply Lemma A.1.2 to the operator algebra S,(H). In particular for
p =1 one obtains

Proposition A.2.4. (Lidskii trace theorem) Let T € S1(H) be a trace class operator and (Mg (T))ken
the sequence of eigenvalues of T counted with multiplicities, then

trace T = Z Me(T) = Z <Te;C | ek>
k

k
for any orthonormal basis (ex) C H. O

Lidskii’s trace theorem roughly states that the trace of a trace class operator behaves like the trace
of a square-matrix. In particular the trace is independent of the choice of the representation or of the
chosen orthonormal basis. A direct proof is given for instance in [GoGoKr00, IV.6]. We say that a
trace class operator admits a spectral trace, i.e., the trace is given as the sum over the eigenvalues.
One has the following estimates for the trace and the determinant function.
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Remark A.2.5. Recall (see for instance [GoGoKr00]) that for matrices and hence for trace class
operators A, B € §1(H) the following relations hold:

(102) exptrace A = detexpA

(103) trace log(1+A) = logdet(l+ A)

(104) [det(1+ A) —det(1+ B)| < [[A— Blls,exp(1+ | Alls, 0 + I Bllsy)),
(105) |det(1+A)] < exp([|Alls, ),

(106) [det(1+A) = 1] < exp([Alls,0) =1 < [[Alls; ) exp((|Alls,20))-

Let (A\;)jen be the sequence of eigenvalues of A and (s;);en be the sequence of singular numbers of
A. Observe that e* — 1 < ze® for 2 > 0, then the last estimate (106) comes from

det(1+4) =1 = | T(1+ ) = 1] < exp(> 0D — 1 < exp(3 [syl) = 1 = exp(llAls, ) — 1

J J J

O

We end this section with the regularised determinant of order 1 < p < co. Notice that the case |p] =1
is the theory of trace class operators and their Fredholm determinants.

Remark A.2.6. Let H be a Hilbert space and 1 < p < 1. Let [p]| := min{n € N|n > p} denote the
minimal integer greater or equal to p, then the regularised determinant det,) (1+-) admits a continuous

extension to S,(H). For all A € S,(H) the operator R, (A) := (1 + A) exp( Zj[ljl_l (Z—W ATy —1is
trace class and
det) (14 A) = det(1 + Ry (A)).

The following estimates ([GoGoKr00]) hold for all A, Ay, ..., A, B € S,(H)

[p]

(107) |trace (A; ... Ap)| < H I14;lls,,,0)»
j=1
(108) [det (14 A < explep [AIE) 50),

(109) | det (1 + A) = det) (14 B)| < |4~ Blls;, 00 exp(ern (1 + [ 4lls,, 00 + [ Blis,, 0) ).

A more refined analysis yields

(110) | detu(1+ A) < exp(eul|A"[ls, 7)) < exp(cull AllS, 2¢))

A.3 Nuclear operators

In Banach spaces it is a more difficult task to find the appropriate spaces of operators for which one
can find a meaningfull determinant or trace. We briefly recall some aspects of nuclear operators. An
excellent reference on this topic is the book [GoGoKr00] or [May80a, Appendix A].

Definition A.3.1. Let B be a Banach space. Suppose that the bounded linear operator T € End(B)
admits a representation T =Y 7~ | ¢}, ® fi, where fi, € B, ¢}, € B’ and

(111) DIl llel” < oo

k=1

for some 0 < r < 1. Then T is called a (r-summable) nuclear operator. We define

1T pengsy = nt Y Il "
k=1

where the infimum is taken over all representations T = Y 7° | fr ® ¢. The infimum over the r
satisfying (111) is called the order of T. O
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The algebra of 1-summable nuclear operators endowed with the norm || - || )5 is an embedded
subalgebra of End(B) with the approximation property, see [GoGoKr00, Thm.V.1.1]. The setting

trace T := Z<¢;§) fk>l’5"75‘
k=1

defines a continuous extension of the trace functional and the value trace T' does not depend on the
chosen representation.

Whereas in a Hilbert space the ¢'N-convergence of the sequence of singular numbers guarantees
a spectral trace, we need in the Banach space setting a stronger decay. The result is known as
Grothendieck’s 2/3-trace theorem which we state next.

Theorem A.3.2. (Grothendieck’s 2/3-trace theorem) Let B be a Banach space and T € End(B)
be a 2/3-summable nuclear operator (A.3.1). Then Y po | [M\(T)] < oo and for all 2/3-summable
representations T =Y "7~ | fx @ ¢r one has

trace T = Z(qﬁ;c,fk)zs',zs = Z)\k(T),

k=1 k=1
where (A, (T))ken is the sequence of eigenvalues of T counted with multiplicities.

Proof. Firstly appeared in [Grob5, I1.1. No. 4, Cor. 4]. A nicely written proof is given in [GoGoKr00,
V.Thm.3.1]. O

[GoGoKr00, Thm. V 4.2] states the following generalisation of Grothendieck’s 2/3-trace theorem to
the analogue of Schatten class S,-operators.

Theorem A.3.3. Let T € End(B) be a r-summable nuclear operator for some 0 < r <1 (A.3.1).
Then the sequence (A\i(T))ken of eigenvalues of T counted with multiplicities belongs to (PN for % =

1_1 O

T 2

In Appendix B we will encounter composition operators which are nuclear of order zero. Their
eigenvalues have a rapide decay, as the following corollary states.

Corollary A.3.4. Let B be a Banach space and T € End(B) a nuclear operator of order zero. Then
the sequence (Ax(T))ken of eigenvalues of T satisfies > pey [Mi(T)|P < 0o for all p > 0.

A.4 Reproducing kernel Hilbert spaces

We change the topic and give a short introduction to reproducing kernel Hilbert spaces, which are
Hilbert spaces of functions such that the point evaluation is given by an inner product. The subject was
originally and simultaneously developed by N. Aronszajn and S. Bergman in 1950. We discuss some
elementary properties and give some examples in A.4.5 and A.4.6, which are for instance the Hardy
space, the (weighted) Bergman spaces, and Fock spaces. We will mainly focus on the family of Fock
spaces, which turn out to be useful in connection with Ruelle-Mayer transfer operators. Combining
results known in the literature we obtain the classification A.4.8 of all Fock spaces over separable
Hilbert spaces. We start with the basic definitions and discuss in the following Remark A.4.2 their
relations.

Definition A.4.1. Let H C CF be a Hilbert space consisting of complex valued functions on a set
E.

(i) The space H is called a functional Hilbert space, if for each x € E the evaluation functional
evy, : H—C, f— f(x)
is continuous.

(ii) A function k : E x E — C is called a reproducing kernel of H, if for all y € E the function
ky :=k(-,y): E — C belongs to H and if for all f € H, y € E: <f|ky>H = f(y).
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(ili) A function p: E x E — C is of positive type on E, ifforalln e N, a; € C,z; €e E (j=1,...,n)

n
Z ar, a; p(xk, ;) > 0.
k=1

We will use the standard abbreviation rkhs for reproducing kernel Hilbert space occasionally.

Remark A.4.2. By the Riesz representation theorem the evaluation functional ev, € H' (A.4.1)
is given via ev, = < |k$>H for some k; € H, hence H is a functional Hilbert space iff it has a
reproducing kernel. A reproducing kernel Hilbert space is uniquely determined by its kernel.

A reproducing kernel is a function of positive type on E and each function of positive type induces
uniquely a functional Hilbert space [Ar50, 1.2.4]. O

The kernel of a reproducing kernel Hilbert space has the following important properties.

Proposition A.4.3. Let k: E x E — C be a reproducing kernel. Then for all z,y € £

(i) k(z,y) = k(y, ),
(i) [[kylI* = k(y,y) > 0,
(i) [k(z,y)|* < k@, ) k(y, ).
Proof. Note that k(z,y) = ky(x) = (ky | k2 ) . Hence the properties of the inner product (- | ->H yield

(1) k(z,y) = (ky [ ke) = (ko | ky) = K(y, 2),

(i) E(y,y) = (ky | ky) = lky]* > 0, and

(i) [k, y)* = [ {hy | Fy) 17 < (1ol (1B |17 O
On a reproducing kernel Hilbert space one has the following standard estimate:

Corollary A.4.4. Let H C C(E) be an rkhs with reproducing kernel k : E x E — C. Then for all

fE€H, x € E one has
lf(@)] < [f| VE(z, z).

Proof. By the reproducing kernel property (A.4.1), Cauchy-Schwarz inequality, and the previous
Proposition A.4.3 we get

[f(@)] = (F | k) | < (FIHall = [1F]] V5l 2).
O

Many of the examples of reproducing kernel Hilbert spaces are spaces of analytic functions. We
introduce two types, the Fock space, and the Bergmann space. Another example is the Hardy space
H?(D) on the disk, other examples of rkhs are given in [Mag88].

