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Abstract

In this thesis the global structure of three classes of algebraic triangulated categories
is investigated by describing their thick, localizing and smashing subcategories and by
analyzing the Smashing Conjecture. We show that the Smashing Conjecture for the stable
module category of a self-injective artin algebra A is equivalent to the statement that a
class of model categories associated with A is finitely generated. Smashing localizations
of the derived category of a differential graded algebra are realized by morphisms of
dg algebras. We use this theory to define a localization of a dg algebra with graded-
commutative cohomology at a prime ideal of the cohomology ring. For a hereditary
abelian category A we classify the thick subcategories and the localizing subcategories of
the bounded and unbounded derived category of A, respectively. As an application we
prove that the Smashing Conjecture holds for the derived category of a hereditary artin
algebra of finite representation type.

Zusammenfassung

In dieser Arbeit wird die globale Struktur von drei Klassen algebraischer triangulierter
Kategorien untersucht. Daflir werden dicke, lokalisierende und smashing Unterkate-
gorien beschrieben und die Smashing Conjecture wird analysiert. Wir zeigen, dass die
Smashing Conjecture fir die stabile Modulkategorie einer selbstinjektiven Artin Alge-
bra A &quivalent dazu ist, dass eine Klasse von Modellkategorien, die zu A assoziiert
ist, endlich erzeugt ist. Smashing Lokalisierungen der derivierten Kategorie einer dif-
ferentiell graduierten Algebra werden als Morphismen von dg Algebren realisiert. Diese
Theorie wird benutzt, um die Lokalisierung einer dg Algebra mit graduiert-kommutativer
Kohomologie an einem Primideal des Kohomologierings zu definieren. Des Weiteren wer-
den die dicken und lokalisierenden Unterkategorien der beschrankten beziehungsweise der
unbeschrankten derivierten Kategorie einer erblichen abelschen Kategorie klassifiziert.
Als eine Folgerung zeigen wir, dass die Smashing Conjecture fiir die derivierte Kategorie
einer erblichen Artin Algebra vom endlichen Darstellungstyp wahr ist.
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1 Introduction

In this thesis we study subcategories of triangulated categories and their finiteness prop-
erties that are related to the Smashing Conjecture. In particular we reformulate this
conjecture for stable module categories, describe smashing subcategories of the derived
category of a differential graded algebra, classify the thick and localizing subcategories of
the derived category of a hereditary abelian category and prove the Smashing Conjecture
for the derived category of a hereditary artin algebra of finite representation type.

A ring is a fundamental object in mathematics. It is a set together with a rule how to
multiply and add elements. Interesting rings arise for instance from physics as endomor-
phism rings of Hilbert spaces, from number theory as rings of integers and from topology
as the ring of stable homotopy groups of spheres. Many of these examples are very large
and complicated. Since it is in general not possible to describe them easily as in terms
of generators and relations, tools are needed to extract information from a ring. These
tools are algebraic invariants as the center or more generally the Hochschild cohomology,
or the Grothendieck group and its generalization, the algebraic K-theory. The center of
the endomorphism ring of a configuration space contains the simultaneously measurable
observables. The Grothendieck group controls parts of the representation theory of the
ring and the higher algebraic K-groups contain deep number theoretic information.

Since we want to distinguish rings, the following question comes up: When do two
rings R and S share the same properties, that is, agree in the algebraic invariants? To
a given ring R it is possible to assign a triangulated category D(R), the derived category
of R, which can be used to give an answer to the question. Two rings share the same
properties if their derived categories are equivalent. So the derived category of a ring can
be thought of as a “higher invariant” and motivates the study of triangulated categories.

The concept of a triangulated category is ubiquitous. In ring theory and homological
algebra it arises as the derived category of a ring, in algebraic topology as the stable
homotopy category, in representation theory of groups as the stable module category of a
group algebra and in algebraic geometry as the derived category of sheaves on a scheme.

Classification is a main purpose of pure mathematics. For instance in representation
theory we are interested in classifying all modules over a fixed ring R. It is known that
the overwhelming part of rings is wild in the sense that it is not possible to determine all
modules simultaneously. Triangulated categories provide a framework to classify objects
in a weaker way. Two objects X and Y in a small triangulated category 7 are considered
to be related if they generate the same thick subcategory, that is the collection of objects
in 7 that can be constructed by the ambient structure of 7 starting with X. Since
R-modules can be considered as objects in the derived category of R a classification
of the thick subcategories leads to a classification of the R-modules. In a triangulated
category with small coproducts the localizing subcategories are the analogs of the thick
subcategories and are hence worth classifying.

If a localizing subcategory C of a triangulated category 7 gives rise to a localization
functor L: 7 — 7 such that C is the full subcategory of the objects that are annihilated
by L and if L commutes with small coproducts, then the category C is called smashing.
It is known that if C is of finite type, i.e., generated by compact objects in 7, then it is
smashing. The Smashing Conjecture for a triangulated category with small coproducts
T states the other direction: every smashing subcategory of 7 is of finite type. This
conjecture originates from topology. The Smashing Conjecture for the stable homotopy



category is a generalization of the Telescope Conjecture of Ravenel [Rav87b, 1.33] which
has important consequences for the computation of the stable homotopy groups of spheres.
Another reason for studying the Smashing Conjecture is its impact on non-commutative
localization of rings and algebraic K-theory.

The stable module category Mod(R) of a Frobenius algebra R is triangulated and pos-
sesses small coproducts. If R is artinian, then the Smashing Conjecture for Mod(R) is
equivalent to the statement that certain cotorsion pairs are of finite type [KS03]. Fur-
thermore there is a connection between cotorsion pairs in Mod(R) and associated model
structures on the module category [BR02, Hov02]. In fact every cotorsion pair X gives
rise to an associated model category Mod(R)x. In this thesis we extend this connection
and find a reformulation of the Smashing Conjecture for the stable module category of a
self-injective artin algebra in terms of model categories.

Theorem 1. Let R be a self-injective artin algebra and Mod(R) be the category of ar-
bitrary R-modules. The Smashing Conjecture for the stable module category of R is
equivalent to the statement that for all cotorsion pairs X = (C,F) such that C and F are
closed under filtered colimits the associated model category Mod(R)x is finitely generated.

The derived category of a differential graded algebra (dg algebra) plays a central role in
the study of triangulated categories arising in algebra. Every algebraic triangulated cat-
egory with small coproducts that is generated by a compact object is triangle equivalent
to the derived category of a dg algebra [Kel94a].

Theorem 2. Let A be a dg algebra and C be a smashing subcategory of D(A). If
L: D(A) — D(A) is the localization functor associated with C, then there are dg alge-
bras A;, and A" and a diagram of morphisms of dg algebras A — A’ — Ay, that induces
up to isomorphism the canonical map D(A)(A, A) — D(A)(LA, LA) in cohomology. If A
is cofibrant, then the canonical map is induced by a morphism A — Ay, of dg algebras.

Using Keller’s result we deduce:

Corollary 1. Let 7 be an algebraic triangulated category T with small coproducts that
is generated by a compact object. If C is a smashing subcategory in T and L: T — T 1is
the localization functor corresponding to C, then there is a dg algebra A and a morphism
of dg algebras A — Ay, that induces L.

Let A be a cofibrant dg algebra with graded-commutative cohomology ring H*A and
let p be a prime ideal in H* A that is generated by homogeneous elements. Since the full
subcategory Cp of dg A-modules with the property that H*M, = 0 is smashing, there
exists a localization functor Ly: D(A) — D(A) that annihilates Cp. Define the localization
of the dg algebra A at the prime by A, := Ap,.

Corollary 2. The dg algebra morphism A — Ay, of Theorem 2 induces the canonical
map H*A — (H*A),. Furthermore D(Ay) can be characterized by a universal property.

The derived category of a hereditary abelian category A is strongly related to A itself
and can be described in a combinatorial way if A is the category of representations of a
quiver.

We enhance the theory of classifications of thick subcategories [DHS88, Nee92, BCR97]
to the field of representation theory of algebras:



Theorem 3. For a hereditary abelian category A the zeroth homology group functor
induces a one to one correspondence between the thick subcategories of the bounded derived
category D°(A) and the thick subcategories in A.

In particular Theorem 3 holds for the bounded derived category D®(mod(A)) of the
category of finitely presented modules over a hereditary algebra A. As an application
we determine the thick subcategories of D°(mod(A)) in two examples combinatorially.
Furthermore Theorem 3 implies that the thick subcategories of the category of represen-
tations of a Dynkin quiver are independent of the orientation of the quiver.

An analogous result holds in the full derived category.

Theorem 4. Let A be a hereditary Grothendieck category. The localizing subcategories
of D(A) correspond bijectively under the zeroth homology group functor to the thick sub-
categories that are closed under arbitrary direct sums in A.

As a consequence we are able to prove the Smashing Conjecture in the following case.

Theorem 5. Let A be a hereditary artin algebra of finite representation type and let
D(Mod(A)) be the derived category of the category of all A-modules. The Smashing
Congecture holds for D(Mod(A)).

Outline In Section 2 the background that is necessary to formulate the Smashing Con-
jecture is presented. Furthermore we point out the two faces of localization: endofunctors
and adjoint pairs of functors. Section 3 contains a historical overview on the Smashing
Conjecture and the Telescope Conjecture. We explain in what sense the Smashing Conjec-
ture is a generalization of the Telescope Conjecture. Furthermore results and applications
of the Smashing Conjecture are described. We recall the language of model categories
and the relation of abelian model categories with cotorsion pairs in Section 4. On the one
hand we enhance this relation by proving that cofibrantly generated model categories de-
termine cotorsion pairs that are cogenerated by a set and on the other hand we specialize
this relation and use our result to obtain Theorem 1. In Section 5 we recall differential
graded algebras and their derived category. We show Theorem 2 and draw the conse-
quences Corollary 1 and Corollary 2. Finally Section 6 contains the classifications stated
in Theorem 3 and Theorem 4, the illustration by two combinatorial examples and the
proof of Theorem 5.
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Sagave. His suggestions improved this thesis. Finally I thank my wife Mareke for her
love and for the energy that she is giving me.

3



2 Triangulated categories and their localization

In this section we study triangulated categories and various localizations of them. We
pursuit two purposes besides introducing notation. The first is to systematically point out
the parallels between subcategories and localizations of triangulated categories following
[Kra06]. At the end the framework to formulate the smashing conjecture is provided.

Verdier’s thesis [Ver96], the book of Weibel [Wei94] and the appendix in Margolis’ book
[Mar83] serve as references for triangulated categories as described in Paragraph 2.1. For
the theory of localizations of triangulated categories developed in Paragraph 2.2, 2.3 and
2.4 the reader is referred to [Ver96, HPS97, Kra06].

2.1 Definitions and examples

Starting with some basics we define the notion of a triangulated category, state some
properties and illustrate the concept with three examples that are important later on.

Let 7 be an additive category and X: 7 — 7 an additive endofunctor. A dia-
gram (a,b,c): X %y 2% 7 5 %X in T is called triangle. A morphism of triangles
(a,b,c) — (a/,V,c) is given by the following commutative diagram in 7:

a b c

X % Z 0X
Jfl Jh lf?, lzﬁ
x Lyt gy

Definition 2.1.1. A triple (7,%,A) consisting of an additive category 7, an additive
endo-equivalence X: 7 — 7 called the suspension functor and a class of triangles A
called the exact triangles is a triangulated category, if it satisfies the following axioms:

(TR1) A triangle isomorphic to an exact triangle is exact. The triangle0 — X — X — 0
is exact, and every map a: X — Y can be completed to an exact triangle
X5 Y- Z- 2X.

(TR2) A triangle (a,b,c) is exact, if and only if (b, ¢, —Xa) is exact.

(TR3) If (a,b,c) and (d’,b, ) are exact triangles, then morphisms f; and fy in 7 such
that fo oa = a’ o fi can be completed to a morphism of triangles

a b c

X Y Z DX
lfl lh f3 lzﬁ
x Ly g vy

(TR4) If (a1, a2,a3), (b1, be,bs) and (c1, co, c3) are exact triangles such that ¢; = bjoay, then



there is an exact triangle (dy,ds,ds) making the following diagram commutative

al a2 as

X Y U XX
e, ]
X272 vy ny

bo do lEal

Ybs
b3 d3
Yas
XY — XU

If X % B — C — ¥X is an exact triangle, then C is called the cone of a, and we
sometimes write cone(a) for C.

Remark 2.1.2. The concept of a triangulated category was discovered independently by
Verdier [Ver96] and Puppe [Pup62] who studied derived categories and stable homotopy
theory, respectively.

The homomorphisms in a triangulated category 7 form a Z-graded abelian group by
setting
T'(X,)Y)=T(X,X"Y).

The graded abelian group 7*(X,Y) is a graded right module over the graded ring
End%(X) :=7*(X, X).

There are plenty of examples of triangulated categories. We will concentrate on three
types of triangulated categories which play a role in the Sections 6, 3 and 4: the derived
category, the stable homotopy category and the stable module category.

Example 2.1.3. [Ver96, II Theorem 2.2.6, III Theorem 1.2.2] Let A be an abelian
category. Then Ch(.A) denotes the category of Z-graded complexes in A. Formal inversion
of the quasi isomorphisms yields the derived category D(.A). It can be constructed using
calculus of fractions [GZ67, Ver96]. In general the homomorphisms between two objects in
D(A) do not form a set but by adding the condition that A is a Grothendieck category !
this set-theoretic problem can be overcome [Bek00]. We will write D(R), if A is the
module category of a ring R. Starting with the category of bounded complexes Chb(.A)
in A we obtain the bounded derived category DY(A). If A is the category of finitely
presented modules mod(R) over a ring R, then the bounded derived category is denoted
by DP(R) 2.

The suspension functor is given by the shift functor [1]. It maps a complex (C,d¢)
to the complex (C[1],dcpy)) which is defined by C[1]" := C™*! and dty) = —d’é"’l. Let
f: C — D be a map of complexes. The mapping cone cone(f) of f is the complex with

! An abelian category A is called Grothendieck category if A is cocomplete, direct limits are exact and
there is a generator in A [Ste75].

2If R is right coherent, then the module category is abelian. Otherwise Db(R) can be defined by using
that the module category is exact in the sense of Quillen.



C™1 @ D™ in degree n and the differential

n (st o

cone(f) = \ fnti an )
Note that there is a canonical map cone(f) — C[1]. A triangle X — Y — Z — X]J1] in
the derived category is said to be ezact, if it is isomorphic to the diagram

cLp- cone(f) — C[1] for some map f.

Example 2.1.4. [Hap88, I Theorem 2.6] Let R be a Frobenius ring, i.e., a ring with
enough projective and injective modules such that the projectives and injectives coincide.
Two morphisms f and g between R-modules are called stably equivalent, if their difference
f — g factors through a projective. Define the stable module category Mod(R) to have the
same objects as Mod(R) and Mod(R)(M, N) to be the set of stable equivalence classes
of morphisms between the R-modules M and N.