Example A.4.5. (i) The Bargmann-Fock space F(C™) is defined as the space of entire functions
F:C™ — C with

1P )2 em = /C F(z)P exp(—llz]?) dz < oo,

The Fock space is a Hilbert space with respect to the (weighted) L? inner product

(FIG)Fem) = [ F(z) G(2) exp(—l|z|?) dz,
cm

where dz denotes Lebesgue measure on C™. The Fock space is an rkhs with reproducing kernel
k(z,w) = exp (m(z[w)) = exp (m(z|w)). The Fock space F(C™) has the standard orthonormal

basis (ONB) consisting of the monomials (4 (z) = y/Z72*, where we use the standard multiindex
notations: For z € C™, a € Ni* we define the factorial ol := [[* | !, the length |a := Y"." | a,

m (e 7]

and the power 2% :=[[_, z

=17
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(ii) Let D be the open unit disk in C and A%(D) = O(D) N L?(D) be the Bergman space consisting
of holomorphic functions on D with are square-integrable with respect to Lebesgue measure on

1
D. The function k(z,w) =

= is the reproducing kernel of A%(DD). O

The examples from the previous Example A.4.5 are prototypes of certain types of rkhs and chave the
following generalisations:

Remark A.4.6. (i) Fock space: For each base Hilbert space Hp the function k : Ho x Ho —
C, (z,w) +— exp(m(z|w)n,) is a function of positive type, hence is a reproducing kernel of
some rkhs. One defines the Fock space to be the unique reproducing kernel Hilbert space
F(Ho) := Hy C CHo with reproducing kernel k(z,w) = exp(m(z|w)y, ). A priori it is not clear
that Hj has a realisation as a space of holomorphic functions as we have for the special choice
Ho = C™ (A.4.5). This we will show in Theorem A.4.8. In [Fo89, p. 48] the connection between
our Fock space and the physicists’ (bosonic) Fock space is explained.

(ii) Bergman space: Let U C C™ be a (finite-dimensional) domain and w : U — [0, o[ be a reqular
weight, by which we mean a measurable function which is locally bounded from below by some
positive constant w > ¢ > 0. Let du denote the Lebesgue measure on U. Then the weighted
Bergman space A2 (U) := O(U)NL*(U,w du) is an rkhs, see [Ne00, Appendix.III.12]. Note that
depending on the weight and on the domain A2 (U) might be the zero space. We give some
examples of Bergman spaces:

(a) If U is bounded and the weight is constant, one obtains the unweighted Bergman space
A%(U) :=0U) N L*(U, du).

(b) If U has infinite volume, then A%(U) = {0}.

(¢) Another example is the Bargman-Fock space from Example A.4.5 (i). O

Since the point evaluations are continuous, we know that a (non-trivial) Bergman space possesses a re-
producing kernel, but in general it is not known explicitly. The following lemma(see for instance [He78,
Ch. VIII 3.3.]) gives an abstract way how to find the reproducing kernel for a class of reproducing
kernel Hilbert spaces.

Lemma A.4.7. Let D C C™ be a domain, H C O(D) be an rkhs with reproducing kernel k : Dx D —
C. Let (hi)r be an orthonormal basis in H. Then

k(z,w) = hi(2) hi(w),
k

where the convergence is absolute and uniform on compact subsets. O

In example A.4.5 (i) we have seen the analytic realisation of the Fock space for all finite-dimensional
Hilbert spaces: Choose a unitary isomorphism from a given m-dimensional Hilbert space to C™
and apply the Bargmann-Fock realisation A.4.5 (i). We will now give the analogue for all infinite-
dimensional ones. Since we always assume that a Hilbert space is separable, the reference Hilbert
space is in this case ¢?N.

Theorem A.4.8. (Ri)*° Let t,, : C™ — 2N, (21,...,2m) — (21, ., 2m,0,...). A function f belongs
to the Fock space F((?N), defined as the rkhs with reproducing kernel k(z,w) = exp(n(z|w)), if and
only if the following three conditions hold:

(i) f:€°N — C is continuous,

(ii) For allm €N fouiy :C™ = C, (21,...,2m) — f(21,-..,2m,0,...) is analytic, and

(iii) sup / If 0 tm(21s- s 2m)|? exp(=7|[(21, ..., 2m)||?) d21 ... dzm < 00.
meNJCcm

2

In this case, HfH%‘(WN) = 1131\]/ If o tm(21s. 0y 2m)|? exp(—7||(21,. .., 2m)||*) dz1 ... dzm.
m cm

39The equivalence seems to be not have been noticed before.
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Proof. Since the reproducing kernel k : /2N x 2N — C, (z,w) + exp(m{z|w)sy) is continuous,
holomorphic in the first, anti-holomorphic in the second variable, we have by [Ne00, Proposition
A.3.10] that F(¢£2N) C O(£N), hence (i) and (ii). By [Ma88, Corollary I1,3.10] one gets

1172wy = hm/ [fotm(z1s. s zm)[? exp(=mll (21, o, 2m)|?) dz1 .. dzn.
meN Jom

Concerning the converse: By [Ma88, Corollary I1,3.11] we get f € F(¢?N) and

1y = s [ 15 0tmCers o) oxp(-l G122V o,
meN JCm

It remains to show that the sequence

em(f) = /m |fOLm(Zl,...,Zm)|2 exp(—ml|(z1,...,2 )H Vdz1 ...dzm,

indexed by m € N is monotonically increasing: For all f € F(¢2N), m € N, and z,, € C™ let f(Z=) be
the function =) : C — C, 2+ f(zm, 2,0,...). Obviously, f2=) € O(C).

Cerl(f)/(C N |f(zm+1)]? € “rllemal® gz g = / /|f u)*e —mlull® gy o= mllzmll® dzm < 00,

hence by Fubini’s theorem

/ |f(2m, 2,0, .. .)|2€77T”Z”2 dz < 00
C

for almost every z,,. In other words: For almost all z,, € C™ the function f(Z=) belongs to F(C).
Hence for such z, we use the standard rkhs estimate A.4.4 to obtain

2
|f (zm, O)P = [fE=) (0)]7 < || ) |50y € = /C | f (2 w)? e ™10 g,

Integrating this estimate concludes the proof

en($) = [ | em 0P e dzyy < /@ ) / e )2 =0 Gy ezl g — ().

The Fock space F(¢2N) is a Hilbert space with inner product explicitly given by

<f | g>.7:(€2N) = "}E)n(x) <Cbmf | C >_7:((Cm) = lim f(zm’ 0) g(Z_m, 0) exp(—ﬂHz_mHQ) dZ_m,

m—oo Jom -

where C,,, : F(2N) — F(C™), fr foim and ty : C™ — 2N, (21,...,2m) — (21, -+, 2m,0,...).
The characterisation of the Fock space F(¢?N) by the previous Theorem A.4.8 will now be applied to
prove an auxiliary result which is invoked by the integral representation of the leading eigenfunction
of the Ruelle transfer operator in Corollary 2.6.11. Another main application of Theorem A.4.8 is the
trace and trace norm formula B.4.3 for a certain class of composition operators acting on F(¢£2N).

Proposition A.4.9. Let Y be a topological space with a finite measure p, ¢ € Cp(Y) and z : Y — (°N
a bounded function. Then

0.5 Ci(Y) = F(PN), (L.o)w) = [ cly) 0 duy)
Y
is a bounded operator.

Proof. We have to check that f: (N — C, f(w):= / c(y) 2D dy(y) belongs to F(¢2N), then

Y
the linearity of O, is obvious. Using Theorem A.4.8 we investigate whether

(i) f:¢°N — C is continuous,
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(ii) Forallm € N foi, : C™ = C, (21,...,2m) — f(z1,...,2m,0,...) is analytic, and

(iii) sup /
meN JCcm

Since the integral converges locally uniformly in w € Y and the estimate

2
fotm(zt, oy zm)| exp(—=7||(z1,. -, 2m)||?) d21 ... d2zm < 0.

[f(w)] < pu(Y) lelle, vy exp2r|lwl]| sup [[z(y)]]),
yey

the first two conditions are satisfied. Let fp, := f oty for all m and ym, = pri. mi(2(y)) :
{1,...,m} — C be the p-restriction of z(y) to the index set {1,...,m} as defined in Remark 1.1.3,
then by Hoélder’s inequality (for % + % =1)

[P el an - — /@ )

lelle, vy /(C u(y )P /Y | exp(2m{wlym )P du(y) e 11" duw

p 2
o= mlwl? g

/ (y) exp(@n(w]ym)) du(y)
Y

IN

= lelly w2t [ [ expnolyl? e dwduty)

A5.1 2y |12
ell i VP [ el gy

< e (vy H(Y)? sup P mllym1?
! yey

IN

ell2, vy £(Y )P exp(p®m sup ||z (y)]1%)-
yey
In particular, for p = 2 one has [|0.¢|| (2w < [lclle,(v) (V) exp(2msup,cy [|2(y) ). O

A.5 Gaussians

In this section we collect some elementary properties of Gaussian integrals. For instance we give a
proof of an identity used in the previous proposition. Let (-|-) be the usual scalar product on R",
respectively its C-bilinear extension to C™. We denote by dw both Lebesgue measure on C™ and on
R™.

Proposition A.5.1. Let a € —i&,, (5.2.1), i. e., a € Sym(n;C) with positive definite real part,
B € Mat(n,n;C) with ||B|| <1, 0 < p < oo, and zp, wo € C™. Then
(1) / efﬂ'(z\am)727ri(zo|m) do — (det 04)7% efw(zo\aflzo).

.. - 2 P _ 2 2 2
(i) / |2 {wlzo) P o=rlwl dw:/ |2 Cwl=0) P =mlwl® gy = ool
n (C'n.

exp(llwol|? + ll(1 — B*B)~1/2(5z + Brwy)|?)
det(1 — B*B) ‘

(iii) / ‘eﬂ—<wlzo>‘peﬂ'”wOJrIBwIP_WHwHZdw _
n

Proof. The first assertion is proved for instance in [Fo89, Appendix A]. - Note that k(z,w) = e™(*I®)
is the reproducing kernel of the Fock space F(C™), hence by Proposition A.4.3

2 p 2 _ 2
/ |73 (wlz0) P =rllwl gy = [ gmtwlza gnleoluwd =mllwl® gy — mtaoleo)
n n
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We transform the third assertion in such a way that we can apply the second one:

/ }eqr(wlzo>|P ew|\wo+lﬁ%w|\2*ﬂl|w|l2dw _ e7r|\wo|\2 / eXp(ﬂRe(<w|pzo + 2B*w0>) + 7THBU)H2 . 7r||w|\2)dw

n

= ellwoll® / | exp(w<w|§zo + B*w()}) |2 exp(—m(w|(1 — B*B)w))dw
Cn

u=V1_BBuw eﬂl\wol‘Z/ \exp(w<(1fB*IB)*l/MgzO+]Ba*w0>)|2exp(f7r||u||2)det(1f]Ba*B)*ldu
= det(1 — B*B) " emlwol” / |exp (m(ul(1 — B"B) /2220 + B*wo)) ) 2 exp(—|ul|*)du
A.5.1(ii)

det(1 — IBS*IB%)Ae’Tllwoll2 exp(ﬂH(l - B*B)flm(gzo + B*wO)HQ)

A.6 Integral Operators

In Section A.4 we have introduced reproducing kernel Hilbert spaces. We will now use the additional
structure provided by the reproducing kernel to investigate operators acting on an rkhs. The main
idea is that every bounded linear operator on an rkhs can be written as an integral operator which can
be nicely analysed via the properties of its kernel. Then we study scaling, ie. the unitary isomorphism
induced by change of coordinates. - The following remark is based on [Fo89, p. 42 f.] where only the
Fock space is concerned. The arguments of the proof do not rely on the specific rkhs.

Remark A.6.1. Let T be a bounded linear operator on a reproducing kernel Hilbert space of holo-
morphic functions. Let k(z,y) = ky(x) be its reproducing kernel. Then T acts via

(Tf)(@) = (Tflkz) = (fIT"ks).

If H C L?*(M,dm) is a Hilbert space with reproducing kernel, then 7' is an integral operator with
kernel

kr(a,y) = (T*ke)(y) = (T*kalky) = (ky|T"ke) = (Thy)().

If H C L?(M,dm) N O(M) is an tkhs consisting of holomorphic functions, then T is uniquely deter-
mined by the values kr(z, x) of its integral kernel along the diagonal. Since

ke (2, y) = (T"ky)(x) = (T"ky|kz) = (ky|Tka) = kr(y, ©),
the operator T is selfadjoint if and only if the kernel kr(z, z) is real-valued on the diagonal. [l

Given a composition operator 7' (B.1.1), then it is in general quite difficult to determine TT*, T*T,
and its positive part |T| := vT*T. In particular the trace of |T'| is of interest, since it coincides with
the trace norm (A.2.2) of T'. In a reproducing kernel Hilbert space (A.4.1), however, the computations
can be carried out quite easily just by using the reproducing kernel property. The following formulas
will be used in Proposition B.3.10 and finally in Theorem B.4.3 for a special class of composition
operators acting on the Fock space.

Proposition A.6.2. Let H C L?(M,dm) be an rkhs with reproducing kernel k : M x M — C (A.4.1).
Let ¢ : M — M and ¢ : M — C be fized functions such that the composition operator T € End(H)
defined via (Tf)(z) = ¢(z) f(¢(2)) is bounded. Let T* € End(H) be the Hilbert space adjoint of T
Then the integral kernels of T, T*, TT*, and T*T are

(i) kr(v,w) = ¢(v) k((v), w),

(i) krs (v, w) = d(w) k(v, P(w)),
(iif) krrs (v,w) = ¢(v) d(w) k(1b(v), P(w)), and

(iv) kr«r(v,w) = /M |D(u)|* (v, 9 (w)) k(1 (u), w) dm(u).
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Proof. By Remark A.6.1 the operator T" has the integral kernel kr (v, w) = (Tky)(v) = ¢(v) k(P (v), w).
Hence the adjoint T* : H — H of T has the integral kernel

kr« (v,0) = kr(w,0) = (w) k(v, ¥ (w)) = $(w) ky(u) (v)-

Using the properties of a reproducing kernel, see Proposition A.4.3, we compute the integral kernel of
TT*:H — H as

krrs(v,w) = /M kr(v,u) kr«(u, w) dm(u)

[ 60) K0(0),0) 0] bl () din(a)
$(v) B(w) / Fortoy () ko () dmi(u)
M

= ¢(v)@ (K (w) [Bop ) )1t

¢(v) p(w) k(P (v), Y(w)).

The operator T*T" : H — 'H has the integral kernel

kror(v,w) = /Mk:T*(v,u)kT(u,w)dm(u)

O(u) k(v, () $(u) k(v(u), w) dm(u)
M

|o(w) | kv, 9 (w) k(3 (u), w) dm(u),
M

which in general cannot be simplified further. O

In Chapter 5 we use the notion of scaling. By this we mean the unitary transform which is induced
by a linear change of coordinates.

Lemma A.6.3. Let c € Gl(n;R). Then
(i) R.: L2(R™) — L%(R"), (R.f)(x) :=+/|detc| f(cx) defines a unitary isomorphism.

(i) Let K : L?*(R™) — L2%(R"), (Kf)(«s) = Jon K(&n) f(n)dn be an integral operator, then the
induced operator K, := R.o K o R7! on L*(R™,dx) is given by the kernel

K (z,y) = | det(c)| K(cx, cy).

Proof. The first part is a reformulation of the change of variables. The second part follows from the
calculation

Vdete| (K(R;'f)) (cx)
v/ | det c| K (cx,n) (R f)(n)dn

\/|detc/ Kczn\/|;e—tc|f( c ) dn

=" K(cx,cy)f(y) | detc|dy.
RTL

((Reo Ko R7'(f)) (x)

A.7 A trace formula

In this section we will give a proof the following folklore result which we use as an essential tool for
our proof of the dynamical trace formula (Theorems 2.7.6 and 2.13.8): Let (£,)yey be a measurable
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family of trace class operators on a separable Hilbert space H with the property that [, 1Lyl s, (r) dy
is finite, ie. that ||£y[|s, () is integrable over Y. Let £ be the linear operator on H defined as

Lf= / Ly fdy.
Y
Then Theorem A.7.6 states that £ : H — H is a trace class operator with
trace £ = / trace Ly dy.
Y

This theorem is useful to a great extent: It both provides a criterion if a given operator is trace class
and a recipe to compute its trace. In Section 3.3 we formulate and prove a similar looking theorem
for operators acting on tensor products (by using quite different techniques).

If Y is a finite set, then the assertion is nothing but the linearity of the trace. In general, the
problem is more subtle, since there are many different notions of measurability. The stated theorem
is a direct consequence of Bochner integration theory, if we require measurability of the function
Y =R, y [|Ly|ls,(n). Fortunately, many notions of measurability coincide, see [DeF193, B11]. We
will give a direct proof. Our strategy to show the announced theorem is to

(i) prove a similar trace formula for operators of finite rank,
ii) show the traceability o an
ii) show the t bility of £, and
(iii) compute the trace by a limit of traces of operators of finite rank.

One of the tools will be Lebegue’s theorem on the dominated convergence, which can be stated as
follows.

Theorem A.7.1. (Dominated convergence theorem) Let be (Y,),dy) be a measure space. Let f, :
Y — C be a sequence of integrable functions which is dominated by an integrable function g, i. e.,
|fn] < g almost everywhere. Suppose that f, — [ almost everywhere, then f, — f in norm and

We will need a vector-valued version of Lebegue’s theorem. Let be (Y, ), dy) be a measure space and
‘H be a separable Hilbert space. A function f : Y — H is called integrable if the scalar-valued function
y— (fv)| h) is integrable for all h € H. Then we define [, f(y)dy € H to be the unique vector
which satisfies

(112) Uy P dy| b = /Y (f(w)| BY dy

for all h € H.

Theorem A.7.2. (Dominated convergence theorem) Let be (Y,Y,dy) be a measure space and H be
a separable Hilbert space. Let f, :' Y — H a sequence of integrable functions which is dominated by
an integrable function g : y — C, i. e, || full < g almost everywhere. Suppose that f, — [ almost
everywhere, then f, — f in norm and ffn — ff

Proof. Using Theorem A.7.1 one easily shows that

Jm [ |myay= [ ()| ay

for all h € H. The Riesz representation theorem implies that lim, oo [ fn = [ f. O

A family (£,)yey of bounded operators on a separable Hilbert space H is called measurable if for all
f, g € H the function Y — C, y — <£yf | g> is measurable.

Proposition A.7.3. Let (Ly)yey be a measurable family of bounded operators on a separable Hilbert
space H with the property that [, ||L,| dy < oo.
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(i) Then there is a unique bounded operator on H denoted by L = fy L, dy which satisfies

(e519) = [ (af1o) dy

forall f, g € H.