Let X € Mod(R) and X — E be a monomorphism such that F is injective. Choose a
module XM such that

0—-M—-FE—-Y¥M—0

is exact. Then ¥: Mod(R) — Mod(R) is a well-defined equivalence of categories and
serves as the suspension functor for the stable module category. A triangle in Mod(R) is
exact, if it is isomorphic to (a,b, c) in the following commutative diagram:

0 X2y —sz 0
| |
0 X E 1356 0.

In the same way it is possible to construct a stable module category mod(R) starting
with the category of finitely presented modules mod(R).

Example 2.1.5. [Vog70, BF78, Hov99] A spectrum is a sequence of pointed spaces (sim-

plicial sets or topological spaces) E = {E,},>0 together with structure maps
on: XE, — E,;1. Here, ¥ is the (topological) suspension functor that is defined on
Xx[0,1]

a pointed space X by XX = Xx{o,l}u{*f}x[o,l]'

Spectra form a category by means of sequences of maps of spaces that commute with
the structure maps. An important spectrum is the sphere spectrum S which is the n-
dimensional sphere in degree n. More generally for a given space X the suspension
spectrum X°°X is in degree n the n-fold suspension X" X of X.

Let n be an integer; the n-th homotopy group of a spectrum F is defined as m,(E) :=
colimg 71, (Ey,). The n-th stable homotopy group 7f(X) of a space X is defined to
be the n-the homotopy group of 3*°X. Call a map of spectra stable equivalence, if it
induces an isomorphism in all homotopy groups. The stable homotopy category SHC is
the localization of the category of spectra with respect to stable equivalences (as for the
derived category, it is not a priori clear that the “Hom-sets” in SHC are sets, but with
the use of model categories [BF78] this can be shown).

The shift functor [1]: SHC — SHC maps a spectrum (E,, 0,) to (Ep41,0,+1) where
E[1]g = * is the one point space. It turns out that the shift functor is isomorphic to the
functor that suspends a spectrum level-wise. The shift functor serves as the suspension
functor on the triangulated structure on SHC. The exact triangles are the triangles
isomorphic in SHC to the homotopy cofiber sequences.



In the categories SHC, the derived category D(.A) of an abelian category A that admits
small coproducts and the stable module category Mod(R) small coproducts exist and the
coproduct can be used to define a finiteness condition.

Definition 2.1.6. Let 7 be a triangulated category with small coproducts. An object
X in 7T is compact, if for each family of objects {Y;}icr the canonical map

Prx.v) - 17X PY)

i€l i€l
is an isomorphism. We write 7°¢ for the full subcategory of compact objects in 7.

The compact objects in SHC are the finite spectra. A spectrum F is finite, if there
is an integer k such that the k-fold suspension ¥*E is homotopy equivalent to a suspen-
sion spectrum of a finite CW-complex (or finite simplicial set). A complex in D(R) is
compact, if it is isomorphic, in the derived category, to a bounded complex of finitely
generated projective modules. Such complexes are called perfect, and the full subcate-
gory of perfect complexes is abbreviated with DP*"(R). Furthermore Mod(R)¢ = mod(R).

Now we turn to important properties of triangulated categories. The Hom-functor relates
exact triangles to long exact sequences in an abelian category.

Proposition 2.1.7. [Mar83, Appendiz 2 Proposition 5] Let X —Y — Z — XX be
an exact triangle and let A be an object. Then there is a long exact sequence of abelian
groups

= T(AY'X) - T(AXY) - T(A,X"Z) —» T(A,X"1X) - ..
Analogous to the Five-Lemma in abelian categories we have:

Proposition 2.1.8 (Five-Lemma). [Mar83, Appendiz 2 Proposition 6]
Let X =Y -7 —YX and X' - Y' — Z' — X X' be exact triangles and let

X Y A XX
X' Y’ z' X'

be commutative. If two of the vertical arrows are isomorphisms, then so is the third.
As an easy consequence, we have
Corollary 2.1.9. A map f: X — Y in T is an isomorphism, if and only if cone(f) = 0.

Proof. Let cone(f) = 0. The following diagram determines a map of triangles

>~ (cone(f)) —— X —L }H/ cone(f)

T

0 Y Yy ——0,

and the Five-Lemma yields that f is an isomorphism.



If f: A— B is an isomorphism in 7, then there is a commutative diagram

A=——=A 0 YA

B2
f :

A—— B——cone(f) — LA

and by axiom (TR3) there is a fill-in map cone(f) — 0 making the diagram commute.
Hence we get a map of triangles and by the Five-Lemma the fill-in map is an isomorphism.
Therefore cone(f) = 0. O

Definition 2.1.10. A functor 7 — S between triangulated categories is called exact or
triangle functor, if it commutes with the suspensions and maps exact triangles to exact
triangles. A functor 7 — A from a triangulated category to an abelian category is called
cohomological, if it maps exact triangles to long exact sequences of abelian groups.

Proposition 2.1.7 tells us that the Hom-functor
T*(A,—): T — Mod(7T*(A, A))
is cohomological.

Definition 2.1.11. (i) A small triangulated category 7 is generated by a set of objects
S, if 7 is the smallest subcategory containing S that is closed under triangles,
suspensions and direct summands.

(ii) A triangulated category with small coproducts S is generated by a set S’ of objects,
if S is the smallest subcategory containing S’ that is closed under triangles, shifts
and direct sums.

(iii) A triangulated category is compactly generated, if it is generated by a set of compact
objects.

The sphere spectrum S generates SHC. For a Frobenius algebra A over a commutative
ring k the category mod(A) is generated by k. The triangulated categories with small
coproducts D(R), SHC and Mod(A) are generated by the ring R, the sphere spectrum S
and the ring k, respectively.

The following theorem characterizes the Hom-functors among the cohomological func-
tors.

Brown Representability Theorem 2.1.12. [Nee96, Theorem 3.1] Let T be a trian-
gulated category with small coproducts which is compactly generated and let Ab be the
category of abelian groups. A functor F: T°P — Ab is cohomological and sends small
coproducts to small products, if and only if there is an object X in T such that F is
isomorphic to Homy(—, X).

Corollary 2.1.13. Let 7 be a compactly generated triangulated category with small co-
products. An exact functor F': T — S has a right adjoint, if and only if it commutes with
arbitrary direct sums.

Proof. The right adjoint is defined to map an object Y in S to the representing object of
the cohomological functor Homg(F(—),Y): 7°P — Ab. O

In the following three subsections, we return to our purpose and describe subcategories
and their relation to localization.



2.2 Thick subcategories and Verdier-quotients

Thick subcategories and the related Verdier-localizations are introduced in this part.
Throughout this subsection let 7 be a triangulated category.

Definition 2.2.1. A full subcategory C C 7 is called triangulated, if it is closed under
forming triangles and suspensions in 7. If furthermore C is closed under retracts, it is
called thick.

Lemma 2.2.2. The subcategory of compact objects in a triangulated category T with
direct sums is thick.

Proof. The category 7€ is obviously closed under retracts and suspensions. It is closed
under forming triangles in 7 because of Proposition 2.1.7 and the Five-Lemma for abelian
categories. ]

Example 2.2.3. Let F: T — S be exact and let ker(F) be the full subcategory
{X € T|F(X) = 0} in 7. Then ker(F') is thick. Also the kernel of a cohomological

functor H: T — A, which is defined as [, ker(H o X"), is thick.

Theorem 2.2.4. [Ver96, I1.2.1.8] Let C C T be a triangulated subcategory. Then there
is a triangulated category T /C and an exact functor Q: T — T /C annihilating C that
satisfy:

(i) The kernel of Q is the smallest thick subcategory containing C.

(i) The functor Q is universal among the exact functors annihilating C, i.e, if F: T —
S is exact such that F(C) = 0 for all objects C € C, then there is a unique ezxact

functor G such that

’]'L)

- a
T/C
commutes.

(iii) For every cohomological functor H: T — A annihilating C there is a unique coho-
mological functor H': T /C — A such that H = H' o Q.

The category 7 /C can be constructed as a category of fractions T[S™!] such that
S = {o| cone(o) € C} is the class of morphisms which are inverted and the quotient
functor @ is the canonical functor 7 — 7[S™!]. We call Q: T — T /C Verdier-localization
or quotient functor.

2.3 Localizations

In this part localizations of triangulated categories are defined, and we clarify the relations
between localization functors and localizing subcategories. As an example cohomological
localization is discussed.

Let 7 be a triangulated category with small coproducts.



Definition 2.3.1. A full triangulated subcategory C in 7 is called localizing, if it is closed
under direct sums.

Proposition 2.3.2. [Nee01, 1.6.8] Every localizing subcategory in a triangulated category
T with all small coproducts is thick.

Let C C T be localizing. Since C is also thick we can construct the Verdier-quotient
functor Q: 7 — T /C. A priorithe category 7 /C is a large category, that is the morphisms
between two objects do not necessarily form a set. The following lemma gives a necessary
and sufficient condition for 7 /C to be a category. It can be proved by using the Brown
Representability Theorem 2.1.12.

Lemma 2.3.3. [Ric00][Theorem 5.1] Let C be a localizing subcategory in a compactly
generated triangulated category with small coproducts T. The following statements are
equivalent:

(i) The maps between two objects in T /C form a set.
(ii) The quotient functor Q: T — T /C has a right adjoint.

So it is natural to investigate the existence of a right adjoint of the quotient functor
T — T /C. The following lemmas provide the necessary background on adjoint functors
to address this question.

Let C and D be categories and

F
C ? D
be a pair of adjoint functors such that F' is the left adjoint. Let ¢: id — GoF be the unit
and ¢: FoG — id the counit of the adjunction. Let S’ = {o € Mor(C) | F (o) is invertible}.

Using calculus of fractions [GZ67] it is possible to construct a functor Qg : C — C[(S")~}]
that is universal among the functors that invert elements of S’.

Lemma 2.3.4. [GZ67, 1.1.3] The following assertions are equivalent:
(i) The functor F: C[(S")™1] — D with F = F o Qg is an equivalence.
(i) The functor G is fully faithful.

(iii) The counit ¢: F o G — idp is invertible.

Now let (F,G) be an adjoint pair satisfying the conditions of Lemma 2.3.4. Let L =
GoF:C— Cand: id¢e — G o F be the counit of the adjunction. The following lemma
clarifies when, starting with a pair (L,v), we can recover the pair of adjoint functors
(F,G).

Lemma 2.3.5. [Kra06, Lemma 2.2] Let L: C — C be a functor and ¢: id¢ — L be a
natural transformation. Then the following statement are equivalent:

(i) L: L — L? is invertible and L1 = L.

(i) There is an adjoint pair of functors
F
C = > D

such that F is the left adjoint, G is fully faithful, L = Go F and ¢: id¢ - Go F
is the unit of adjunction.
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Proof. We indicate how to translate the data of (i) in (ii) and vice versa. Starting with an
endofunctor L: C — C and a natural transformation ¢, define D to be the full subcategory
with objects {X € C|¢x: X =N LX}. Let F: C — Dbegiven by L and G: D — C be the
inclusion. Conversely, if an adjoint pair (F,G) is given, let L = GoF and ¢: id¢ — GoF
be the unit of the adjunction. O

Let C be a localizing subcategory in 7 and @Q: 7 — 7 /C the quotient functor. The
question concerning the existence of a right adjoint functor for ) can now be answered
by specializing Lemma 2.3.4 and Lemma 2.3.5 to F' = Q.

Corollary 2.3.6. The following statements are equivalent:
(i) The quotient functor Q: T — T /C has a right adjoint R.
(i) The quotient functor Q: T — T /C has a right adjoint R which is fully faithful.

(iii) The quotient functor Q: T — T /C has a right adjoint R, and the unit ¢: Qo R —
ide is invertible.

If the right adjoint R of Q) exists, we set L :== Ro Q) and let ¢: id¢ — L be the unit of
the adjunction. Then L = L, and L1: L — L? is invertible.

Proof. We will show that the sets S = {o € Mor(7)| cone(s) € C} and S" = {7 €
Mor(7) | Q(7) is invertible} are the same. Then QQ = Qg and the equivalence of the three
assertions follows from Lemma 2.3.4. The last assertion is a consequence of Lemma 2.3.5.

The inclusion S C S’ holds by definition. For the other inclusion, let 7: X — Y such
that Q(7) is invertible. By Corollary 2.1.9 cone(Q7) = 0. Since @ is an exact functor,
it follows that cone(Q7) = Q(cone(7)). Therefore cone(7) is in the kernel of @) which is
equal to C. U

This corollary motivates

Definition 2.3.7. Let 7 be a triangulated category with small coproducts. Let in ad-
dition (L,%) be a pair consisting of an exact endofunctor L: 7 — 7 and a natural
transformation ¢: idy — L. The pair (L,) is called localization functor or just local-
ization, if Lnp: L — L? is invertible, the natural transformation ¢) commutes with the
suspension functor and Ly = L.

Sometimes we suppress the natural transformation 1) of a localization functor in our
notation. T'wo important classes of objects are associated with a localization.

Definition 2.3.8. Let L: 7 — 7 be a localization. An object X € 7 is called L-local,
if the localization morphism %x: X — LX is an isomorphism. The object X is called
L-acyclic, if LX = 0. The full subcategory of L-local objects is denoted by 77, and ker(L)
is the full subcategory of L-acyclics.

Since the category ker(L) is localizing a localization functor determines a localizing
subcategory.

The following four assertions deal with the properties of localizations of triangulated
categories. They are well-known and were studied for instance in [HPS97]. We refer to
[Kra06] since we need slightly more general statements.

11



Lemma 2.3.9. [Kra06, Lemma 2.5] Let X be an object in T and L a localization. Then
the following assertions are equivalent:

(i) X is L-local.
(i) There is an object X' in T such that X = LX'.
(iii) For all f:Y — Z with the property that L(f) is an isomorphism, the map
f*: Homy(Z,X) — Hom7 (Y, X)
is an isomorphism of abelian groups.

Lemma 2.3.10. [Kra06, Proposition 2.7] The inclusion functor T;, — T is right adjoint
to the functor T — Tp, sending an object X to LX.

Therefore the localization L is determined by the category of L-local objects.
The L-acyclic and L-local objects are related by the following proposition.

Proposition 2.3.11. [Kra06, Lemma 2.8]

(i) An object X € T is L-acyclic, if and only if Hom7(X,Y) = 0 for all L-local objects
Y.

(ii) The functor L induces an equivalence of triangulated categories
T /ker(L) = Tr,.

The L-acyclic objects determine the L-locals up to equivalence. Therefore the local-
ization functor L is determined by ker(L).

The converse is not known in general. If C C 7 is a localizing subcategory, then it is
not clear whether a localization functor L: 7 — 7 with C = ker(L) exists. Nevertheless
it is possible to make some assertions. Casacuberta, Gutiérrez and Rosicky [CGRO6]
have shown that such a functor exists by adding Vopénka’s Principle to the axioms of
set theory. Miller gave a construction of a localization functor on the stable homotopy
category assuming that the given localizing subcategory is generated by objects which
are compact in SHC [Mil92]. Such localizations are called finite and will be studied in
the next section.

In the remaining part of this section we introduce localization functors that are induced
by localizations in the homology as an important example.