(ii) Let (hn),cy be a Hilbert basis of H. Forn € N define P, = 3" (- |hi) hi : H — H to be the
orthogonal projection onto the n-dimensional subspace span{hy,... h,} CH. Then

£ = / P,L,P,dy = P,LP,
Y

and

trace £V = /Ytrace EZ(/") dy

Proof. The first part will be a consequence of the Lax-Milgram lemma. For this we have to confirm
that

B:HxH—C, B(f.g) ::/Y<£yf|g> dy

defines a continuous sesquilinear form. This is obvious. Let f, g € H, then
(PuLPuf|9) = (Pf | Pig) = [ (£,Puf | Pia) dy= [ (£§75]g) dy

hence P,LP, = fY Eé") dy, which is a finite rank operator. We easily compute the trace by using the
orthonormal basis (hy), oy observing that all sums are indeed finite sums:

trace LM = Z (LM, | )
m=1
- Z/ <£yhm|hm> dy
m=1 Y
- / Z <£yhm | hm> dy :/ trace EZ(/”) dy.
Y Y

—_

O

The last assertion of Proposition A.7.3 states that the desired trace formula holds for the finite rank
approximations £ of £. We now will show that £ = fy Ly dy is a trace class operator under
additional assumptions on the coefficients (£, )yey. This will be done using the following result of K.
Fan.

Lemma A.7.4. Let A be a compact operator on a Hilbert space H. The sequence (s;(A))ien of

singular numbers of A can be characterised as follows: For anyn =1,2,...(< dimH) one has
maX‘Z<UA¢i|¢i> = si(A),
i=1 i=1
where the maximum is taken over all unitary operators U and orthonormal systems ¢1,...,¢n.
Proof. See for instance [GoGoKr00, Thm. IV 3.5]. O

Proposition A.7.5. Let (Ly)yecy be a family of trace class operators on a separable Hilbert space H
such that [ || Lylls, (1) dy < oo. Then the linear operator L : H — H, Lf = [, Ly f dy is a trace class
operator with

1Lls 0 < /Y 12y 1520 dy-
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Proof. For all f, g € H and an arbitrary unitary operator U on H one has

(ULs |a) = (£r |00 = [ (2,f|U%a) du= [ (U£,1]a) do

Let (v;); be a Hilbert basis in H and U : H — H be unitary. Then standard estimates yield

n
Jj=

<Uﬁvj|vj>‘ = ’i/ywﬁyvﬂvﬁ dy’
j=1

1

< /Z\<Uﬁyvj|”j>\dy
Y i3

< [ s
Yo

<

/Y 12y s, dy < oo.

Hence we have shown that for all n € N

Zsj(ﬁ) = max‘ <U£vj |vj> ’ < / 1Lyl s, (r) dy < o0
j=1 j=1 Y
and thus [|£l[s, ) = 2721 55(£) < [y 1€y lls,(n) dy < 00 and L is a trace class operator. O

Let Lf = fY Ly f dy be an operator satisfying the hypotheses of Proposition A.7.5. Let P, : H — H
be the sequence of orthogonal projections from Proposition A.7.3 (ii). Obviously, P, tends to the
identity on ‘H as n tends to infinity, hence

L= lim P,LP, = lim £™
n—oo n—oo
pointwisely. Since L is trace class, [GoGoKr00, Thm. IV 5.5] shows that the pointwise convergence
is indeed in trace norm which gives a recipe to compute the trace of A, namely
trace £ = lim trace £ = lim trace P,LP,.
n—oo n—oo
Similarly one proceeds for £,. By Proposition A.7.3 (ii) the trace formula holds for the finite rank ap-

proximations P, LP. Hence the following theorem will be a consequence of the dominated convergence
theorem A.7.1.

Theorem A.7.6. Let (Ly)ycy be a family of trace class operators on a separable Hilbert space H
such that [ || Lylls, (1) dy < oo. Then the linear operator L : H — H, Lf = [, Ly f dy is a trace class
operator with

trace £ = / trace Ly dy.
Y

Proof. By the previous considerations one has

trace £ = lim trace £ <% lim trace £§") dy

n—oo n—oo Y

and
/ trace L, dy = / trace lim EZ(/") dy = / lim trace EZ(/") dy.
Y Y Y

n—oo n—oo
We will use the dominated convergence theorem A.7.1 in order to show that both expressions are
equal.
The operators El(,n) converge to L, in trace class norm, hence the integrands converge pointwisely.

The standard estimate |trace Eé")| < ILylls,(3) gives by assumption an integrable majorant, thus the
assertion follows from A.7.1. g



168

We use Theorem A.7.6 to give a proof of Lemma 2.4.1 which we used for the proof of the abstract
dynamical trace formulas formulated in Theorems 2.4.4 and 2.4.6.

Corollary A.7.7. Let v be a Borel measure on F and (Ty)zer a measurable family of trace class
operators on a Hilbert space H with [, | Tx||s,x) dv(z) < oo. Then T : H — H, Tg:= [, Tpgdv(z)
18 a trace class operator with

™f = Ty, 0...0T,, fdv(xy)...dv(zy)

Fn

and

trace T" = / trace (T, o...0 Ty, ) dv(xy)...dv(zy).

Proof. It remains to prove the formula for 7. The basis of the induction (n = 1) is trivial. The
induction step is a consequence of the vector-valued integration, see Prop. A.7.3 (i),

ntle — " v(z) = woTy, o...oT, v(zy)...dv(z,)dv(z
1 if = [ pave) = [ [ 1ot oo T fave) . dvla,) duta)

By Theorem A.7.6 the second assertion is an immediate consequence. O
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B Composition operators

In many branches of mathematics one encounters (generalised) composition operators. These are
linear operators defined on function spaces which act by composing with a fixed self-map ¥ of the
base space and multiplying the result by another complex-valued fixed function ¢, i.e.,

(Tf)(2) = 6(2) (f o ¥)(2).

Our interest is founded in the Ruelle transfer operator (2.1.3) and the Ruelle-Mayer transfer operator
(2.3.7, 2.6.15) which are integrals over families of composition operators.

Composition operators are widely studied in the literature. One is interested in understanding the
spectrum of the operator depending on the geometric properties of the self-map 1 and the function
space on which the operator acts. In this chapter we will concentrate on trace class composition
operators and the question on which function spaces the Atiyah-Bott fixed point formula

¢(z")
det(1 — 9/(z)
holds. In Section B.1 we will deal with algebraic properties of composition operators and prove a trace
formula for a class of degenerate composition operators. Section B.2 recalls the classical formulation
of the Atiyah-Bott fixed point formula.
As we have explained in the introduction chapter, our strategy of proving the dynamical trace formula
(Theorem 2.13.8) requires a Hilbert space which is invariant under the composition operator and has
the property that the operator is trace class on it and satisfies the Atiyah-Bott formula. It turns out
that such a Hilbert space possesses a reproducing kernel. In the following we will first investigate
analogues of the Atiyah-Bott fixed point formula on function spaces over finite-dimensional domains,
and then discuss the infinite-dimensional case in Section B.4. In particular we prove that the special
class of composition operators acting on the Fock space F(¢£2N) via

(Tf)(z) = e f(Bz +b)

for some fixed a, b € 2N and B € S;(¢£?N) with ||B| < 1, is trace class and satisfies the Atiyah-Bott
fixed point formula which is a key ingredient of our proof of dynamical trace formula Theorem 2.7.6.

trace T =

B.1 Definition and elementary properties

In this section we recall the definition of a (generalised) composition operator. We show that com-
posing two generalised composition operators gives again a composition operator, we compute the
n-th (mixed) iterate of a composition operator, and prove a trace formula for a class of degenerate
composition operators.

Definition B.1.1. Let F be a set and V a space of complex valued functions on E. A (generalised)
(or weighted) composition operator is an operator T : V' — V of the form

(Tf)(2) = &(2) (f o ¥)(2),

where ¢ : E — C, ¢ : E — F are fixed functions. If the multiplication part is trivial, i.e., ¢ = 1, then
T is called a (classical) composition operator. |

Given a family of generalised composition operators acting on the same space one can form their
product. It turns out that it is again a composition operator.

Lemma B.1.2. Let E, F' be non-empty sets. Let ¢, : E — C, ¢, : E — E for each x € F. Let
T, : C¥ — CF be defined via (T, f)(2) = ¢o(2) (f 0 2)(2). Then

(Ty,0...0T, f)(2) = H(¢mk 0 Yzpiy © v 0, )(2) (f 0tey 0. 0y, )(2).
k=1

Proof. Induction: n=1v;n—n+1:

To(Ty, 00Ty f)(2) = ¢u(2) (T, 0 -0 Ty ) (Y2)

= ¢z(z) ¢zn ("/’mz) (d)mnfl © %n)(%z) s (d)ml © 1/112 ©...0 %n)(%z) (f © 1/111 0...0 %n)(%z)
[l



170

We call an expression of the form 7T, o ... o T, which appeared in the previous lemma an n-th
mixed iterate. We frequently use Lemma B.1.2 for Ruelle and Ruelle-Mayer transfer operators where
¢ = exp(Az). Then

Corollary B.1.3. Let E, F be non-empty sets. Let A, : E — C, ¢, : E — E for each x € F. Let
T, : CF — CF be defined via (Ty.f)(2) = exp(Az(2)) (f 0 ¥s)(2). Then

(Ty, 0...0T,, )(2) = eXp(Z(AIk 0 gy, O oq/;xn)(z)) (fothg o...00; )(2).
k=1
O

A rather degenerate case of a composition operator is the following, where the composition part is
constant. Such a (generalised) composition operator is nuclear and satisfies a simple version of the
Atiyah-Bott fixed point formula. In this dissertation one encounters these degenerate composition
operators in Sections 2.5 and 2.8: The high powers of the Ruelle-Mayer transfer operator for finite
range interactions are integrals over families of degenerate composition operators.

Corollary B.1.4. Let E be a topological space and V' C C(E) a Banach space of continuous complex
valued functions on E. Let ¢ € V and z9 € E be fized, and T : V — V be the composition operator
(Tf)(z) = ¢(2) f(z0). Then T is nuclear of order zero (A.3.1) with trace T = ¢(zp).