Let 7 be a triangulated category with small coproducts which is generated by a compact
object A and let I' := 7*(A, A) be the graded endomorphism ring. Denote by Modg(I")
the category of graded I'modules and let H*: 7 — Modg(A) be the cohomological
functor 7*(C,—). The functor H* relates the triangulated category 7 to the abelian
category Modg, (T').

Definition 2.3.12. Let A be an abelian category. A pair (L, ) consisting of an exact
endofunctor L: A — A and a natural transformation v: id4 — L is called localization
functor, if L1y = 1L, the natural transformation ¢ commutes with the suspension functor
and Li: L — L? is an isomorphism.

12



Theorem 2.3.13. [Kra06, Theorem 3.1] Let (L, ) be a localization functor on Modg,(I').
Then there is a localization (L,v) on T such that

T ............... L ............. >T

Modg, (I') —2— Mod,, (T")

commutes up to natural isomorphism. More precisely, LH*, wH*L and

* 7 ~ *T\—1 .
L B ppep WD e

are invertible. Furthermore LX = 0, if and only if LH*X = 0. If X is L-local, then
H*X is L-local, and if H* reflects isomorphisms, then the converse also holds.

Remark 2.3.14. [Kra06, Rem. 2.4] Let L: Modg I' — Mod,, I' be an exact localization
functor and denote by L:T — T the exact localization functor which exists by The-
orem 2.3.13. Write C for the L-acyclic objects. By Lemma 2.3.5 L and L give rise to
adjoint pairs of functors

R G
T T/C and MOdgr T (N[Odgr F)L
Q F

satisfying L =Ro @ and L = G o F. The diagram below commutes up to natural
isomorphism.

T % MOng‘ F

Ql lF
770 ZECAT (Mody ),

RJ lG
7(A-)"

7T—") Modg T
The following two results are joint work with Birgit Huber [BHO7].

Proposition 2.3.15. Suppose that the ring T (A, A)* is graded-commutative and let
L: Modg, T(A, A)* — Modg, T (A, A)* be a localization with respect to a multiplicatively
closed subset of homogeneous elements S C T (A, A)*. If C = ker L, then the diagram

7T Mody T(A4, A)?

0| Je

7/c O N od,, ST (A, A)*

commutes up to natural isomorphism. Furthermore T /C(QA,QA)* and ST (A, A)* are
isomorphic not only as graded T (A, A)*-modules, but also as graded rings.
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Proof. The diagram commutes by Remark 2.3.14. Writing again H* for 7 (A, —)* the
naturality of H*W yields a commutative square

H*@AJ
VH*LA

H*LA——= — LH*LA

NlLH*@A

in which the lower and the right hand side morphism are bijective by Theorem 2.3.13.
Now note that H*W A is up to isomorphism given by the canonical map

Q: T(A,A) = T/C(QA,QA)", [ Qf,
and that WH*A equals up to isomorphism the canonical ring homomorphism
can: T(A, A)* — S7IT (A, A)*.

Since Q: 7/(A,A)* — T/C(QA,QA)* is a multiplicative map inverting all elements in
S, we obtain a ring homomorphism r: S~17 (A4, A)* — T /C(QA, QA)* which makes the
upper triangle in the modified diagram

T(A, A — S0, §-17(A, A)*

T/C(QA, QA) —4= 51T /C(QA, QA"

commute.

The lower triangle commutes by the following argument. Since both the maps v or
and S~1Q make the following diagram of 7 (A4, A)*-modules

T(A, Ay —0 , G=17(A, A)*

vor
voQ@
S~1Q

STIT/C(QA, QA)*

commute, the universal property of localization of modules implies that v o r = S71Q.
Hence r is an isomorphism. O

Proposition 2.3.16. Suppose that the ring T (A, A)* is graded-commutative and let
L: Modg T (A, A)* — Modg, T*(A, A)* be localization with respect to a multiplicatively
closed subset of homogeneous elements S C T (A, A)*. If the compact object A € T is a
generator, then the category C = ker L is generated by compact objects of T .

Proof. We show that C is generated by {cone(c)|o: A — A[n] € S, n € Z}. On this
purpose consider an arbitrary object M € C and prove that 7 (cone(o), M)* = 0 for all
o € S implies M = 0.
Every triangle
A% Aln] — cone(o) — A[l]
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gives rise to an exact sequence

T (o,M)*
—_—

7 (cone(o), M)* — T (Aln], M)* T(A,M)* — T (cone(o)[—1], M)*.

By assumption we have 7 (cone(o)[—1], M)* = 0 = 7 (cone(o), M)*. Hence the map

T (o, M)"
—_—

T(Aln], M)* T (A, M)*

is an isomorphism for all ¢ € S and thus, 7 (A, M)* is L-local. On the other hand,
T(A,M)* is L-acyclic. It follows that 7 (A, M)* = 0 and hence M = 0. O

2.4 Smashing and finite localizations

In this part two classes of localizations are introduced: the smashing and the finite
localizations. We investigate their relations which lead to the Smashing Conjecture.
Let 7 be a triangulated category with small coproducts.

Definition 2.4.1. A localization L: 7 — 7 is called smashing, if L commutes with small
coproducts.

Let (Q,R) be the adjoint pair corresponding to L according to
Lemma 2.3.5. Then L is smashing, if and only if R commutes with direct sums. Therefore
the following definition is sensible:

Definition 2.4.2. A localizing subcategory C C 7 is called smashing, if the quotient
functor 7 — 7 /C has a right adjoint that commutes with direct sums.

In the following we describe the origin of the name “smashing”: let 7 be equipped with
a symmetric monoidal product compatible with the triangulation, i.e., a pair (— A —,.5)
such that —A—: 7 x7 — 7 is a functor that is exact in both variables and that commutes
with direct sums. The unit S is asked to be a compact generator of 7. An example of
such a category is the stable homotopy category together with the smash product — A —
and the sphere spectrum S as the unit [Ada74, EKMM97, HSS00]. The derived category
D(R) of a commutative ring R together with the derived tensor product over R and the
ring R, considered as a complex, that is concentrated in degree 0 is an algebraic example.

Lemma 2.4.3. Let C be localizing in T. If C is an object in C, then for all objects X € T
the product C N X 1is in C.

Proof. Consider the full subcategory Co :={X € T|C A X € C} in 7. The unit S is in
Cc. Since the smash product is exact and preserves direct sums C¢ is also closed under
exact triangles and arbitrary direct sums. Therefore, Co C 7 is localizing and contains
S. Since S is a compact generator, Co = 7 . O

If (L,%) is a localization on 7 and X is an object in 7, then there is a canonical map

ax: LSANX — LX.

To define it, first consider the exact triangle C'S — § Ys, 1§ — nC8. Smashing with
X yields the exact triangle

CSANX - SAX -LSANX —=XCSANX.
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Now CS A X is L-acyclic by Lemma 2.4.3 and by Corollary 2.1.9 it follows that
L(ysNX): LX — L(LSAX) is an isomorphism in 7. We define ax to be the composition

) (L(ysnX)~!

LSAX Y05 [(LS A X LX.

Now we are able to characterize smashing localizations:

Proposition 2.4.4. [HPS97, 3.53.2] The following assertions are equivalent:
(i) The functor L: T — T is a smashing localization.
(ii) The natural map ax: LS N X — LX is an isomorphism.

(iii) The category 11, of L-local objects is localizing.

The name “smashing” originates from assertion (ii). For a smashing localization functor
L applying L is the same as smashing with LS.
We give a class of examples of smashing localizations.

Proposition 2.4.5. Let L: T — T be a localization functor. If the L-acyclics ker(L)
are generated by a set of objects {C;}ier which are compact in T, then the localization L
s smashing.

Proof. Let C := ker(L) be the category of L-acyclics, and let {X, |a € A} be a family of
objects in 7. We first show that @ 4 LX, is L-local. Since {C;}cr is a set of compact
generators of C by Proposition 2.3.11 it is enough to show that 7(Ci, @, c4 LXa) = 0
for all ¢ € I. Since each C; is compact there is an isomorphism

T(Ci, P LX) = P T(Ci, LXy).
acA a€cA

The abelian group 7 (C;, LX,) = 0 for all ¢ € I because C; is L-acyclic and LX, is
L-local. Hence @, LX, is L-local. Therefore the map

Ve, v D LY — LD LX)
el el

is an isomorphism.
To end the proof we show that the map

L@ vx,): LEP x:) - LE@ LX)

il il il
is an isomorphism. For each i € I there is an exact triangle

such that C'X; € C. Since coproducts are exact, the following triangle

EBCXZ- - EBXi - EBLXl- H@ECXZ-

iel el el el
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is exact. The object @; CX; is L-acyclic because C is localizing. As L annihilates
L-acyclic objects it follows that L(€;c; ¢x;) is an isomorphism. Hence the composition

(¢€Bi61 LXi)il © L(@ ¢X¢): L(@ Xi) — @LXi

i€l i€l i€l
is an isomorphism and L commutes with direct sums. Therefore L is smashing. O

Definition 2.4.6. A localization L: T — 7 is called a finite localization, if the category
of L-acyclic objects is generated as a triangulated category with small coproducts by a
set of objects that are compact in 7. A localizing subcategory C C 7 1is said to be of
finite type, if C = ker(L) for a finite localization functor L.

As we have seen in Proposition 2.4.5 every finite localization is smashing. We state the
converse in the following conjecture which was formulated for the first time by Neeman
[Nee92].

Smashing Conjecture 2.4.7. In a triangulated category with small coproducts, every
smashing localization is finite.

We consider the Smashing Conjecture as an assertion on a fixed triangulated category
with small coproducts 7 rather than a statement about all triangulated categories with
small coproducts. Therefore we use the terminology “the Smashing Conjecture for 7”7 in
the sequel. The Smashing Conjecture is sometimes called Telescope Conjecture due to
its origin. We choose this name to avoid confusion.

In the next chapter we discuss the origin, examples, results and applications of the
Smashing Conjecture.
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3 The Telescope Conjecture and the Smashing Conjecture

This section gives an overview on the history, results and applications of the Smashing
Conjecture 2.4.7. The aim of Paragraph 3.1 is to show that the Smashing Conjecture
is a generalization of Ravenel’s Telescope Conjecture of stable homotopy theory which
was the starting point of the investigation. In Paragraph 3.2 and 3.3 an example of a
triangulated category for which the Smashing Conjecture is valid and an example for
which it does not hold are introduced. In 3.4 Krause and Solberg’s reformulation of the
Smashing Conjecture for stable module categories and a result by Angeleri-Hiigel, Saroch
and Trlifaj are stated. At the end we describe general results on the Smashing Conjecture
in Paragraph 3.5 and point out applications to chain lifting problems, non-commutative
localization of rings and algebraic K-theory. During this section we give no proofs and
do not go into the details in order to present the topic streamlined and compact.

3.1 The Telescope Conjecture in stable homotopy theory

We recall basic notions of stable homotopy theory, in particular Bousfield localization,
the p-local stable homotopy category and two examples of spectra. Having these it is
possible to describe the Periodicity Theorem, define the mapping telescope and state the
Telescope Conjecture in its very first version. In addition we indicate a motivation for
the telescope conjecture.

Recall from the previous section that the stable homotopy category SHC is a triangu-
lated category with small coproducts that is compactly generated by the sphere spectrum
S. Furthermore it is symmetric monoidal by means of the smash product — A — and the
unit S.

Spectra are strongly related to generalized cohomology theories. Given a generalized
cohomology theory

E*: SHC® — (graded abelian groups)

by the Brown Representability Theorem 2.1.12 there is a spectrum FE such that
E"(—) = Homgye(—, X" E).
On the other hand a spectrum E gives rise to a generalized homology theory

E.: SHC — (graded abelian groups)
by setting E,(F) := m,(EAF). For example, the Moore spectrum MZ,), which is defined

as the cone of S »id, S, is the spectrum representing the generalized homology theory
(=) @z Lp).

Bousfield [Bou79] showed that for a spectrum FE there is a localization functor
Lp: SHC — SHC such that the Lg-acyclic objects are the FEy-acyclics. That is,
Lg(F) = 0, if and only if E.(F) = 0 for any spectrum F. It is obtained as the fi-
brant replacement in a model structure on the category of spectra in which the weak
equivalences are the isomorphisms in the represented homology theory F,. We will call
L g sometimes E.-localization.

For a prime p the p-local stable homotopy category SHC, is defined to be the category
of LMZ(p)—local objects.

A monoid R in SHC with respect to the smash product is called ring spectrum. The
multiplication on R

RANR— R
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induces a ring structure on m,R. So a ring spectrum encodes a “blueprint” for a discrete
ring. The ring of homotopy groups 7.(R) is often called coefficients since R*(S) = 7. (R).
It plays an important role for the represented cohomology theory R*.

One typical example for a ring spectrum arises from classical algebra. Given an asso-
ciative ring with unit, there is a ring spectrum H R, the Filenberg-Mac Lane spectrum,
with the property that moH R = R. It represents singular (co-)homology with coefficients
in R. Another example of a ring spectrum is the sphere spectrum S. The ring structure
S A'S — S is the canonical isomorphism which exists since S is the unit of the monoidal
structure. This spectrum represents the homology theory given by the stable homotopy
groups Ty (—).

From now on we fix a prime p € Z and work in the p-local stable homotopy category.
We discuss two examples of spectra that play an important role in stable homotopy
theory, the Johnson-Wilson spectra E(n) and the Morava K-theories K(n) for n > 0.
Both are p-local spectra, and we follow the usual convention of suppressing the prime p in
the notation. We describe important properties of these spectra and their ring of stable
homotopy groups.

The Morava K-theory for n =0 is K(0) = HQ. For n = co we define K(o0) to be the
Eilenberg-Mac Lane spectrum HZ,. The spectrum K (n) for n # 0 has the coefficients

m(K (n)) = Fplon, v, '],
where v, is in degree 2p™ — 2. The Morava K-theories have the following remarkable
properties:
Proposition 3.1.1. [HS98, Propositions 1.4, 1.5, 1.9]

(i) K(n) is a ring spectrum and a skew field object, i.e., all modules over a K(n) are
free.

(i) There is a Kiineth-isomorphism
K(n)«(X NY) = K(n)«(X) @k ). (pr) K(1):(Y)
for two p-local spectra X and Y .

(111) A skew field object in SHC,, is the direct sum of shifted copies of Morava K -theories.

The Morava K-theories are constructed from the cobordism spectrum MU by localizing
and taking quotients. Similarly the Johnson-Wilson spectrum E(n) for n > 0 can be
defined. Its homotopy is the following ring: m.E(n) = Z,)[v1, . .. ,Un, v, 1], See [HS98],
[EKMM97, V.4] and [Wei05] for a construction.

The Johnson-Wilson spectra and the Morava K-theories are also related via their local-
ization functors. In fact, E(n).-localization is isomorphic to (B, K (4)).-localization.
Let L, denote the E(n).-localization. The functor L] is the finite localization functor
associated with E(n). It can be constructed as finite localization in the sense of Miller
[Mil92] with respect to the set {X € SHC, finite|E(n).(X) = 0}.
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Periodicity and the mapping telescope

There are very readable papers [Rav92b, Rav93] and the book [Rav92a] by Ravenel which
can serve as introduction to this subject. In order to formulate the Telescope Conjecture
we need a result by Hopkins, Devinatz and Smith [DHS88| and some notation.

Again we fix a prime p.

Definition 3.1.2. A finite p-local spectrum F is called of type n, if n is the smallest
integer such that K (n).(E) # 0. A map X¢E — FE is called v,-map, if it induces an
isomorphism in the n-th Morava K-theory and the zero-map in all other Morava K-
theories.

The mod-n Moore spectrum is of type n. Examples of v,-maps arise as self maps of
Moore spectra. Recall that 7. K (n) = Fplv-t]. A v,-map induces the multiplication by
some power of v, in the n-th Morava K-theory, whence its name.

Let i > 0. Then f* denotes the iteration of i copies of a map f: X — X.

Theorem 3.1.3 (Periodicity Theorem). [HS98, Theorem 9] Let E be a spectrum of
type n. Then there is a non null-homotopic vy,-map Y¢E — E.

Furthermore given two spectra Eq and Eo with v,-maps fi and fo then for every map
g: E1 — FEs there is a commutative square in SHC:

id yidig id
Did p, —% $id

lf{' lfﬁ
g

E1 E—— EQ.

The second part of the Periodicity Theorem implies that a v,-map is unique in the
sense that some iterations of two v,-maps are homotopic.

Definition 3.1.4. Let E be a finite p-local spectrum of type n. Then the mapping tele-
scope F is defined to be the homotopy colimit of the iteration of the v,-map X~ %f: E —
Y 4E

g2 ymap 2 g

The mapping telescope is well-defined because two choices of a v,-map are homotopic
up to respective iterates.

The Telescope Conjecture and some applications

We state the telescope conjecture of Ravenel in four equivalent formulations and discuss
its relevance.

Recall that two spectra E and F' are Bousfield equivalent, if for all spectra X the
equation F,X = 0 holds, if and only if F.X = 0, i.e., the E,-localizations and Fj-
localization coincide. The Bousfield class (E) of a spectrum FE is the equivalence class of
FE with respect to this equivalence relation.

Telescope Conjecture 3.1.5. [Rav87b, 1.33] Let E be a p-local spectrum of type n.
Then (E) = (K(n)). That is, localization with respect to the mapping telescope of a
p-local spectrum of type n is the same as K(n).-localization for the Morava K -theory
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The Telescope Conjecture describes the behavior of localization with respect to the
mapping telescope of a spectrum. This is the origin of its name.

Let L,,: SHC, — SHC, be the localization functor associated with the Johnson-Wilson
spectrum E(n). Let X € SHC, be of type n. The canonical map X — L,X factors

through the telescope X — XA L,X.

Proposition 3.1.6. [MRS01, 1.13] The Telescope Conjecture is equivalent to the state-
ment that for all X € SHC, the map \: X — L, X is an isomorphism in the stable
homotopy category.

A major problem in algebraic topology is the computation of stable homotopy groups
of spaces and in particular the stable homotopy groups of spheres. For example there is
not a single non-contractible finite CW-complex for which the stable homotopy groups
are entirely known. A motivation for Ravenel to state the Telescope Conjecture was
its consequences on computation: One device to organize a computation is the Adams-
Novikov spectral sequence (ANSS). It exists for every space X and may or may not
converge to the stable homotopy groups of this space. It is possible to compute the Fo-
term of this spectral sequence for the mapping telescope of a type n spectrum [Dav95,
Rav86]. The ANSS collapses, but it is not clear, if the spectral sequence converges. It does
always converge for the localized spectra L, X [Rav87a]. So the Telescope Conjecture
would imply that the ANSS of X converges to WiX and would yield a possibility to
compute some stable homotopy groups.

Proposition 3.1.7. [MRS01, 1.153] Let X be a spectrum of type n. The Telescope Con-
jecture is equivalent to the assertion that the ANSS for X converges to m. X.

The Telescope Conjecture was verified for n =1 and p = 2 by Mahowald [Mah82] and
for n = 1 at all odd primes by Miller [Mil81]. Ravenel announced a counterexample for
n = 2 [Rav92b] but withdrew it later on [MRSO01]. Despite the lack of counterexamples,
the Telescope Conjecture is commonly not expected to hold for all n and p.

In order to relate the Telescope Conjecture 3.1.5 to the Smashing Conjecture 2.4.7 we
discuss some properties of the Johnson-Wilson spectra. Let E(n) be the Johnson-Wilson
spectrum and L} the finite localization with respect to E(n). It is known by [Rav92a,
Theorem 7.5.6] that the functor L, : SHC — SHC is smashing in the sense of Defini-
tion 2.4.1. In [MRSO01, 1.13] there is a reformulation of the Telescope Conjecture 3.1.5 in
terms of these localizations:

Proposition 3.1.8. [MRS01, 1.13] The Telescope Conjecture is equivalent to the state-
ment that L, = Lfl, if Lp_q1 = L’

n—1-

In particular if L, = LY for all n, then the Telescope Conjecture is true for all n.
So the Smashing Conjecture 2.4.7 for the p-local stable homotopy category implies the
Telescope Conjecture 3.1.5.

3.2 The Smashing Conjecture in commutative algebra

The first triangulated category for which the Smashing Conjecture 2.4.7 was verified is the
derived category of a commutative noetherian ring R [Nee92, Hop87]. Neeman classified
the thick subcategories in DP®(R) as well as the localizing and smashing subcategories
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in D(R) to deduce the Smashing Conjecture. See [ATJLSS04] for a generalization to
schemes.

Let R be a commutative noetherian ring and p € Spec R be a prime ideal. Define x(p)
to be the residue field, i.e., the quotient of R}, by its maximal ideal pR,. For a complex
X let Supp(X) = {p € Spec R| X, # 0} denote the support of X.

Theorem 3.2.1. [Nee92, Theorem 1.5, Theorem 3.3/

(i) The following maps are mutually inverse to each other

/
{C C DP*"(R)|C thz’ck}?{P C Spec(R) | P closed under specialization}

where f(C) ={p|3X € C: p € Supp(X)} and g(P) is the full subcategory given by
{X € DP**(R)| Supp(X) C P}.

(i) There are mutually inverse bijections

/
{CCcDR)|C smashing}?{P C Spec(R) | P closed under specialization}

where f(C) ={p| X @ k(p) #0V X € C} and g(P) is the smallest localizing subcat-
egory in D(R) that contains k(p) for allp € P.

Corollary 3.2.2. [Nee92, Corollary 3.4] The Smashing Conjecture 2.4.7 is true for the
derived category of a commutative noetherian ring.

3.3 Keller's counterexample

From the perspective of stable homotopy theory commutative non-noetherian rings are
more interesting because the ring m.(S) of stable homotopy groups of spheres is not
noetherian. So it is natural to ask, if the Smashing Conjecture 2.4.7 remains true for the
derived category of an arbitrary commutative ring R. Keller gave an example [Kel94b]
of a non-noetherian commutative ring for which the Smashing Conjecture is not true.

Let k be a field and [ > 2 be an integer. Define B := k[t, A ]. Tts augmentation
ideal J is generated by t, tl_l,tl_Q, .... Let A be the localization of B at the ideal J and
I be the Jacobson radical of A.

Theorem 3.3.1. [Kel94b] The localizing subcategory R C D(A) generated by the ideal I is
smashing and contains no compact object of D(A). Hence the Smashing Conjecture 2.4.7
for D(A) is not true.

The key property of the pair (A4, I) is its homological behavior. Wodzicki showed that
Tor{(A/I, A/T) = 0 for i > 1 [Wod89]. Recall that a Bézout domain is a domain for
which every finitely generated ideal is principal. If R is a Bézout domain, then we have
that for every ideal a the equations Torf*(R/a, R/a) = a/a® and Torf(R/a,—) = 0 for
i > 1 hold. This forces that the Smashing Conjecture for D(R) is not true [Kra05,
Section 15].
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3.4 The Smashing Conjecture for stable module categories

We describe Krause and Solberg’s characterization of the Smashing Conjecture for stable
module categories in terms of cotorsion pairs [KS03, Conjecture 7.9] and discuss Angeleri-
Hiigel, Trlifaj and Saroch’s result [AHST06, Corollary 4.10] concerning a generalization
of the Smashing Conjecture.

Recall that for a Frobenius ring R there are enough projective and injective modules
and that these concepts coincide. Furthermore the stable module categories Mod(R)
and mod(R) are triangulated (Example 2.1.4), and the compact objects in Mod(R) are
mod(R).

The first step toward the reformulation is to understand the localizing subcategories
in Mod(R). In fact, they arise as pairs of subcategories.

A localizing subcategory C in a triangulated category 7 determines another subcate-
gory, the C-local objects,

Coc = {Y € T|T(X,Y)=0 VX €C}.

A pair (C, Cjoc) of subcategories is called localizing pair. It turns out that localizing pairs
are related to the following data in the module category.

Definition 3.4.1. Let A be an abelian category. A pair of subcategories X = (C,F) is
called cotorsion pair, if the following axioms hold:

(i) Ext}(X,Y) =0 for all X € C, if and only if Y € F.
(i) Ext}(X,Y) =0 for all Y € F, if and only if X € C.

(iii) Every object A € A has a special right C-approximation, i.e., there is a short exact
sequence
0—-Y—-X—->A4—-0

with X eCand Y € F.

(vi) Every object A € A has a special left F-approzimation, i.e., there is a short exact
sequence
0-A—-Y —->X—0

with X e Cand Y € F.

A cotorsion pair (C,F) is called thick, if C C A is closed under kernels of epimorphisms,
cokernels of monomorphisms. It is called hereditary, if Ext'(X,Y) = 0 for i > 2 and all
X €Cand Y € F. A cotorsion pair (C,F) is cogenerated by a set G C C, if the following
holds: Ext!(G,Y) =0 for all G € G if and only if Y € F. A cotorsion pair in Mod(R) is
of finite type, if it is cogenerated by a set G C C Nmod(R).

A ring R is by definition self-injective if R is injective as a right R-module. Note that
an artin algebra A is self-injective, if and only if it is a Frobenius ring. Krause and Solberg
translate localizing pairs in the stable category into thick cotorsion pairs in the module
category.

Theorem 3.4.2. [KS03, 6.3] Let A be a self-injective artin algebra. There is a one to
one correspondence between the thick cotorsion pairs in Mod(A) and the localizing pairs

in Mod(A) given by (C,F) — (C,F).
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Here C denotes the image of C under the canonical functor Mod(A) — Mod(A). If
furthermore C is smashing, then the corresponding cotorsion pair is of a special form:

Theorem 3.4.3. [KS03, 7.6, 7.7] Let A be a self-injective artin algebra and let (C,F) be
a cotorsion pair in Mod(A). The category C is smashing, if and only if F is closed under
filtered colimits. In that case C is also closed under filtered colimits.

Let A be a set of objects in Mod(A). Then colim(A) denotes the full subcategory of
all A-modules that are filtered colimits of modules in A. If C is of finite type in the sense
of Definition 2.4.6, then the cotorsion pair fulfills an additional finiteness property.

Theorem 3.4.4. [KS03, 7.7] Let A be a self-injective artin algebra and let (C,F) be a
cotorsion pair in Mod(A). Then C is of finite type, if and only if C = colim(C Nmod(A)),
i.e., the modules in C are precisely the filtered colimits of finitely presented objects in C.

The preceding considerations motivate the following conjecture.

Conjecture 3.4.5. [KS03, Conjecture 7.9] Let A be an artin algebra and (C,F) a
cotorsion pair in Mod(A). If C and F are closed under filtered colimits, then C =
colim(C N mod(A4)).

Note that if A is self-injective, this conjecture is equivalent to the Smashing Conjec-
ture for Mod(A). Angeleri-Hiigel, Saroch and Trlifaj proved the Conjecture 3.4.5 in the
following case:

Theorem 3.4.6. [AHSTO06, 3.3,4.10] Let R be a noetherian ring and (C,F) be a hered-
itary cotorsion pair in Mod(R) such that C and F are closed under filtered colimits. If C
consists of modules of bounded projective dimension or B consists of modules of bounded
injective dimension, then (C,F) is of finite type.

The idea of the proof is based on the following. If C consists of modules of bounded
projective dimension, then X is a tilting cotorsion pair which are known to be of finite
type. In the other case X is known to be countably generated and by using methods from
set theory it is shown to be finitely generated.

3.5 The Smashing Conjecture for arbitrary triangulated categories

The Smashing Conjecture 2.4.7 cannot be true for arbitrary compactly generated trian-
gulated categories with direct sums as shown by Paragraph 3.3. Nevertheless Krause
has shown a generalization of the Smashing Conjecture 2.4.7 in [Kra00] and discovered a
relation to cohomological quotients [Kra05].

Let 7 be a compactly generated triangulated category with small coproducts. A local-
izing subcategory C in 7 is said to be generated by a class I of maps in 7, if every map
in I factors through an object in C. Note that C is generated by the set of identity maps
{idx, }ies, if and only if C is generated by the objects {X; |7 € J}. In that the following
is a generalization of the Smashing Conjecture 2.4.7:

Theorem 3.5.1. [Kra00, Corollary A] Every smashing subcategory is generated by a set
of maps between compact objects.

The Smashing Conjecture 2.4.7 is related to cohomological quotients and the theory of
rings with several objects [Kra05].
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Definition 3.5.2. Let F': S — 7 be an exact functor of triangulated categories. The
annihilator of F is defined as Ann(F) := {f € Mor(S) | F(f) = 0}. An exact functor
F: S — T is called a cohomological quotient functor, if for any cohomological functor
H:S — A to an abelian category A with Ann(F') C Ann(H), there is a unique cohomo-
logical functor making the following triangle commutative

st

L

A.

The annihilator Ann(F) of a cohomological quotient functor F': § — 7 is called exact
ideal.

The following theorem establishes a connection between the Smashing Conjecture,
cohomological quotients and flat epimorphisms between rings with several objects.

Theorem 3.5.3. [Kra05, 13.4] The Smashing Conjecture 2.4.7 for S is equivalent to
each of the following statements

(i) Every exact ideal in S is generated by idempotent elements.

(ii) Every cohomological functor F': S — T induces an equivalence up to direct factors
S./ker(F) — T.

(i1i) Every two-sided flat epimorphism F: S, — T satisfying X(Ann(F')) = Ann(F') is
an Ore-localization.

In particular (i) shows that the Smashing Conjecture can be reduced to an assertion
on the compact objects in the triangulated category.

3.6 Applications

We discuss two applications that were discovered by Krause. The first deals with the
relation of non-commutative localization and the Smashing Conjecture. In the second
application the validity of the Smashing Conjecture implies the existence of a long exact
sequence in algebraic K-theory for certain rings [Kra05]. Both themes were originally
studied in [NRO4].