Proof. The range of T is the span of the vector ¢, hence T is a finite rank operator and thus nuclear
(of any order). From T'¢ = ¢(zp) ¢ we can read off the only eigenvalue ¢(zo) and thus the trace. The
nuclear norm of 7" is (at most) the norm of ¢. O

Combining the previous Lemma B.1.2 and Corollary B.1.4 we obtain the following simple trace for-
mula.

Corollary B.1.5. Let E be a topological space and V' C C(E) a Banach space of continuous complex
valued functions on E. Let F' be a non-empty set. Let ¢, : E — C, ¢, : E — E for each x € F. Let
T, : V — V defined via (Tpf)(2) = ¢2(2) (f o ¥z)(2). Suppose there exists n € N such that for all
choices x1,...,xn € F the map 1z, 0... 0%, : E— E is constant. Then Ty, o...oT, 1is a nuclear
operator with

trace Ty, 0...0Ty = Py o (Zay, o 2),s

where .
q):nl ..... Tn :E*)(C; ZHH(@ckOi/)zHlo O"/)In)(z>
k=1
with || Py, .. 2. || < (supyep |@ )" and where 2y, .. 4, is the (constant) value of ¥z, 0... 0, . O

B.2 The Atiyah-Bott type fixed point formula

The following sections are devoted to various versions of the following Atiyah-Bott type trace formula:
Given a contraction ¢ : U — U (we will specify the contraction later), a fixed function ¢ : U — C, let

(Tf)(2) := ¢(2) (f o ¥)(2)

be the generalised composition operator (B.1.1) associated with ¢ and ¢. We will investigate under
which circumstances (smoothness of the maps ¢ and ¢, contraction property of 1, suitable function
space) the operator T is a trace class operator (nuclear operator (A.3.1), respectively) such that the
following trace formula holds

o(=")
det(1 — /(=)

where z* € U is the unique fixed point of ¥. Note that even the trivial examples of Corollary B.1.4
and B.1.5 fit into this scheme. More precisely the above formula is the holomorphic version of the
fixed point formula of Atiyah and Bott. We will state it as Theorem B.2.4. We use the following
notion of holomorphicity.

(113) trace T' =
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Definition B.2.1. Let U C X be an open domain in some (possibly infinite dimensional) Banach
space X. A function f : U — C is called holomorphic if f € C(U) and for each finite-dimensional
affine subspace A C X the function f|any is holomorphic. The space of all holomorphic functions
with compact open topology is denoted by O(U). O

We are interested in working with composition operators on Banach or, even better, Hilbert spaces.
Hence we recall the definitions of the following spaces consisting of holomorphic functions.

Remark B.2.2. Let U C X be a bounded open domain in a complex Banach space X.

(i) O°(U) :=C*(U)NO(U) is a Banach space?® (w.r.t. the supremum norm).

In fact: Let f, € OY(U) a sequence converging uniformly to some f. Since C®(U) is complete,
the limit function f belongs to C®(U). For any finite-dimensional affine subspace A C X the
restrictions f,,|anu converge uniformly to f|anu, hence f|any is holomorphic, hence f € O(U).

(ii) A>=(U) :=C(U)N O(U) is (in general) not a Banach space.
(iii) A*°(U) is a Banach space if X is finite dimensional, since U is compact.

(iv) Let X D Uy D Uz D Us be bounded open domains, then the inclusion maps A (U;) — O°(Us),
0"(Us,) < A>(U3) are obviously continuous. O

An important step in proving Theorem B.2.4 is the following theorem (see [EH70] or [May80b, Thm.
1]) which states that a strictly contractive map has a unique fixed point.

Theorem B.2.3. (Earle-Hamilton fixed point theorem) Let U C X be an open bounded domain in
the complex Banach space X. Let b : U — U be a holomorphic mapping which is strictly contractive,
i.e. dist(p(U),X \U) > e > 0. Then ¢ has a unique fizved point z* € U and the eigenvalues of the
derivative V' (z*) are all strictly smaller than one in absolute value. O

The following theorem is the classical formulation of the Atiyah-Bott fixed point formula. It is
often attributed to D. Ruelle [Ru76], although it is quite similar to results in [AtBo67]. It has
been generalised by D. Mayer [May80a, Appendix B], [May80b] whose results we will mention in
Section B.4.

Theorem B.2.4. Let U C C* be an open bounded complex domain. Let ¢ € A>(U) and ¢ : U — U
be holomorphic and strictly contractive, i. e., (U) C U. Then ¢ has a unique fized point z* € U and
the generalised composition operator (B.1.1)

T:A*U) — A*(U), (T'f)(z) = ¢(2) (f o ¥)(2)
is nuclear of order zero (A.3.1) with trace given by the Atiyah-Bott fixed point formula

o(=")
det(l — /(=)

40This space was denoted by A% (U) in [May80a] and [May80b].

(114) trace T' =

Figure 11: A strictly contractive map
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Proof. (Idea): The easiest proof uses the nuclearity of the space O(U) and the boundedness of all
maps in the following diagram (¢ denotes the embedding)

AR (U) & o) L2 qoo ) L2 (.

Hence A is nuclear. Using an explicit nuclear representation one shows that £ is nuclear of order
zero, hence we can apply Grothendieck’s 2/3-trace theorem A.3.2: trace £ = Y. \;(L), where \;(L)
are the eigenvalues of £. Differentiation of an eigenfunction at the fixed point z* of 1 determines the

possible eigenvalues of £: spec(L) C A := {0} U {&d(z*) piy - --- - s, | k € N, p; € spec(y’'(z*)}. To
show spec(L£) D A it suffices to find for each A € A a function g which is not in the image of £ — A.
In the case of A*(U) and A\ = ¢(2*) piy - ... - pi,,, one chooses g € A*(U) such that

D"g(z*)=0forr=0,...,k—1 and Dkg(z*)(eil,...,eik) # 0,

where e; is the eigenvector of 1)/ (2*) corresponding to the eigenvalue y;. By the Earle-Hamilton fixed
point theorem B.2.3 the eigenvalues of ¢’(z*) are all strictly smaller than one in absolute value, which
makes a geometric series convergent and thus the trace formula. o

Remark B.2.5. Note that the space O(U) with its usual compact open topology is nuclear if and
only if the dimension of U is finite, [Sch75]. Hence the proof of Theorem B.2.4 does not work in
infinite dimensions. - The above proof fails even in the finite-dimensional case, when one tries to
replace A= (U) by O°(U). O

B.3 The trace formula on the Fock space

In this section we prove a trace formula for a certain class of composition operators where the com-
posing part is a global contraction. Provided that the coefficients ¢ and v are entire functions we
show that the eigenfunctions of the composition operator extend to entire functions and satisfy certain
growth conditions. This permits to show that the Atiyah-Bott fixed point formula also holds on a
much smaller space of functions. A typical application are composition operators of the type

T : F(C™) — F(C™), (Tf)(z) = e f(Bz + b)

for some fixed a, b € C™, B € Mat(m,m;C). These operators appeared in Theorem 2.7.6 and will
be investigated in the second part of this section. Using reproducing kernel techniques (see A.4) we
will determine a formula for the trace norm for these composition operators. We start with a little
proposition on the invariant sets of a contraction. It states that sufficiently large balls are invariant
and each point is attracted by a neighbourhood of the fixed point in a finite number of steps because
of a Banach fixed point argument.

Proposition B.3.1. Let 0 < ¢ <1 and ¢ : X — X be a function on a normed spaces (X, || - ||) with

[4(2) = Y (w)] < qllz —wl|
for all z, w e X. Then v is called a (global) contraction. Set

14 0)]l
115 ro = ———.
(115) e O
Then for all v > 1o the closed ball K, = {z € X; ||z|| < r} is Y-invariant, moreover ¥ (K,) C
Ky jp)) C K. Forall T > 1 and all 2 € X there is an index ng € N such that
(Vm >no) ™ (2) € K.,
where (™) :=1po ... o01p (m-times) is the m-th iterate of 1.

Proof. Let r > rg and |z| < r. Then

[ < 1o (2) = PO)] + [[PO)] < g llzll + 1L O)] <7
shows that 1 (z) € K, for all z € K,. Let r > ry. Since 0 € K,,, hence also ¢(™)(0) € K,, by the
In(5=0)

first assertion. For any z € X, m > ng > we have

[N < [90E) = ™ O + [ O] < g™ 2l +70 <7
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We will now study composition operators (T'f)(z) = ¢(z) (f o 9¥)(z) whose composition part ¥ is a
globally contracting map. We will apply these results for the Ruelle-Mayer transfer operator which is
an integral over a family of composition operators, each of them with an affine globally contracting

map .

Proposition B.3.2. Let (X,| - ||) be a normed space and K, :={z € X; |z|| <r}. Let: X — X
be a contraction in the sense of Proposition B.3.1, and ¢ : X — C a continuous function. Let r > rg
with ro as in (115), and T be the generalised composition operator

T:C(Ky) — C(Ky), (T'f)(2) = (2) (fot)(2).
(i) Let g € C(K,), then Tg belongs to C(Ks,) with 6 > 1.
(ii) Fvery eigenfunction of T for a non-zero eigenvalue belongs to C(X).