Let R be a ring and R — S be a ring homomorphism. Consider the problem of lifting
a complex of S-modules or a map between complexes of S-modules along the map R — S
to a chain complex/map of R-modules up to homotopy. To be precise, given a complex
Y in K%(S), the homotopy category of bounded complexes of S-modules, we are looking
for a complex X € K?(R) such that X ®z S =Y in the homotopy category. Similarly, if
we are given amap a: X ®rS — X' ®r .S, we seek for maps ¢: ¥ — X and o/: Y — X’
such that ¢ ®g S is invertible and a = (o/ ®r S) o (p ®r S) L.

If R — S is a commutative localization, then both lifting problems can be solved.
The question is now, to what extend this is true in a non-commutative situation. So
let R — S be a homological epimorphism in the sense of [GLI1], i.e., S®r S = S and
Tort(S,8) = 0.
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Proposition 3.6.1. [Kra05, Corollary 14.7] The map R — S is a homological epimor-
phism, if and only if
—®rS: K'(R) — K%(S)

is a cohomological quotient in the sense of Definition 3.5.2.
Since cohomological quotients are related to the Smashing Conjecture by Theorem 3.5.3(ii)

this proposition indicates that the Smashing Conjecture should affect the lifting problem
for homological epimorphisms:

Theorem 3.6.2. [Kra05, Corollary 14.7] If the Smashing Conjecture 2.4.7 is true for
D(R), then both lifting problems can be solved, if and only if R — S is a homological
epimorphism.

For a commutative localization R — S there is a long exact sequence in algebraic K-
groups [NRO4]. If the Smashing Conjecture for the derived category of the ring R is true,
we obtain a generalization:

Theorem 3.6.3. [Kra05, Theorem 2] If the Smashing Conjecture 2.4.7 is true for D(R)
and R — S is a homological epimorphism, then the following maps

K(R,f)— K(R) — K(95)

form a homotopy fiber sequence, apart from the surjectivity of Ko(R) — Ko(S). In
particular there is a long exact sequence of algebraic K-groups

- Ko(R) = Ko(S) = Kuo1(R, f) — -+ — Ko(R) — Ko(S).

Here K(R, f) is the Waldhausen K -theory of a suitable bi-complicial Waldhausen category
in the sense of Thomason [TT90].

The preceding two theorems show that the Smashing Conjecture effects non-commutative
algebra. Besides its original consequences on the Telescope Conjecture and with it on
algebraic topology, these theorems foreshadow applications of the Smashing Conjecture
in other areas.
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4 Cotorsion pairs, model categories and finite generation

The Smashing Conjecture 2.4.7 for the stable module category of a self-injective artin
algebra A is equivalent to the assertion that a class of cotorsion pairs in Mod(A) is of
finite type by Paragraph 3.4. There is a strong connection between cotorsion pairs and
model categories as was independently shown by Beligiannis-Reiten [BR02] and Hovey
[Hov02]. Here we investigate how the finite type of cotorsion pairs is reflected in model
category theory. We continue and deepen Hovey’s study and prove a reformulation of the
Smashing Conjecture in terms of model categories.

4.1 Model categories

In this paragraph the language of model categories is recalled. In particular we discuss
cofibrantly and finitely generated model categories that become important later on. The
concepts are illustrated with the model category of modules over a Frobenius ring R.

Definition 4.1.1. Let C be a cocomplete category. An object X in C is finite if for every
sequence Yy — Y7 — --- — Y, — ..., the canonical map

colim,ey Home (X, Y;,) — Home (X, colim,ey Yy,)
is bijective.

For example the sets with finitely many elements are finite, and the finitely presented
modules over a ring R are finite in the category Mod(R).

Lemma 4.1.2. In a cocomplete category pushouts of finite objects are finite.

Proof. Since filtered colimits commute with finite limits [ML98, IX.2 Theorem 1] the
finite objects are closed under finite colimits and in particular under pushouts. O

Definition 4.1.3. A model category consists of a complete and cocomplete category
C together with three nonempty classes of morphisms weq(C), cof(C) and fib(C) that
are called weak equivalences, cofibrations, and fibrations, respectively. The elements of
weq(C) Ncof (C) are named acyclic cofibrations and the morphisms in weq(C) N fib(C) are
called acyclic fibrations. These maps are subject to the following conditions.

MC1 The weak equivalences satisfy the“two out of three axiom”, i.e., let f and g be
morphisms in C such that the composition fog exists; if two of the three morphisms
f, g and f o g are weak equivalences, then so is the third.

MC2 Cofibrations, fibrations and weak equivalences are stable under retracts, that is, if
there is a commutative diagram

A—(C——A

11

B—D——8B

such that both compositions of the horizontal maps are the identity and g is a weak
equivalence, cofibration or fibration, then so is f.
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MC3 The cofibrations have the left lifting property (LLP) with respect to the acyclic
fibrations. That is, for every commutative diagram

A— X

B—Y

in which 4 is a cofibration, and p is an acyclic fibration, there is a lift B — X
making the diagram commute.
The fibrations have the right lifting property (RLP) with respect to the acyclic
cofibrations, that means, if p is a fibration and 4 is an acyclic cofibration, that both
fit into a commutative diagram

—>X

)

B—Y
then there is a lift B — X making both triangles commute.

MC4 A morphism f: X — Y can be factored into a cofibration followed by an acyclic
fibration

and an acyclic cofibration followed by a fibration
X\%}/Y
Z.
Remark 4.1.4. The triple (weq(C), cof(C),fib(C)) is called a model structure on C. We

use —— as a symbol for a weak equivalence, >ﬁ> for (acyclic) cofibrations and

ﬁ» for (acyclic) fibrations like in axiom MC3. Since C is complete and cocomplete
it has an initial object ) and a terminal object *. A model category is called pointed
if the initial and terminal objects are isomorphic. An object X is called fibrant if the
unique morphism X — x is a fibration and cofibrant if the unique morphism ) — X is
a cofibration. For an arbitrary object X in C, the morphism () — X can be factored
by axiom MC4 as a cofibration () — X¢ followed by an acyclic fibration X¢ — X. So
the object X€ is cofibrant. Since the factorizations can be chosen functorially in all
examples that arise the assignment X +— X¢ is an endofunctor on C. It is called cofibrant
replacement functor and is equipped with a natural transformation ¢ from the identity
on C to (—)°. Dually, there is a fibrant replacement functor X +— (X)f that is obtained
by factoring X — x into an acyclic cofibration followed by a fibration. An object X
in a pointed model category is called acyclic if the canonical map X — 0 is a weak
equivalence.
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Example 4.1.5. Let R be Frobenius ring, that is, Mod(R) has enough projectives and
injectives and they coincide. Two maps f,g: M — N between R-modules are called stably
equivalent if the difference f — g factors through a projective. A map f: M — N between
R-modules is defined to be a stable equivalence if there is a map g: N — M such that
fogand go f are stably equivalent to idy and idys, respectively. By definition a stable
equivalence becomes an isomorphism in the stable category Mod(R). The cofibrations
are the injective maps and the fibrations are the surjective maps. These three classes
of maps specify a model structure on Mod(R) [Hov99, Theorem 2.2.12]. Originally this
structure was discovered by Pirashvili [Pir86]. This model category has the very special
property that all objects are fibrant and cofibrant.

By axiom MC3 fibrations have the RLP with respect to acyclic cofibrations, and acyclic
fibrations have the RLP with respect to cofibrations. They are in fact characterized by
this property.

Proposition 4.1.6. [Hov99, Lemma 1.1.10] Let C be a model category.

(i) A map is a fibration if and only if it has the RLP with respect to all acyclic cofi-
brations.

(ii) A map is an acyclic fibration if and only if it has the RLP with respect to all
cofibrations.

Corollary 4.1.7. [Hov99, Corollary 1.1.11] Let C be a model category. Then pushouts
along (acyclic) cofibrations are (acyclic) cofibrations, i.e., let

A—C

Lol

B——D

be a pushout diagram. If f is a cofibration or acyclic cofibration, then g is also a cofibra-
tion or an acyclic cofibration. Dually, fibrations and acyclic fibrations are closed under
pullbacks.

Remark 4.1.8. In a model category C it is possible to define when two maps are ho-
motopic [Hov99, Definition 1.2.4]. Let C.; denote the full subcategory of cofibrant and
fibrant objects. The homotopy relation on the morphisms of C.; defines an equivalence
relation that is compatible with the composition [Hov99, Corollary 1.2.7]. Then it is pos-
sible to define the homotopy category Ho(C). Its objects are the cofibrant fibrant objects
of C, and the morphisms between objects X and Y are defined as the set of equivalence
classes of morphisms in C with respect to the homotopy relation.

In Example 4.1.5 the two maps f and g are homotopic if and only if they are stably
equivalent. The homotopy category is the stable module category.

In many examples the fibrations are determined by having the RLP with respect to
only a subset I of the class of acyclic cofibrations. In the same way the acyclic fibrations
are determined by a set J of cofibrations. We illustrate this property with the category
of modules over a Frobenius ring R described in Example 4.1.5. Recall that a fibration
is a surjective map M — N between R-modules. The following lemma is immediate.
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Lemma 4.1.9. Let R be an arbitrary ring. A map M — N in Mod(R) is surjective, if
and only if it has the RLP with respect to the trivial map 0 — R.

So the fibrations are determined by having the RLP with respect to a single map or
in other words with respect to the set J := {0 — R}. An acyclic fibration can be
characterized as follows.

Proposition 4.1.10. [Hov99, Lemma 2.2.7, Theorem 2.2.12] Let R be a Frobenius ring.
A map in the module category Mod(R) is an acyclic fibration if and only if it is a surjective
map with injective kernel.

Recall that a module @) is injective if and only if () — 0 has the RLP with respect to
all injective maps M — N of R-modules. Baer’s criterion says that not all these maps
are necessary.

Proposition 4.1.11. [Jac89, Proposition 3.15] Let R be an arbitrary ring. An R- module
Q is injective, if and only if Q — 0 has the RLP with respect to all a —— R where a is
an ideal in R.

This criterion motivates and is the key to the following.

Proposition 4.1.12. [Hov99, Proposition 2.2.9] Let R be a Frobenius ring. A map in
Mod(R) is an acyclic fibration if and only if it has the RLP with respect to the set

I:={a“——R|a ideal in R}.

If I is a set of morphisms, then let RLP(I) denote the class of maps which have the
RLP with respect to all maps in I. Now we introduce the underlying concept.

Definition 4.1.13. A model category C is cofibrantly generated if there are sets I and J
such that

(i) the class of fibrations is the class RLP(.J).
(ii) The class of acyclic fibrations is the class RLP(I).

The elements in I are called generating cofibrations and the elements in J generating
acyclic cofibrations. A cofibrantly generated model category C is called finitely generated
if the domains and codomains of the maps in I and J are finite.

Remark 4.1.14. In the original definition of a cofibrantly generated model category
the sources and targets of generating cofibrations and generating acyclic cofibrations
are asked to be small. The notion of smallness involves cardinal numbers and is quite
technical. It is suppressed from the notation since all examples of cofibrantly generated
model categories we consider in this section are module categories. In a module category
every object is small since it is a Grothendieck category [HovO1lb, Proposition A.2].

Note that by Proposition 4.1.6 the elements in I (and J) are cofibrations (and acyclic
cofibrations). If R is a Frobenius ring then the model structure specified in Example 4.1.5
is cofibrantly generated:
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Theorem 4.1.15. [Hov99, Theorem 2.2.12] Let R be a Frobenius ring. Then there is
a finitely generated model structure on Mod(R) where the cofibrations are the injections,
the fibrations are the surjections, the weak equivalences are the stable equivalences, I :=
{0 — R} is a set of generating cofibrations and J := {a ——R | a ideal in R} is a set
of generating acyclic cofibrations.

Remark 4.1.16. Nearly all model categories that occur in nature are cofibrantly gen-
erated and most of them are finitely generated. It requires some work to construct ex-
amples of non cofibrantly generated model categories. Nevertheless, there are examples

[Isa01, AHRT02, CHO02, Cho03].

4.2 Cotorsion pairs and model categories

Beligiannis-Reiten and Hovey have shown a remarkable theorem which relates model
structures to cotorsion pairs. In this paragraph we recall it and prove a specialization of
this result.

Let A be a bicomplete abelian category and a model category. Furthermore assume
that the model structure and the abelian structure are compatible in the following sense:

e Every cofibration i : A —— B in A is a monomorphism.

e A map p: B — C is a fibration if and only if p is an epimorphism and the kernel
ker(p) in the short exact sequence

0 —ker(p) = B—-C—0
is fibrant. A fibration is acyclic, if and only if its kernel is acyclic.

We call such a category A abelian model category.

Theorem 4.2.1. [BR02, Theorem 5.3 , [Hov02, Theorem 2.2] Let A be a bicomplete
abelian category. If A is equipped with a compatible model structure, let C, F and W
denote the full subcategories of cofibrant, fibrant, and acyclic objects in A, respectively.
Then

(i) W is thick, i.e., closed under extensions and retracts, and
(i) (C,FNW) and (CNW,F) are cotorsion pairs.

Conversely, classes C, F and W in A satisfying (i) and (ii) determine a unique model
structure on A that is compatible with the abelian structure.

We now specialize to the case where W = A.

Theorem 4.2.2. Let (C,F) be a cotorsion pair in a bicomplete abelian category A. Then
there is an abelian model structure on A such that all maps are weak equivalences, the
fibrations are epimorphisms with kernel in F and the cofibrations are the monomorphisms
with cokernel in C.
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Proof. The proof agrees in most instances with the proof of 4.2.1 applied to the special
situation of this theorem. We include it for the convenience of the reader.

The “2 out of 3” property for weak equivalences is evident. For the retract axiom,
assume that we are given a diagram

such that A - C — A and B — D — B are identity maps. We show that if g is a
monomorphism with cokernel in C then so is f. By a diagram chase one can prove that f is
a monomorphism. Passing to cokernels, we obtain maps coker(f) — coker(g) — coker(f)
whose composition is idcoker(f). Therefore coker(f) is a direct summand of coker(g) and
since ExtYy (X, coker(g)) = 0 for all X € F, we can conclude that ExtY (X, coker(f)) =0
for all X € F. Hence coker(f) € C.

Note that the notions of “(co-)fibration” and “acyclic (co-)fibration” coincide because
of the choice of the class of weak equivalences. Therefore to prove the lifting axiom, we
only have to construct a lift [ in the commutative diagram

0

0 F
f
A— X
% l p
B——Y
J

C 0

0

where the vertical rows are exact and C' € C and F € F. The construction of [ will be
done in two steps following [HovOla, 4.2]. First we find a map h : B — X that makes
the upper triangle commute and secondly, we subtract a map such that in addition the
lower triangle commutes.

Consider the following commutative diagram with exact columns and exact lower row:

A(B,X) —2— A(B,Y)

A(A, X)) —2— A(A,Y)
) )

ExtY (C, F) — Ext!y(C, X) —2— Ext},(C, Y).
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The map f € A(A, X) is sent to po f in A(A,Y"). Since i*(g) = goi = po f the morphism
p«(f) is mapped to 0 by §. Since Ext!(C,F) = 0 (because C € C and F € F) the
map p. : Ext}(C, X) — Ext}(C,Y) is injective. Since p.(3(f)) = 6(p«(f)) = 0, we can
therefore conclude that §(f) = 0. By the exactness of the left column in the diagram we
find a map h : B — X such that hoi = f.

For the second step consider the exact sequence

AC,Y) L AB,Y) S AA,Y).

The map po h — g is sent to 0 by ¢*. Therefore there is a morphism F': C' — Y such that
Foj=poh—g. In the exact sequence

A(C, X) 25 A(C,Y) — ExtY(C, F)

the end term is 0 and hence we find a map G: C' — X such that po G = F. The map
l:=h— Gojis the desired lift.

Following [HovOla, 5.4] the factorization axiom can be proved in two steps. First a
map f: A — B can be factored into a monomorphism followed by an epimorphism in the
following way:

A ! B

(m %9

A®B.

We have no reason to expect that the kernel of the epimorphism is in F or that the cokernel
of the monomorphism is in C. But we show in the next step that every monomorphism
or epimorphism can be factored into a monomorphism with cokernel in C followed by an
epimorphism with kernel in F. Therefore we can find a monomorphism ¢; with cokernel
in C and an epimorphism p; with kernel in F such that (14,0) = p; 04;. The composition
(f ®1p) o p; is an epimorphism and can be factored (f @ 1) o p1 = py o i9, where
P2 is an epimorphism with kernel in F and 49 is a monomorphism with cokernel in C.
Lemma 4.2.3, which is shown after this proof, tells us that the kernel of a composition of
two monomorphisms with kernel in C is again contained in C. Therefore f = py 0ig 04y
is the desired factorization.

Modulo the lemma we only have to show that a monomorphism and an epimorphism
can be factored into a monomorphism with cokernel in C followed by an epimorphism
with kernel in F. So let i: A — B be a monomorphism with cokernel X. Choose an
approximation

0—-Fx —-Cx—-X—0
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such that Fx € F and Cx € C. Consider the following diagram

0 0
0 A—1sp Cx 0
|
0 A B X 0
0 0

with exact rows and columns in which B’ is a pullback. Then i = ¢ o j is the desired
factorization.

Now let p: X — Y be an epimorphism with kernel K. Choose an approximation
0—-K—Iy —-Cg—0

with Fx € F and Cx € C. Consider the diagram with exact rows:

0 0
0 K X—2>y 0
o
0 F X — =y 0
Crx =—=Ck
0 0

such that X’ is a pushout. Then p = goj is the wanted factorization. With the following
lemma we are done. U

Lemma 4.2.3. Let (C,F) be a cotorsion pair in A. If f: A — B and g: B — C are
epimorphisms with kernel in F then the kernel of the composition g o f is in F. The
monomorphisms with cokernel in C are also stable under composition of maps.

Proof. We prove the first statement, and the second assertion follows dually.
Let f and g be epimorphisms such that their kernel is in F. Let F' = ker(f), F’ = ker(g)
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and F” =ker(go f). An application of the snake lemma to the following diagram

0
r f

0 A B 0
[
0 ol A2 6 0

shows that F”/F = F'. Therefore the sequence
0—-F—F'—F —0

is exact. Furthermore F' and F’ are in F by assumption. For any X € C, we obtain an
exact sequence
ExtY(F', X) — ExtY(F", X) — ExtY(F, X)

in which the first and the last term vanish. Therefore, Exty (F”,X) = 0 for all X € C
and hence F” € F. O

Definition 4.2.4. Let A be an abelian category and let X = (C,F) be a cotorsion pair
in A. The category A together with the unique model structure of Theorem 4.2.2 on A
is called model category associated with X and is abbreviated with Ax.

Remark 4.2.5. This model category structure is quite unusual from the perspective of
model category theory since all maps are weak equivalences. Therefore in the homo-
topy category all maps get inverted, and the homotopy category is a the trivial additive
category.

Note that the concepts of cofibration and acyclic cofibration and the notions of fibra-
tions and acyclic cofibration coincide here.

4.3 Finite generation and the Smashing Conjecture

In this part the relation between cogeneration of a cotorsion pair and cofibrant generation
of the associated model structure is studied. As a consequence we obtain a reformulation
of the Smashing Conjecture in terms of finite generation of this model structure.

Nearly all model categories that occur in nature are cofibrantly generated [Hov99]. So
it is natural to ask how this property is resembled in the theory of cotorsion pairs. Hovey
showed in a slightly more general setup the following

Proposition 4.3.1. [Hov02, Lemma 6.7] Let R be a ring and X = (C,F) be a cotorsion
pair in Mod(R) that is cogenerated by a set G of R-modules. Choose for every G in G a
free module Fg that is of finite rank if G is finitely generated together with an epimorphism
Fo 25 G — 0. Then the model category (Mod(R))zx is cofibrantly generated by the set

Ig == {ker(pg) — Fo |G € G} U{0 — R}.

If furthermore R is noetherian, and G consists of finitely generated modules then Mod(R)x
is finitely generated.
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Proof. Since every map in Ig is a monomorphism and G C C by definition we conclude
that all maps in Ig are cofibrations. Therefore the class of fibrations of (Mod(R))x is
contained in the class RLP(lg).
For the other inclusion assume p : X — Y has the RLP(Ig). In particular there is a
lift  in the following diagram
_ X

0
R——Y

which is equivalent to the surjectivity of p. The map ker(p) — 0 has the RLP with
respect to all morphisms in Ig as a pullback of the map p which has this lifting property.
Therefore, we find for each G € G a lift in

Mg —— ker(p)

FG E— O,
where Mg is the kernel of the epimorphism Fg — G — 0. Hence the map
Homp(Fg, ker(p)) — Homp (Mg, ker(p))

is surjective for all G € G. Applying Hom(—, ker(p)) to

0 — Mg ‘e, Fq LNy Ny
yields the exact sequence

Homp(Fg,ker(p)) i, Homp (Mg, ker(p)) LR Exth(G, ker(p)) — Exth(Fg, ker(p))

in which 4, is surjective and Ext!(Fg, ker(p)) = 0 because Fg is free. Therefore the
connecting homomorphism 0 is surjective and trivial, and hence Extk(G, ker(p)) = 0 for
all G € G. As G cogenerates X the module ker(p) is in F and p: X — Y is a fibration.
If R is noetherian, then submodules of finitely generated modules are finitely generated.
Therefore if G and Fi; are finitely generated then so is ker(pg) as a submodule of Fp. O

Now assume conversely that we are given a finitely generated, abelian model category.
What can we say about the associated cotorsion pairs (C,F N W) and (C N W, F) of
Theorem 4.2.17 In [Hov02] Hovey did not find an answer but proclaimed later on [Hov07]
that the converse of Proposition 4.3.1 is easy to show. Here you find the precise statement
and a proof.

Proposition 4.3.2. Let A be an abelian model category that is cofibrantly generated.
Then the cotorsion pairs (C, FNW) and (CNW, F) are cogenerated by a set. If furthermore
A is finitely generated then (C,F NW) and (CNW,F) are of finite type.

Proof. Let I be the set of generating cofibrations and J be the set of generating acyclic
cofibrations. Then (C,F N W) is cogenerated by G := {coker(i)|i € I} and (CNW,F)
is cogenerated by {coker(j)|j € J}. We show the first statement. The second assertion
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can be proved similarly. We have to show that Ext!y(G, X) = 0 for all G € G if and only
if X is fibrant and acyclic.

Assume that Ext!{(G,X) = 0 for all G € G. By definition for every i: A — B in I the
object G; := coker(i) is in G, and the following sequence is exact:

O—>AL>B—>GZ-—>O.

The map i*: A(B,X) — A(A, X) is surjective for all i € I since Ext(G;, X) vanishes
in the long exact Ext-sequence. But this means that for all generating cofibrations i € I
there is a lift [ in

—

A X
B
B——0

—> .

Therefore X — 0 is an acyclic fibration.
Conversely, let X be acyclic and fibrant. Let G be an arbitrary element in G. An element
in Exth(G, X) is represented by a short exact sequence

0—-X->M2Zag-o (1)

Since p: M — G is an epimorphism with acyclic, fibrant kernel, it is an acyclic fibration.
By definition, there is a map i: A — B such that G is the cokernel of i, or in other words
the pushout in the following pushout diagram:

A——B

|

0—G.

Since pushouts along cofibrations are again cofibrations by Corollary 4.1.7, the object G
is cofibrant. Therefore we find a lift s in the following diagram

2

that splits the sequence (1). Hence ExtYy(G, X) = 0.

If A is finitely generated, then the domains and codomains of the generating cofibrations
and generating acyclic cofibrations are finite. The set of cogenerators is obtained by taking
pushouts of generating cofibrations and generating acyclic cofibrations with the zero map,
respectively. Since pushouts of finite objects are finite by Lemma 4.1.2, we know that all
elements in the set of cogenerators are finite. Therefore (C,F N W) and (C N W, F) are
of finite type. O

Corollary 4.3.3. Let X = (C,F) be a cotorsion pair in A. If the associated model
category Azx is finitely generated then the cotorsion pair is of finite type.

Note that the concepts of the set of generating acyclic cofibrations and generating
cofibrations coincide for a model category associated with a cotorsion pair.
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Example 4.3.4. Let R be a ring, and let Proj(R) be the class of projective modules.
The model structure associated with the cotorsion pair (Proj(R),Mod(R)) is finitely
generated by J := {0 — R} by [Hov99, 2.2.5, 2.2.11]. In more detail, the cofibrations are
the injections with projective cokernel and the surjections are the fibrations. Indeed a
map of R-modules is a surjection, if it has the right lifting property (RLP) with respect
to 0 — R.

Example 4.3.5. Let R be a noetherian ring and let Inj(R) be the class of injective mod-
ules. Dually, the model structure associated with (Mod(R),Inj(R)) is finitely generated
by the set

I:={a“——R|a ideal in R}

because of [Hov99, 2.2.9, 2.2.10]. In this model structure the cofibrations are the injective
maps and the fibrations are the surjective maps with injective kernel. The fibrations are
the maps with the RLP with respect to I.

It is quite interesting that I and J are the generating cofibrations respectively the
generating acyclic cofibrations of the model structure of the module category over a
Frobenius ring described in Paragraph 4.2.

Theorem 4.3.6. Let R be a self-injective artin algebra. Then the Smashing Conjec-
ture 2.4.7 is equivalent to the statement that for all cotorsion pairs X = (C,F) such
that C and F are closed under filtered colimits the associated model category Mod(R)x is
finitely generated.

Proof. By Theorem 3.4.4 and Theorem 3.4.3 the Smashing Conjecture 2.4.7 is equivalent
to Conjecture 3.4.5 which says that all cotorsion pairs (C, F) such that C and F are closed
under filtered colimits are of finite type.

Fix a cotorsion pair X = (C, F) with the property that C and F are closed under filtered
colimits. Since an artin ring is also noetherian, we can use Proposition 4.3.1 to conclude
that Conjecture 3.4.5 implies that the model category Mod(R)x is finitely generated.
Conversely, if the model category Mod(R)x is finitely generated, then Proposition 4.3.2
implies that the cotorsion pair X is of finite type. U

Philosophically, this result is satisfactory since nearly all model categories are finitely
generated and it is quite hard to find examples that are not. The same is commonly be-
lieved for the Smashing Conjecture: it is hard to find examples of smashing subcategories
(or cotorsion pairs) that are not of finite type.

Given an arbitrary cotorsion pair X = (C,F) in a module category over a ring R, and
assume we have a set of generating cofibrations Iy for the associated model structure.
Since every fibration is surjective it is natural to ask that the map 0 — R must belong
to Ix. The condition Iy C {a ——R |a ideal in R} forces that the surjections with
injective kernel are a subset of the fibrations. Since all injective R-modules are in F this
is a sensible requirement.

Conjecture 4.3.7. Let R be a noetherian ring and X = (C, F) be a cotorsion pair such
that C and F are closed under filtered colimits. The model structure associated with the
cotorsion pair X is cofibrantly generated by the set

{a ——R|a ideal in R such that R/a € C}.
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Note that in the examples 4.3.4 and 4.3.5 the conjecture is fulfilled. Therefore if R is
self-injective and artinian, then Conjecture 4.3.7 implies the Smashing Conjecture 2.4.7
for the stable module category Mod(R).
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5 Realizing smashing localizations of differential graded algebras

The results in this chapter are joint work with Birgit Huber [BH07] which have been
achieved with substantial contributions of Bernhard Keller. We show that every smashing
localization of a derived category of a differential graded algebra (or shortly dg algebra)
can be realized by a morphism of dg algebras. More precisely if A is a dg algebra and
L: D(A) — D(A) a smashing localization, we prove the existence of a dg algebra Ay with
the property that D(A)/ker L ~ D(Ayr). Furthermore we show that there is a dg algebra
A’ quasi-isomorphic to A and a zigzag of dg algebra morphisms

A A - Ap

which identifies in cohomology with the algebra map L: D(A)(A, A)* — D(A)(LA, LA)*.
If the dg algebra A is cofibrant, then the algebra map D(A)(A, A)* — D(A)(LA,LA)* is
induced by a morphism A — Ay, and the quotient functor is naturally isomorphic to the
left derived functor — ®% Ar.

As a direct consequence we are able to show that every smashing localization functor
L: 7T — T on an algebraic triangulated category that is generated by one compact object
is induced by a morphism of dg algebras.

As an application, in Section 5.6 we consider dg algebras with graded-commutative
cohomology ring. For such a dg algebra A, we introduce the localization of A at a prime
p in cohomology and denote this dg algebra by Ay. It has the property H*(Ay) = (H*A)y.
Moreover we show that with this identification of graded algebras, the canonical morphism
H*A — (H*A), is induced by a zigzag of dg algebra morphisms.

5.1 Differential graded algebras

In this section we review dg algebras and the derived category of a dg algebra. We refer
the reader to [Kel94a, Sch04, Kra04] for more details.
Fix a commutative ring k.

Definition 5.1.1. A dg algebra A over k is a Z-graded k-algebra together with a k-linear
differential d : A” — A™*! that interacts with the multiplication according to the Leibniz
rule

d(za) =d(z)a+ (—1)"zd(a) (2)

for all z € A™ and all @ € A. A (right) dg A-module is a Z-graded module M with a
differential d: M™ — M"™*! such that equation (2) holds for all z € M™ and all a € A.
A morphism of a dg algebra or of a dg module is a map of the underlying graded algebra
or module that commutes with the differential.

Cohomology of a dg A-module, the notion of a quasi-isomorphism and the shift are
defined on the underlying chain complexes. The cohomology of a dg algebra A is a
graded ring and the cohomology of every dg A-module becomes a graded module over
H*(A). Denote by Modge A the category of dg A-modules and by dga/k the category
of dg algebras over k. A homotopy between morphisms of dg modules is a map of the
underlying graded modules that is also a chain homotopy. The homotopy category K(A)
is the quotient of Modgg A by the ideal of null-homotopic maps.
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Example 5.1.2. If XY are dg A-modules, then the homomorphism complex Hom 4 (X, Y)
in degree n is defined by:

Homa(X,Y)" = Homa (X, Yn]).
The differential d”: Homy4(X,Y [n]) — Homa (X, Y [n + 1]) is defined to be
I(f) =dy o f — (—1)"f o dx.
There is an isomorphism
H" Hom4(X,Y') = Homyc4) (X, Y[n]).