Proof. If z € K, then
!
()| < qré +[[90)] <,
if § < =IOl gince “OU > 1 one can choose § > 1. Let f € C(K,) be an eigenfunction of T'

rq rq
for a non-zero eigenvalue p. Hence by iterating relation (i) n-times we get f = p~"T"f € C(Kgn,) for
some 0 > 1. Hence f € C(X). O

Given a composition operator which satisfies a trace formula on a certain function space one is often
interested in finding a smaller space which contains the eigenfunctions to non-zero eigenvalues. We
will assume that the composing part is a contraction in the sense of Proposition B.3.1. By the previous
Proposition B.3.2 the eigenfunctions extend to the whole base space. If the coefficients ¢ and v are
smooth, then also the eigenfunctions will be smooth as well. Moreover, they satisfy certain growth
estimates. This growth estimate can be used to form a weighted L?-space on which the operator acts.

Lemma B.3.3. Let ¢ : C™ — C™ and ¢ : C"™ — C be entire functions, and v a contraction in the
sense of Proposition B.3.1. Let T be the composition operator acting via

(T'f)(2) = 6(2) (f 2 ¥)(2).
Let v > 1o with ro as in (115) and f an eigenfunction of T : A®(B(0;r)) — A>®(B(0;r)) for a
non-zero eigenvalue p. Then f is entire and there exist c1, ca > 0 such that for all z € C™

F) < =7 sup [f(w)] max [p(e2))|= ™=,
lw|<r t€[0,2m]

Moreover, if A2(U) := O(U) N L*(U,dz) denotes the Bergmann space, then
trace g0 (1" = trace g2(p)T
for all Y-invariant bounded domains U C C™.

Proof. The operator T leaves the Banach space A (B(0;r)) invariant. Let f be an eigenfunction of
T : A>®(B(0;r)) — A*°(B(0;r)) for a non-zero eigenvalue p. For n € N we have f = p~" T" f which
by (B.1.2) is given as

n—1

FE) =p " [T (@0 ™)(2) (f o ™)(2),

k=0

where (%) is the k-th iterate of ¢». As in Remark B.3.2 (ii) one shows that f is entire, thus belongs
to A?(U) for all bounded domains U C C™. Hence every eigenvalue of T'|ge () belongs to the

spectrum of T'| 42(ry, thus by Lidskii’s Trace Theorem the traces coincide. Let r > rq = w and
In(L=ra
z € C? with |z|| > ro. Choose n(z) = "(11"17‘;“)-‘ One can find constants ¢1, ca > 0 such that
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ciln|z|| < n(z) < czln 2| for all ||z]| > 79. Remark B.3.1 implies that ||¢)((*))(2)|| < r, and hence

n(z)—1
@ = 17O | T @oe®™))||(f 0@ (2)]
k=0
n(z)—1
< ol swp @) s | ] (@0 9®)w)]
[w|<r lwll<lzll " =
< JpI™™ sup [f(w)] sup |g(w)["
[w|<r lwll <zl
< ol sup | fw)] supfg(w)|e e
lw|<r llwll <2l

By the maximum principle of complex variables we know that the supremum sup, <. [¢(w)| is
attained for some w with ||w| = ||z]|.

We now apply Lemma B.3.3 to a certain class of composition operators acting on the Fock space
F(C™) in finitely many variables as defined in Example A.4.5 (i).

Theorem B.3.4. Let b € C™, A € Gl(m;C) with ||A] < 1, and ¢ : C™ — C an entire function
which can be estimated by |¢(z)| < cexp(al|z||) for some constants a, ¢ > 0. Let T be the composition
operator given by

(Tf)(2) = &(2) f(Az +b).
Then T : F(C™) — F(C™) is a trace class operator with

¢((1—A)"'b)

trace F(cm)T = trace g (oI = dot(1— &)

for all B(0;r) := {z € C™ | |[z]| < r} with r > {5l

Proof. The affine map ¢ (z) = Az + b is a contraction with ¢ = ||A|| < 1 and rg = Jlﬁk”. We claim

that the Fock space F(C™) is a T-invariant Hilbert subspace of A (B(0;r)) for any r > rg = %.
In fact, for f € F(C™) the standard estimate (A.4.4) yields

2 2
e—mlzl? g

N O
< Cz/ 2= | £(Az + )2 eI g
< 02||f||2/ G2allzll grllaz+bl? =zl g,
(CTVL
<

Hf”2 (C +/ e2allzll =m(=lIal®)ll=I? dz) < 00.
Cm\B(0;r)

Thus T'| £(cm) is a nuclear map on a Hilbert space, and hence of trace class. Let f € A*(B(0;7)) be
an eigenfunction of T' corresponding to a non-zero eigenvalue p. By Lemma B.3.3 the eigenfunction f
satisfies the estimate

[F(2)* exp(=rl2]*) < |2 7™ exp ((a 2]l +Inc)ez Inz]]) exp(—ml|2]|*).

This upper bound is Lebesgue-integrable on C™, and thus f belongs to F(C™). This shows that
every non-zero eigenvalue of T'| 4o (p(0;r)) is an eigenvalue of T'|zcmy, hence the traces coincide and
by Theorem B.2.4 they have the stated value. O

The assumptions made in Theorem B.3.4 on the multiplication part ¢ : C™ — C imply that ¢ belongs
to the Fock space. We disbelieve that the assertion is true for all ¢ € F(C™). A typical application of
Theorem B.3.4 is the case where the multiplication part ¢ : C™ — C is given as ¢(z) = p(z) exp((z|a))
for some polynomial p € Clz1, ..., z,] and a € C™.

We add a remark concerning the proof of the previous theorem.
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Remark B.3.5. Let b € C™, B € Gl(m;C) with ||B|| < 1, and ¢ : C™ — C an entire function
which can be estimated by |¢(z)| < cexp(alz|) for all z. Let T : F(C™) — F(C™), (Tf)(z) =
@(2) f(Bz + b). By Theorem B.3.4 the composition operator T is trace class and satisfies the Atiyah-
Bott trace formula. Of course one would like to have a direct proof for the trace formula. There are
two other ways to compute the trace:

(i) Choose an orthonormal basis (eq)q in F(C™) and determine

trace T = Z(Tea|ea>.

(ii) T is a bounded operator on F(C™) and hence, by the reproducing kernel property A.6.1, can
be written as an integral operator with integral kernel kr(z,w) = ¢(z) exp(n(Bz 4 b|w)). If ¢
can be estimated by |¢(z)|c exp(al/z||), then the kernel is rapidely decaying. Hence by [CoGr90,
A.3.9] the trace is given as the integral over the diagonal

trace T = /m kr(z,2) exp(—n||z|*) dz = /(Cm #(2) exp(m(Bz + b|z)) exp(—7||z|*) dz

O

In principle both ways described in Remark B.3.5 can be used to obtain a direct proof of Theo-
rem B.3.4, but we can carry out these ideas only for a special class of linear maps B : C™ — C™,
namely if B is normal (semisimple), see Propositions B.3.6 and B.3.9.

Proposition B.3.6. Let ¢ : C™ — C™, 1(z) = Bz + b such that the linear part B is normal and
IB|| < 1, and ¢ € F(C™) such that pp € F(C™) for all polynomials p € C[z]. Then one has the fized
point formula

_ cte) gl g, _ O $((1L-B)"'b)
(116) trace T — . ¢( ) m(Bz+b|z) ll= dz = det(l—w’(z*)) = det(l —B) )

where z* = (1 — B)~'b is the unique fized point of v and T : F(C™) — F(C™) is the composition
operator acting via (T f)(z) := ¢(2) (f o ¥)(2).

Proof. We compute the trace via Remark B.3.5 (ii). By change of variables we can assume that
B = diag()\;) with respect to the standard basis. We use the standard basis (Ca)aeny of the Fock
space given in Example A.4.5. Observe that

(Caow)(z)=[8z+b \/7HAzl+b :\/;ﬁi()mz)b?ik.

Let ¢(z) = ZQGNSL dq 2% be the Taylor series expansion of ¢. Hence by formal calculation we obtain

(Tealea) = () (Ca 0 ¥)(2) Calz) eI dz

C‘rn,

[
]
i

o~
s
]

lo% . , . 2
(k:z) (Aizi)k b?’ k zfl ZiVe =17 g,
BENT ’ " i=1k=0

m (e 77 o
N (67 krai—kT ‘ k+Bi—a; 77r\z.;|2 )
= E % II E (kz A7 by o Czi Zite dz;
BeENT  i=1k=0

m o

> o]l (i’z) YO8 B

BeNr  i=1k=0

The latter step follows from the orthonormality of the basis (,. The formal calculation holds, since for
every f € F(C™) its Taylor series converges to f in F(C™)-norm and we assumed that (, ¢ € F(C™).
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The series in the following are absolutely convergent, since |A;] < 1, hence we can interchange the
summation order to get

S el = 33 aa]IY ()0 v
aENp aeN BeND'  i=1k=0

= > > ds > H(O%))\k b Gt e

QENI BeENT'  keNp i=1

- Y ey H(k +BZ)A’“ b

BEND  keNp i=1

- Y ullY (k*,;ﬁi)vbfi

BeENG i=1k€eNp

Z ¢QH 17 ﬁz_lbﬁl

BENG i=1

where we finally used the series representation
= [m
g =3 (M) e
n=0

for |g| < 1 and the convention (’:) = 0, whenever n > m. Using the explicit form of the fixed point
2* = (1 —B)~1b, which is the vector with entries (1 — \;)~!b;, one can write down the right hand side
of equation (116) as

BENT"