The endomorphism ring End4(X) = Homa (X, X) is a dg algebra and Homa(X,Y)
becomes a dg module over End 4(X) by composition of graded maps.

Let A and B be dg algebras over k. A dg A-B-bimodule X is a graded (A, B)-bimodule
which carries in addition a k-linear differential d of degree +1 satisfying

d(axb) = (da)xb + (—1)Pa(dx)b + (—1)PT9ax(db)

forall a € AP, x € X9,b € B. Fix an A-B-bimodule X. There is an internal Hom-functor
and a tensor product that form an adjoint pair

Homp (X,—)
Modaz A Modg, B.
—®aX

The derived category D(A) of A can then be defined as the localization of the homotopy
category with respect to the quasi-isomorphisms. The homotopy category and the derived
category are triangulated and the canonical functor K(A) — D(A) is exact.

The following well-known lemma collects basic results on the derived category of a dg
algebra

Lemma 5.1.3. [Kel94a, 3.1, 5.3] Let A be a dg algebra over k and M be a dg A-module.
(i) The evaluation map
D(A)(A,M)" — H*M, [~ f(1),

is a natural isomorphism of graded H* A-modules, where D(A)(A, X)* becomes a
graded H*A-module via the isomorphism D(A)(A, A)* = H*A.

(ii) A dg module is compact in D(A), if and only if it is contained in the full sub-
category of perfect complexes DP*(A), i.e., the smallest thick subcategory of D(A)
containing A.

A consequence of this lemma is that D(A) is compactly generated by the dg algebra A.

Definition 5.1.4. A dg A-module M is homotopically projective if K(A)(M,N) = 0 for
all acyclic dg A-modules N. Homotopically injective modules are defined dually.
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Up to homotopy the homotopically projective modules are the cofibrant objects in the
model category Modge A described in [SS00, Theorem 4.1].

For every dg A-module M there is a homotopically projective module pM and a quasi-
isomorphism pM — M. Dually, there is a homotopically injective module iM and a quasi
isomorphism M — iM, see [Kel98, 8.2.4].

Let A and B be dg algebras over a commutative ring £ and X be a dg A-B-bimodule.
The internal Hom-functor and the tensor product descend to an adjoint pair in the derived
category [Kel98, 8.2.6]

R Homgp(X,—)
D(A) AN D(B).
_®kX

Here the derived tensor product maps a dg A-module M to pM ®ﬁ X.

5.2 Cofibrant differential graded algebras

The category of dg algebras dga/k over a commutative ring k admits a model cate-
gory structure [SS00] in which the fibrations are the degree-wise surjective dg algebra
morphisms and the weak equivalences equal the quasi-isomorphisms. Recall that a dg
algebra is cofibrant if for any morphism of dg algebras f: A — C and every surjective
quasi-isomorphism of dg algebras g: B — C, there exists a lift h: A — B. That is, we
have a commutative diagram

B

h \( l
a—Lsc
There is a cofibrant replacement functor dga/k — dga/k that sends a dg algebra A to
A°. Furthermore there is a surjective quasi-isomorphism A¢ — A.

Example 5.2.1. A class of cofibrant dg algebras arises from the tensor algebra functor
T: Ch(k) — Modgg A which is left adjoint to the functor that forgets the multiplicative
structure and only remembers the chain complex over k. If C'is a cofibrant chain complex,
i.e., a homotopically projective dg module over the ground ring k, then the algebra T'(C')
is cofibrant for all n.

We are interested in dg algebras with graded-commutative cohomology. The following
example provides a class of such dg algebras that are in addition cofibrant.

Example 5.2.2. Let k be a field and V' a positively graded k-vectorspace. The tensor
oo

algebra TV is defined by TV = @ T9V, where T9V is the tensor product of ¢ copies
q=0

of V. It becomes an algebra via the multiplication ab := a ® b. Note that ¢ is not the

degree. The degree of v1 ® --- ® vy € TV is the sum of the degrees of the elements v;.

Let I be the ideal in TV generated by the elements v ® w — (—1)""w ® v, where v € V"

and w € V™. The free graded-commutative algebra AV is defined as TV/I.

A Sullivan algebra is a dg algebra (AV,d), whose underlying graded algebra is the free
graded-commutative algebra of a vectorspace V that is graded in positive degrees, and
such that there is an increasing exhaustive filtration

vocv@)c---cV(k)c---CV
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of graded subspaces such that d|y () = 0 and im(d|y ) C AV(k — 1) for & > 1. The
Sullivan algebras are cofibrant [FHT01, Lemma 12.4].

5.3 Cohomological p-Localization

Assume that A is a dg algebra such that H* A is graded-commutative. Let p be a graded
prime ideal of H* A, i.e., a prime ideal which is generated by homogeneous elements. Let
Cp denote the full subcategory of objects X in D(A) such that (H*X), = 0. In other
words Cp is the kernel of the cohomological functor

(= @u=a (H*A)p) 0 D(A)(A, —)".
From Theorem 2.3.13, Remark 2.3.14 and Proposition 2.3.15 we deduce:

Corollary 5.3.1. The localization

D(4) $ D(A)/C,

is smashing, and there is an isomorphism r: D(A)(A, A); = D(A)/Cpr(QA,QA)* of
graded rings making the diagram
D(A)(A, A)r —=2— D(A)(A, A);
of =T
D(A)/Co(QA, QA)"

commutative. Furthermore the squares

D(A) — VA Nod,, H* A p(A) —PVA Nod,, H* A
Q J/_®H*A(H*A)p R incT
D(A)/c, P CA T N fod,, HF A, D(4)/c, P QAT N foq,, HF A,
commute up to natural isomorphism. O]

5.4 Smashing localizations of the derived category of a dg algebra

Let A be a differential graded algebra over some commutative ring k£ and let
L:D(A) — D(A)

be a smashing localization. If C denotes the category of L-acyclic objects, then we have

an adjoint pair of functors
R
D(A)—_,D(4)/C
Q
satisfying R o Q = L. The right adjoint R is fully faithful and commutes with arbitrary

direct sums.
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Our first aim is to write the quotient category D(A)/C as derived category of a
differential graded algebra A;. Then we construct a zigzag of dg algebra morphisms
A& A — Ap which induces the algebra morphism

D(A)(A, A)" — D(A)(LA, LA)*,  f—Lf,
in cohomology. For this purpose we identify the functors
H*: D(A) — Modg H*A

and
D(A)(A,—)": D(A) — Mody H*A

by the natural evaluation isomorphism D(A)(A, X)* — H*X, f — f(1).
The following lemma which we learned from Dave Benson is the key to our construction.

Lemma 5.4.1. Let A, B be dg algebras and M be a dg (B, A)-bimodule. Let o: A — M
and : B — M be maps of dg modules which satisfy a(1) = B(1). Then

X = {(a,b) € A x B | aa) = B(b)}

is a dg algebra with differential dx = (da,dp) and the projections p1,pa in the pullback
diagram

b2
—>B

X
pll B
A—a>M

are dg algebra morphisms. If B is a surjective quasi-isomorphism, then the diagram
induces a pullback diagram in cohomology.

Proof. The first assertions are immediately checked. For the last one we show that
H*X ={(a,b) € H*Ax H*B | H*a(a) = H*3(b)}.

A pair (@,b) € H*X trivially satisfies the property H*«a(a) = H*3(b) and consequently,
the inclusion C is always fulfilled. For the other inclusion we need to assume that [ is
a surjective quasi-isomorphism. Let (@,b) € H*A x H*B such that H*a(a) = H*B(b).
We choose representing cocycles a of @ and b of b. Then a(a) — 3(b) = m for some
coboundary m € M. Since 3 is a surjective quasi-isomorphism, there is a coboundary
b’ € B such that 3(b') = m. Hence the pair (a,b+ b') satisfies a(a) = 3(b+ V') and thus
(a,b) = (@,b+ V)€ H*X. O

The following lemmas ensure that the cohomology of the dg algebra A; which we
construct below is independent of all choices that we will make.

Recall that Modgg A is an exact category (in the sense of Quillen, see [Qui73]) with
respect to the exact sequences of dg A-modules

0—-X—-Y—>Z72-—-0

which are split considered as sequences of graded A-module maps. Furthermore Modggs A
is a Frobenius category. That is, there are enough projective and injective modules in
Modgg A and the projective and injective modules coincide [Kel98, 8.3.3]. Since the maps
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factoring through an injective object are precisely the null-homotopic maps, the associated
stable category coincides with the homotopy category K(A). We refer to [Kel98, Sect.
8.2.3] and [Kel94a, Sect. 2.2] for more details.

For a given map X — Y there is an injective envelope I of X such that the canonical
map X — Y @ I represents the same map in (A) and is a split monomorphism. Hence
we obtain

Lemma 5.4.2. Let ¢: X — Y be any morphism in K(A). Then ¢ can be represented
by a morphism in Modgg A which is a split monomorphism in the category of graded
A-modules. O

Lemma 5.4.3. Let X,Y be dg A-modules and letv: X —'Y be an isomorphism in K(A).

(1) Let X — I(X) denote the injective hull of X in the Frobenius category Modgg A.
There exists a dg algebra S and a zigzag of quasi-isomorphisms of dg algebras

Enda(X) < S 5 Enda(Y @ I(X)).

(2) Let I be any injective module in the Frobenius category Modgg A. There is a dg
algebra T and a zigzag of quasi-isomorphisms of dg algebras

Endas(Y) <~ T = Enda(Y @ I).
(8) There exists a zigzag of quasi-isomorphisms of dg algebras from End 4 (X) to Endy(Y).
Proof. (1) By Lemma 5.4.2 we can choose a representing dg A-module map
v: X —-YaIlX)
of v € K(A)(X,Y) which is split as map of graded A-modules. Hence the map
v Enda(Y @ I(X)) - Homa (X, Y @ I(X)), f~— for,
is surjective. Applying Lemma 5.4.1, the pullback diagram

§——— Enda(Y & I(X))
Ends(X) —2 Homu (X, Y & I(X))

yields the claim.

(2) The dg A-module map ¢: Y o], Y @1 is obviously a split monomorphism inducing

idy in the homotopy category. Hence we obtain a pullback diagram

T—2 s endu(Y @)

Enda(Y) —— Homa(Y,Y @ I)

yielding the claim.
(3) is a trivial consequence of (1) and (2). O
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The proof of the following lemma is immediate.
Lemma 5.4.4. The object QA is a compact generator of D(A)/C. O

Fix a homotopically projective replacement of RQA € D(A). By abuse of notation we
denote the replacement also by RQA.

Proposition 5.4.5. The functor R Hom(RQA, R—): D(A)/C — D(Enda(RQA)) is an

equivalence of triangulated categories.

Proof. Note that R Hom(RQA, R—) preserves arbitrary direct sums because for any fam-
ily (X;)ier in D(A)/C, the map

[ R Hom(RQA, RX;) — R Hom(RQA, R ] X:)
iel el
is a quasi-isomorphism.
Moreover the functor R Hom(RQA, R—) maps the compact generator QA of D(A)/C
to End4(RQA) which compactly generates D(Endg(RQA)). Finally the map

R Hom(RQA,R—)

D(A)/C(QA, QA[n])

D(Enda(RQA))(Enda(RQA), Enda(RQA)[n])

is an isomorphism for all n € Z since RQA being homotopically projective implies that
the diagram

D(A)/C(QA, QA[n]) —HmICARD) | pend 4 (RQA))(Enda(RQA), End 4(RQA)(n])

RJV ﬁ

D(A)(RQA, RQA[n)) H™(End4(RQA))

o~

is commutative. The claim now follows from a version of ‘Beilinson’s Lemma’ [Bei78]
which is stated in [Sch04, Prop. 3.10]. O

Hence we have shown that the quotient category D(A)/C is equivalent to the derived
category of the dg algebra Endy(LA), where LA was chosen to be homotopically pro-
jective. Note that Lemma 5.4.3 provides a zigzag of quasi-isomorphisms between the
endomorphism dg algebras of two different homotopically projective replacements of an
object in D(A).

In order to construct a zigzag A <~ A’ — Enda(LA) of dg algebra morphisms inducing

D(A)(A, A)* — D(A)(LA, LA)*

in cohomology, we need to make another choice for the dg A-module representing LA.
Let n: id — RQ be the unit and e: QR — id the counit of the adjunction

R

D(A) <:Q> D(A)/C.

Since A is homotopically projective, we can view 74 as an element in K(A)(A, RQA).
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Lemma 5.4.6. For any map 7 in Modgg A that represents na € K(A)(A, RQA) and
any dg A-module M, the map

'F]z: HOI’HA(RQA, RQM) - HOI’HA(A, RQM)a f = f o014,
18 a quasi-isomorphism.

Proof. Since R is fully faithful, the usual adjunction isomorphism (see [ML98, Ch. IV.1])
gives rise to the mutually inverse maps

H"(n1): D(A)(RQA, RQM(n]) — D(A)(A, RQM[n]), [ fona,

and
D(A)(A, RQM[n]) — D(A)(RQA, RQM|n]), g+ R(eqa) o RQ(g). O

Remark 5.4.7. By Lemma 5.4.2 we may represent 74: A — LA by a monomorphism of
dg A-modules .
fa: A — LA,

which is split as map of graded A-modules. Remember that LA=LA®I (A), where
A — I(A) is the injective hull of A in the Frobenius category Modg, A, and that LA
was already chosen to be homotopically projective. By Lemma 5.4.3 we have a zigzag of
quasi-isomorphisms

Enda(LA) < T = Enda(LA).

We define the dg algebra Ay to be End A(ﬂ). By abuse of notation we write Ay, =
Enda(LA). Note that from Lemma 5.4.3 and Proposition 5.4.5 it follows that

D(AL) ~D(A)/C.
Theorem 5.4.8. The algebra map
D(A)(A, A)" — D(A)(LA, LAY, f = L(f),
is induced by a zigzag of dg algebra maps
A A AL

That is, there exists a dg algebra A’ quasi-isomorphic to A and a morphism of dg algebras
p: A" — Ay such that we have the commutative diagram

H*A

| e

D(A)(A, A)* —2 D(A)(LA, LA)*

in cohomology.
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Proof. We identify the dg algebras End4(A) and A through the isomorphism given by
evaluation at 1. Let

Al L} AL
o
Enda(A) 2% Homu(A, LA)

be a pullback diagram.

The map 744 is a quasi-isomorphism (Lemma 5.4.6) and surjective since 774 is a split
monomorphism of graded A-modules (Remark 5.4.7). We infer from Lemma 5.4.1 that
A’ is a dg algebra quasi-isomorphic to A, and we set ¢ = ps.