110~ DI | (CESURT

BENG i=1

Z ¢ﬁ H ) Bw—lbﬁw
BENT

i=1

O

Remark B.3.7. Let ¢ : C™ — C™, 1(z) = Bz + b such that the linear part B € Mat(m,m;C)
satisfies ||B|| < 1, and ¢ € F(C™). Then our direct approach of Proposition B.3.6 fails to prove the
desired fixed point formula (116) caused by the dramatically increasing complexity. We suggest the
following idea: Find an interpretation of (116) via theory of complex variables, or Gauss-Green-Stokes
theorem to prove the conjectural formula

z ez 2 _ ¢((1 _B)ilb)
[ oer r(Ba+blz) g—rllzl? g, A

without nasty computation. O

We will now specialise to a certain class of composition operators, namely those acting via
(117) Kapa s FC™) = F(C™), (Kapaf)(z) = ™4 f(Az + )

for some fixed a,b € C™, A € Mat(m,m;C) with ||A|] < 1. They arise as (parts of) Ruelle-Mayer
transfer operators which we intensively studied in Section 2.7. There we needed precise information
about the spectrum of K, ; o and in particular a formula for its trace norm which we will derive
in the sequel. In the notation of Chapter 5 (94) we have Kgpa = Lrapa. In this chapter the
usage of the hermitian inner product < | > and hence of K, 4 seems to be preferable. First we will
investigate the composition law for such operators. Then we use the reproducing kernel techniques
from Proposition A.6.2 and compute the Hilbert space adjoint (Kgqpa)* of Kqapa. This allows to
determine the selfadjoint and the positive operators belonging to that class.
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Proposition B.3.8. For a,b € C™, A € Mat(m,m;C) with ||A|| < 1, let Kqpa : F(C™) — F(C™)
(117) be the corresponding composition operator. Then (Kqpa)* = Kpa,a+ and

m(bilaz) g

Icalqblqulcabe%AZ =e a1+Afaz,A2bi+ba,A2A;

for all a;, b; € C™, A; € Mat(m,m;C) with ||A;]] <1 (i =1,2). Kapa is selfadjoint if and only
if A is selfadjoint and a = b. If A is positive and a = b, then K, o belongs to the cone of positive
composition operators.

Proof. For all f € F(C™) one has

(Ica1,b1,/\1K:U«27b2,A2 f)(Z) = eﬂ(z\aﬁ (Icag,bZ,AZf)(bl + A1z)
= r(zlar) pmlbitArzlaz) f(Ag(Alz + bl) + b2)
67"<b1|02> eﬂ'(z|a1+AIa2> f(AQAlz + Aoby + bg)

Using the reproducing kernel property A.6.1, the operator K := g p o is uniquely determined by its
integral kernel

fic(2,w) = e™E19 TAHID — exp(n((z]a) + (bfu) + (Az]w))),
from which one easily gets the integral kernel
kicr (z,w) = kx(w, z) = eXp(ﬂ'(<Z|b> + (aJw) + (A*z|w))) = exp(7(z|b)) exp(m{a + A*z|w))

of its adjoint K*. In particular, (using the properties of the reproducing kernel k(x,y) = exp(n(z|y))
of the Fock space) the operator K* acts via

(IC*f)(z) :/ eﬂ'(Zlb> efr(a-i—/\*z\w} f(w) e—TerH2 dw = efr(z\b) f(a+A*z),
ie. (Kapa)* = Kpa,a- Hence K is selfadjoint iff A is selfadjoint and a = b. A compact selfadjoint
operator is positive iff all its eigenvalues are positive. By the proof of Theorem B.2.4 we know that
the spectrum of Ky o is contained in {0} U {p(2*) pi, - ... - i, | k € No, pj € spec(y'(2¥))} where
B(z) = eI 4p(2) ;= Az + b, 2* = (1 — A)~'b. Thus

spec(Kppa) C {0} U {e“<(1*A)7lb‘“> fhiy + - i, | k€ No, pj € spec(A)}.

If A is positive, then (1—A)~! is positive and thus all eigenvalues of K o are necessarily positive. [

Proposition B.3.9. Let A € Mat(m, m; C) with ||A|| < 1 be positive, A = A* > 0, and 3 € C™, then
the corresponding composition operator Kgg.a : F(C™) — F(C™) (117) is positive and trace class
with
exp (| (1 = 4)~1/25]?)
t IC = IC m - .
race Kg,ga = [[Kg,gals, (7cm)) det(1 = )

Proof. The operator Kg g, is positive by Proposition B.3.8. Hence the trace norm of Kg g A is equal
to the trace, which is given by the Atiyah-Bott fixed point formula. We give an alternative proof
which uses the fact that A > 0, hence we can apply Proposition A.5.1:

trace ’Cﬁ,ﬂ,A = / 67"<Z\5> eﬂ'(AZJrﬁ\Z)ewazHZ dz
_ / (4180 2 gmIVES? g=rl=1F g g
A3 det(1 fA)*leXp(ﬂH(l 7A)71/25”2)

= det(1—-A)"! exp(ﬂ((l — A)”ﬁlﬁ))
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We now use the previous lemmas to to determine a formula for the trace norm of the composition
operator K, .4 introduced in (117). Given such a composition operator K = Iy o we will determine
its positive part || = v/K*K which happens to be composition operator of the same type as . Hence
we can compute the trace of || via the Atiyah-Bott fixed point formula.

Lemma B.3.10. Let B € Mat(m, m;C) with ||B|| < 1, a, b € C™. Set
Ar =B = VBB, f1 = (1+[B) ™ (Bb+a), 11 = exp(S (b2 — 11]%))

and

Ao = VBB, 2 = (1+ VBE) ™ (Ba+b), 72 = exp( 5 (lal* — 132]%)).

Let K := Kapp and K; := v, Kg, g, .a; : F(C™) — F(C™) (i =1,2) be the corresponding composition
operators (117). Then K1 = VKK*, Ky = |K| = VK*K, and

Zllal? + Z]|(1 — BB*)~Y/2(Ba + b)|?
- (mm))exp(QHan FEI0-BB)ABat ) exp(rl1 007 25F)
! det(1 — |B|) det(1 — A;)

fori=1,2.

Proof. The composition operators K; : F(C™) — F(C™) (i = 1, 2) are positive by Proposition B.3.9.
We will compare the squares (K;)? with K* and K*K given by Proposition B.3.8. For all f € F(C™)
one has

(K2f)(z) = 7 eI encl0emDm p(A22 4 (14 A0)B),
(lClC*f)(z) — ew||b”2 eﬂ—<z\]B§*b+a) f(B*BZ +B*b + a),
(K*'Kf)(z) = ellall gm(z[Ba-+b) f(BB*z + Ba + b).

For A1, 31, 71 chosen as above we get (K7)? = KK*, hence K1 = v/KK*, which concludes the first part
of the proof. Similarly, for A, B2, 72 chosen as above we get (K2)? = K*K, i.e., Ky = |[K| = VK*K.
By Remark A.2.3 the trace norm of K is equal to the trace of K;, which is given by Proposition B.3.9.

For a better understanding of v, exp (7‘(”(1 - Ag)*l/QBQHQ), we compute

2[[(1 = Ag) 282> — [|3a|®

= 2|1 — VBB*)"2(1 + VBB*) "' (Ba + b)||> — ||(1 + VBB*) "' (Ba + b)|?

= (201 — VBB*)"! — 1)(1 + VBB*) "} (Ba + b)|(1 + VBB*) "} (Ba + b))

= {((1+VBB*)(1— VBB*)"'(1+ vBB*)}(Ba + b)|(1 + VBB*) "' (Ba + b))
(1 —VBB*)~'(1 + vBB*) ! (Ba + b)|Ba + b)
(1 — BB*)"'(Ba + b)[Ba + b)

= (1= BB*)"*(Ba+b)[*

_ 7r ™ .
Hence 7 exp(7|(1 = A2)™/20:)12) = exp( 5 llal® + S (1 — BE") /2 (Ba +b)|?). 0

With some approximation arguments the result of Proposition B.3.10 can be extended to the infinite
dimensional setting, which we will present in Theorem B.4.3.

B.4 Spectral properties of composition operators: infinite-dim. case

In this section we will deal with composition operators acting on function spaces over infinite-
dimensional domains. In 1980 D. Mayer published his results [May80a] and [May80b] on composition
operators acting on O°(U) where U C B is a bounded open domain in a complex Banach space B. We
will specialise to a special class of composition operators acting on the Fock space F(¢?N) in infinitely
many variables via

Kapp : F(PN) = F(ON), (Kopnf)(z) =™ f(Bz +b)
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for some fixed a, b € (N and B € S;(¢2N) with ||B|| < 1. In Theorem B.4.3 we prove the analogue
of Lemma B.3.10 in the case of F(¢?N) and thus determine the trace and the trace norm of such
operators Kg p 5.

Our strategy for proving the Atiyah-Bott type fixed point formula (Theorem B.4.3) is to show that a
given composition operator K on F(¢£2N) can be approximated by a sequence of composition operators
K, which act on F(C™). The following lemma provides the tools how to embed F(C™) into F(¢2N)
and how to project down from F(¢?N) to F(C™). The proof uses the characterisation of the Fock
space F(¢°N) given in Theorem A.4.8.

Lemma B.4.1. (i) Let ¢, : C* — 2N, (z1,...,2,) = (21,...,2n,0,...) be the embedding of C"
into >N. Then the orthogonal projection C,, : F(£*?N) — F(C") C F(£?N), f > fouy, is linear
and continuous.

(ii) Let pr, : ’N — C", z = (21)x — (21,...,2n) be the projection onto the first n components.
Then the embedding Cp, : F(C") — F(€?N), f — fopr, is linear, continuous, and the adjoint
of Cpfn'

111 e sequence U, CONVETgEs pointwise 1o € iaentity 1a on as n — Q.
iii) Th C.,, intwise to the identity id on F(¢*N

Proof. C,, : F({?N) — F(C") C F({*N), f+ fou, is linear and continuous, since
1C fllreny = f o tullFcny < sup || f o tmll7emy = | fll 7(em)

by Theorem A.4.8. For all f € F(C™) one has

(ConCon, Do) = (T 005, ) e 0) = { J50 B =
Hence for all g € F(C™)
1Cor, 9ll F(e2n) = 117}111 llg o pr,, o tmllFcmy = llgllFcr
and thus [|Cp,, || = 1. For all f € F(C") and g € F(¢>N) one has
<Cprnf|9>f(e2N) = h,{fl (C.,.Cor, [ CLm9>f(Cm)

= lim [ f(z0) (e, 0) ™o 1"z,

mzn Ccm

= lim f(zn) / g(zn; 2, 0) 671'”2’”2 ds! €7T||Zn||2 dz,
Cn m—n

m>n

m>n

= lim f(zn)/ 9(zn, 2/,0) em 01z emll=’lI* g2/ emlenl® gz,
Cn m—n

m>n

— lin [ 7o) T 0.0 I d,
(Cn
= f(zn) 9(2n,0) emllznll? dzn,
CTL

= f(zn) (9 o Ln)(zn) eﬂnznnz dzy,
CTL
= (flgo L”>]—'((C") =(f| CLng>_7—'(C"')’

which shows that Cp,, and C,, are adjoints of each other and ||C,, || = 1. Hence C,,, is an orthogonal
projection. Let f € F(£2N). Given € > 0, we can find a polynomial g such that ||f — g||F2n) < e
Then

1C., f = fllreeny <O (f = DllFeeny +11Cg — gllF@eny + 1f = gllFeeny < 26+ (1Co g — gll 7 ey

We have to show that ||C,, g — gl| #(2n) — 0 as n — oo for all polynomials g. Observe that for m > n
one has

(tn 0T, 0 1) (Zm) = (21,0) = 1n(2n) € £2N.
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Hence, for all m greater than the number d, of variables of g, one has g o v, = ¢g. Thus

1C. 9= gllFeen) = lim IC...Cpr, C..g — Co.gll 7cm)

li — -
ol Mgt Pty 0 tm = g0 tm|lF ()
= |[lgown— QHF(Cm)
tends to zero as n goes to infinity. O

Using the operators C,,, and Cp, ~we can “sandwich” a given operator K on F(¢°N) to obtain an
operator K, := C,,, o KoCp, on F(C™). The following proposition gives an explict formula for /C,,.

Proposition B.4.2. Let a,b € (’N and B € S;(¢?N) with |B|| < 1. Let
K : F((?N) — F(€°N), (Kf)(z) = €™l f(Bz +b)

be the corresponding composition operator. For all m € N let B, := pr,,Bt,, € Mat(m,m;C),
A = Pr,,a, and by, :=pr,,b € C™. Then Ky, :=C,,, 0o Ko Cy, =C,, oKoC acts via

(Ko f)(zm) = €™ 19m) £ (Byzim + bin),
i.e. Ky =Ka,, b B, If KK is positive, then Ky, is positive.
Proof. Let f € F(C™), then
(K f)(zm) = (¢ © tm)(zm) (f © DLy 09 0 1) (2m) = ™m0 (f 0 pr ) (Bl 2 + b)

together with (u,,)* = pr,, shows the stated formula. Since C} = Cp, by Lemma B.4.1, with K is
also IC,,, positive. O

We are now prepared to prove the main theorem of this appendix which is one of the key ingredients in
our construction of trace class Ruelle-Mayer transfer operators satisfying a dynamical trace formula
(Theorem 2.7.6). It yields the Atiyah-Bott fixed point formula for a special type of composition
operators and a formula for their trace norm, which in general is difficult to determine.

Theorem B.4.3. Let a,b € (N and B € S (*N) with |B|| < 1. Let
K : F(PN) — F(?N), (Kf)(z) =™ f(B2 +b)
be the corresponding composition operator. Set

A= VBB, 8= (1+VEB) ' (Ba+1), 7 = exp( 2l ~ |5]7))

and K : F(1?N) — F(?N), (Kf)(z) :=~ve™ 8 f(Az + B). Then K = |K| = VK*K,

exp( 3 llall® + 5II(1 — BB*)~/*(Ba + )|
K Y 1— A)-L/23)2
1K, ny) = THTTE] = g el - 072812,
and IC is trace class with
exp(m((1 — B)~'bla))

det(1 — B)

trace IC =

Proof. As in Lemma B.3.10 one gets K = |K| = vVK*K. It remains to show that the trace norm of
KC, i. e., the trace of K is finite. By change of variables we can assume that the positive operator
A : /2N — /2N is indeed diagonal with respect to the standard basis. Let (,(z) = \/% z“ be the

orthonormal basis (o € |J,,en Ni*) of the Fock space F(¢*N). For all m € N the set {{, |a € Nj'} is
an orthonormal basis of F(C™). Hence, using the orthogonality of C,, (Lemma B.4.1), we get

tm

(K| ) gy = (oK G| )y = (Con Ko | Cona) ey = (Ko | )y
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where K,, : F(C™) — F(C™) is given by Proposition B.4.2 as (K, f)(zm) = v e™#n8m) f(Apzm +
Bm) with Ay, := pr,, Aty € Mat(m, m;C) and B, := pr,,,3 € C™. Hence

o (7l = M) T2
Yo (KalCa)= Y (Knlal|Ca)piom = trace K = v ( det(I— A,) )’

aeNy aeNg

where we have applied the Atiyah-Bott formula from Proposition B.3.9 at (x). As m goes to infinity
we obtain the trace of K:
trace K = lim Z (Kol Ca)

m—00
aeNg

L R0l 80) 20 )
m—o0 det(1 — Ay)
@ exp(rl(1—2A)"25]%)
det(1 — A)
exp(5llall? + 311~ BB*)~1/2(Ba + b)|?)
= < .
det(1 — [B) o

For () we used Lemma B.4.1 together with [GoGoKr00, Thm. IV 5.5] showing that the pointwise
convergence A, — A is in trace norm such that the limit exists. Thus K and K are trace class.
By Lemma B.4.1 the sequence of trace class operators K, := C,,, o Ko Cp ~ converges to K. By
[GoGoKr00, Thm. IV 5.5] this convergence is in trace norm, hence

trace X = lim trace K,,
i exp(m (1 = Bp) o | am))
m—oo det(1 —B,,)

exp(m ((1-B)"'b|a))
det(1 — B) ’

—
*

)

where (%) is the Atiyah-Bott fixed point theorem for each m combined with Proposition B.4.2. O

As a corollary we obtain an exact formula for the Hilbert-Schmidt norm of a generalised composition
operator of the form ICy ; o. We will use this result in our proof of the dynamical trace for the matrix
subshift (Theorem 3.2.6).

Corollary B.4.4. Let a, b € (N and B € S;(¢*N) with |B|| < 1. Let
K : F(PN) — F(N), (Kf)(z) =™ f(Bz +b)
be the corresponding composition operator. Then

: exp(rlall + 7l|(1 ~ BE*)V2(Ba + b)?)
IKIs, (Fe2my) = det(1 — BB*) '

Proof. We will use that HICH?%(}.(EZN)) = trace KK* together with Theorem B.4.3. By the arguments
as in the proof of Lemma B.3.8 one has

(K*Kf)(z) = emllall” g (=[Ba+) f(BB*z + Ba + b).
Hence the assertion follows from the Atiyah-Bott fixed point formula from Theorem B.4.3. |

We remark that for the above Corollary B.4.4 the preassumption |B| € Sz(¢2N) would be sufficient,
since in this case |B|?> = B*B € &; (¢°N).

As an immediate consequence of the preceding Theorem B.4.3, the canonical isomorphism F((¢2N)") =
F (KQN)®”, and the properties of the tensor product of operators we obtain the trace and the trace
norm of certain tensor products of composition operators. These are used as building blocks of Ruelle-
Mayer transfer operators for Ising type interactions. The stated trace norm formula is the reason that
we cannot deal with interaction matrices which are not of Ising type as we point out in Remark 2.13.9.
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Corollary B.4.5. Let a;, b; € >N and B; € S;(¢*N) with ||B;|| <1 fori=1,...,n. Let
Ki: F((PN) — F(N), (Kif)(z) = €™l f(B;z + b;)

be the corresponding composition operators. Let K, =K1 ®...® K, : F(((*)N") — F(((*?N)"),

n

(Knf)(z1,. oy 2n) = exp(ﬂ Z(zz|az>) fBiz1 +b1,...,Bpzn +bn)

i=1
be the tensor product of the IC;. Then

15 exp((§ i (ladl® + 111~ BBf)~/2(Bias + b)]1%)
nllsy(F((e2nn)) = [T, det(1 — [By|)

and K,, is trace class with

exp(m 301, (1 = Bi)~'bilai))

t Kn = n
race T, det(1 — B,)
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multiindex operations, 159 Ruelle-Mayer transfer operator, 66, 70, 77, 79
multiplication operator, 142 for Ising type interaction, 101, 107
for matrix subshift, 105, 107
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