In cohomology we obtain the commutative diagram

oA —TP e endu(LA)

H*(m)l” NlH*(n,Z)
1 Enda(A) Y i (Homa (A, LA))

and thus it only remains to show that the composition

H*(13)"" o H* (11as)

identifies with the map

D(A)(A,A)* — D(A)(LA,LA)*, f+— L(f).
In fact, for f € D(A)(A, A)* we have
(H*(3) " o H*(74:)) (f) = R(e@a) © RQ(na) © RQ(f) € D(A)(RQA, RQA).
As it is well-known that ega0Q(n4) = idga (see [ML98, Ch. IV.1]), the claim follows. O

If we assume in addition that A is a cofibrant dg algebra (see Section 5.2), then the
map p1: A’ — A in the pullback diagram above splits. In particular the algebra map
L: D(A)(A,A)* — D(A)(LA, LA)* is not only induced by a zigzag of dg algebra maps,
but by a morphism A — Aj,.

Corollary 5.4.9. Let A be a cofibrant dg algebra. The algebra morphism
D(A)(A,A)" — D(A)(LA,LA)", [ L(f),
lifts to a dg algebra morphism ¢¥: A — Ap. U

Now our aim is to show that if A is cofibrant, then we can identify the functors
Q: D(A) — D(A)/C ~D(AL) and — ®@% A D(A) — D(AL), where Ay, is a dg (A, Ap)-
bimodule through the morphism ¢: A — Ap.

Lemma 5.4.10. There exists a natural transformation
A: RHoma(A,—) — RHoma (LA, L-)

in D(A) which commutes with the suspension functor. For every M € D(A), A\ induces
the map
D(A)(A, M) — D(A)(LA, LM), f— Lf,

in cohomology.

48



Proof. By Lemma 5.4.6 the adjunction unit n4: A — LA induces a natural isomorphism
R Homy(na, LM). Therefore we can define the morphism \j; to be the composition

R Hom(na,LM)™!

o~

R Hom(A,nnr)
_—

R Homy (A, M) R Homu (A, LM)

RHomy (LA, LM),

which obviously induces L: D(A)(A, M)* — D(A)(LA,LM) in cohomology. The natu-
rality of A\js follows from the naturality of R Hom(A,ny) and R Hom(na, LM).

The unit 7 of the adjoint pair (Q, R) commutes with the suspension functor [1], hence
so does RHom(A,nyr). Since R Hom(na, LM) commutes with [1], we conclude that
Ao [1] = [1]o A O

Note that if A is cofibrant, then A4 equals the dg algebra morphism ¥: A — Ap
constructed in Corollary 5.4.9. In addition RHom (LA, LM) becomes an object in
D(A) through the dg algebra morphism ).

Proposition 5.4.11. Suppose that A is a cofibrant dg algebra. Then the diagram

-®% AL

D(A) —————— D(Ar)
QJ %(RQAR—)
D(A)/C
commutes up to natural isomorphism.

Proof. We show that the functors R Hom (LA, L—) and — ®L% Ay are naturally isomor-
phic. A natural transformation

7 — %A, — RHomy (LA, L-)

is given as the composition of the three natural maps in the diagram

T

M®% Y P — M » RHom (LA, LM)

TV]M

RHoma (LA, LM) @% Ay,

canM®kALlN

Ap LA
R Hom (A, M) @% A, ———2*

where canjs is the canonical identification and v, is defined by
var: RHomy (LA, LM) ®% Ends(LA) — RHoma(LA, LM).
f®g — foyg

In order to prove that 7 is an isomorphism, one checks that the full subcategory
{M € D(A) |7 is an isomorphism} of D(A) is a localizing subcategory containing A.
Note that 7 commutes with the suspension functor since this holds for A by Lemma 5.4.10.

O
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5.5 Smashing subcategories of algebraic triangulated categories

In this paragraph we will use a result of Keller to expand Theorem 5.4.8 to a broader
class of triangulated categories.

Definition 5.5.1. A triangulated category is algebraic if it is triangle equivalent to the
stable category of a Frobenius category.

The derived category of a ring or a dg algebra, the stable module category of a Frobenius
ring and the homotopy category of a ring or a dg algebra are algebraic. Triangulated
categories that are non-algebraic arise from topology, for instance the stable homotopy
category of Example 2.1.5.

Theorem 5.5.2. [Kel94a, 4.3] If T is an algebraic triangulated category with small
coproducts that is generated by a compact object, then there is a dg algebra A such that
T is triangle equivalent to D(A).

Using this theorem we obtain:

Corollary 5.5.3. Let T be as in Theorem 5.5.2. Let L: T — T be a smashing localization
and let Q: T — T /ker(L) be the corresponding quotient functor. There is a dg algebra
A and a morphism of dg algebras A — Ay, such that Q) is induced by A — Ay,

Proof. By Theorem 5.5.2 there is a dg algebra A such that 7 ~ D(A). Without loss of
generality we may assume that A is cofibrant since there is a quasi isomorphism from
the cofibrant replacement of A to A. Therefore by Corollary 5.4.9 we obtain a morphism
A — Ar. By Proposition 5.4.11 we know that @) & — ®IA Ar,. Therefore, the morphism
A — Ap induces Q. O

5.6 The p-localization of a dg algebra

Let A be a dg algebra over a commutative ring k and assume throughout this paragraph
that the cohomology algebra H* A is graded-commutative. We fix a prime ideal p of H*A
that is generated by homogeneous elements. By C, we denote the full subcategory of
objects M in D(A) such that (H*M), = 0. The localization Ly: D(A) — D(A), given by
the adjoint pair

D(A) — DAY/

—_
Q

is smashing by Corollary 5.3.1. Now we apply the results of Section 5.4 to this special
case. We define

Ap — ALp,
and we call Ay localization of A at a prime p in cohomology.

From Lemma 5.4.3 and Proposition 5.4.5 we infer that D(A)/C, ~ D(A,). For this
special smashing localization we have

Theorem 5.6.1. Let A be a dg algebra over a commutative ring k such that H*A is
graded-commutative and let p be a graded prime ideal of H*A. The dg algebra Ay, has
the property H*(Ayp) = (H*A)y. Moreover with this identification of graded algebras, the
canonical map

can: H*"A — (H*A),
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is induced by a zigzag of dg algebra maps
A AL A,
That is, we have a commutative diagram

H*A

Proof. Since D(A)(A, A)y = D(A)(LyA, L,A) by Corollary 5.3.1, the dg algebra A, satis-
fies H*(Ap) = (H*A)p. Theorem 5.4.8 shows that the zigzag A < A’ R A, induces the
map

Lyp: D(A)(A, A)* — D(A)(LpA, LyA)*,  f— Ly(f)

in cohomology. But we may identify the algebra maps can: H*A — H*(A,) and Ly, by
Corollary 5.3.1. O

The following result is an immediate consequence of Corollary 5.4.9 and Theorem 5.6.1.

Corollary 5.6.2. Let A be a cofibrant dg algebra such that H*A is graded-commutative
and let p be a graded prime ideal of H*A. Then the canonical algebra morphism
can: H*A — (H*A), lifts to a dg algebra morphism

¢1A—>Ap- Ol

A class of cofibrant dg algebras with graded-commutative cohomology are the Sullivan
algebras introduced in Example 5.2.2.

Let A be a dg algebra over a commutative ring k such that H* A is graded-commutative
and p be a prime ideal in H*A that is generated by homogeneous elements.

The cohomology of the dg algebra A, satisfies a universal property since H*(Ay) is
isomorphic to the ring of fractions S™1(H*A) = (H*A)p, where S is the subset of
homogeneous elements in H*A \ p. If 3: A — B is a morphism of dg algebras such
that H*(# makes S invertible, then H*3 factors uniquely over the canonical morphism
can: H*A — (H*A)y.

Without loss of generality we assume from now on that A is cofibrant. Then the map
can: H*A — (H*A), is induced by a morphism of dg algebras ¢¥: A — A,, and the
universal property yields a unique algebra morphism g: H*(Ap) — H*B making the
following diagram commute:

H*3
H*A —>HH*B
g
H*(Ap)

The dg algebra morphisms 3: A — B and ¢: A — A, give rise to functors

_L _ oL
Fp: D(A) “HA2. p(B) and F,: D(A) —24 pa,).
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Now we prove a universal property on the level of derived categories.

Proposition 5.6.3. There is a unique functor G: D(Ay) — D(B) making the following
diagram commute:

D(A) - D(B)

Proof. We first note that by Proposition 5.4.11 the functor Fy, is nothing but the quotient
functor Q: D(A) — D(A)/C, composed with the equivalence D(A)/C, ~ D(Ap). Thus
we can use the universal property of @ and only need to show that F(C,) = 0.

In Proposition 2.3.16 we have shown that

M = {cone(c)|o: A — Aln] € S}

is a set of compact generators of Cp, and thus it suffices to check that I3 vanishes on M.
Any element of M fits into an exact triangle

AL Aln] — cone(z) — A[l]

in D(A), where z- denotes multiplication with an element z € A whose cohomology H*z
belongs to S. Applying the functor Fj to this triangle we obtain a triangle in D(B)
naturally isomorphic to

B(=)-
—

B B[n] — Fp(cone(x-)) — BI[1].

Since H*{(z) is invertible, we infer that Fj(cone(z-)) is contractible and consequently,
the object Fj(cone(x-)) is zero in D(B). O

Since Cy is generated by compact elements, the quotient functor Q: D(A) — D(A)/C,

gives rise to a quotient functor DP(A) — DP(A)/CP™, where Cp¥" = Cp N DP(A).
Furthermore this quotient functor identifies with the functor

—®% Ay
DP(A) ——— DP"(Ap).
This proves

Corollary 5.6.4. There is a unique functor G: DP*"(A,) — DP*"(B) which makes the
following diagram commuite:

F
Drer(A) SN DPer(B)

=
wl a

DPer(A,,) O
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Remark 5.6.5. The discussion above raises the question whether the functor
G: D(Ap) — D(B) and with it the algebra map ¢g: H*(A,) — H*B can be lifted to
a zigzag of dg algebra morphisms. Our construction in Section 5.4 does not apply since
in general, we cannot expect that GG is a smashing localization. It remains to enlighten
the relation of our construction with DG quotients, which have a universal property and
were introduced by Drinfeld [Dri04].

There is also a construction by Toén [Toe| (see also [Kel06]) which seems to be related:
Let dgcat;, be the category of small dg categories over a commutative ring k. The local-
ization of dgcat; with respect to the quasi-equivalences is denoted by Hqe. If A is a small
dg category and if S is a set of morphisms in H°(A), then a morphism F': A — B in Hqe
is said to make S invertible if the induced functor HY(A) — HY(B) takes each s € S to
an isomorphism. Toén constructs a morphism Q: A — A[S™!] in Hge which makes S
invertible. This morphism has a universal property: Each morphism in Hqe making S
invertible factors uniquely through Q.

However if A is a dg algebra, viewed as dg category with a single object, then the object
A[S™1] is in general not a dg algebra, but a dg category with more than one object.
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6 Thick subcategories of the derived category of a hereditary
algebra

A full subcategory of a triangulated category is thick if it is closed under forming sus-
pensions, triangles and retracts. Thick subcategories were studied in stable homotopy
theory, commutative algebra and representation theory of groups. The first classification
theorem was obtained by Hopkins and Smith for the p-local finite stable homotopy cate-
gory [HS98]. They showed that any thick subcategory is equivalent to the K (n).-acyclics
of the cohomology theory represented by a Morava K-theory spectrum K (n). Hopkins
and Neeman showed that the thick subcategories in the category of perfect complexes
DP'(R) of a commutative noetherian ring R correspond to the specialization closed sub-
sets of the prime ideal spectrum of R [Hop87, Nee92|. There also exists a generalization of
this result to schemes [Tho97]. Benson, Carlson and Rickard classified the thick subcat-
egories of the stable module category of the group algebra kG of a p-group G in terms of
closed subvarieties of the maximal ideal spectrum of the group cohomology ring H*(G; k)
[BCRIT].

In the main theorem of this section, we classify the thick subcategories of the bounded
derived category DP(A) of a hereditary abelian category A. This result includes for in-
stance the bounded derived category of finitely presented right modules D?(modA) for
a finite dimensional algebra over a field £ and enhances therefore the study of thick
subcategories to the field of representation theory of algebras. We determine the thick
subcategories explicitly in two examples. Furthermore we classify the localizing subcat-
egories in the full derived category D(A) in a similar way. At the end we show that the
Smashing Conjecture holds for the derived category of a hereditary artin algebra of finite
representation type.

6.1 Representation theory of hereditary algebras of finite representation type

In this paragraph we describe the structure theory for the module category of a hereditary
finite dimensional algebra of finite representation type via Auslander-Reiten theory.
Fix an algebraically closed field k. All our quivers are finite and acyclic.

Definition 6.1.1. A k-algebra A is hereditary if every ideal of A is projective as an
A-module.

There are several characterizations of the notion a hereditary algebra. Recall that
the global dimension of an algebra is the supremum of the projective dimensions of all
A-modules.

Theorem 6.1.2. [ASS06, VII. Theorem 1.4] Let A be a k-algebra. The following asser-
tions are equivalent:

(i) A is hereditary.
(ii) Submodules of projective A-modules are projective.
(iii) The global dimension of A is at most one.

(iv) Exty,(M,N) =0 for all A-modules M and N and for all i > 2.
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Example 6.1.3. Let Q be a quiver. The path algebra kQ is generated as a k-vector space
by the paths in () and the multiplication is defined by concatenation of paths. The path
algebra of any quiver is hereditary [ARS97, III.Proposition 1.4].

In certain cases the module category of a hereditary algebra is determined by a path
algebra.

Theorem 6.1.4. [ARS97, III Corollary 1.10, Proposition 1.13] Let A be a finite di-
mensional hereditary k-algebra. Then there is a quiver Qa such that kQa and A are
Morita-equivalent, i.e., mod(A) and mod(kQ4) are equivalent.

Recall that a module M is indecomposable, if the existence of a decomposition M =
N & L implies that N or L are trivial.

Definition 6.1.5. A k-algebra A is representation finite, if there are only a finite number
of non-isomorphic, finitely generated indecomposable A-modules.

The representation finite path algebras are classified. Therefor recall the notion of a
Dynkin graph [ASS06, VII.2].

Theorem 6.1.6 (Gabriel). Let Q be a connected quiver. Then the path algebra kQ is
representation finite, if and only if the underlying graph of @Q is Dynkin of type A, for
n>1,D, forn>4 or of type Eg, E7, Eg.

Now we turn to the structure theory of the module category. Fix a finite dimensional
hereditary k-algebra A which is representation finite.

The following fundamental theorem reduces the study of modules to indecomposable
modules.

Theorem 6.1.7 (Krull-Remak-Schmidt). Let A be a finite dimensional k-algebra.
For every finitely generated A-module M there are indecomposable A-modules My, ..., M,
such that M = @7 | M;. Furthermore the modules My, ..., M, are unique up to permu-
tation.

The following notion is central in the classification of morphisms.

Definition 6.1.8. Let A be a finite dimensional k-algebra. A morphism of A-modules
f: M — N is an irreducible morphism, if

(i) f is neither a section nor a retraction and
(ii) if f = f1 o fo, then either f; is a retraction or f; is a section.
Denote by Irr(M, N) the k-vectorspace of irreducible morphisms from M to N.
As for objects the study of morphisms is reduced to the study of irreducible ones.

Theorem 6.1.9. [ARS97, V.Theorem 7.8] Let A be a finite dimensional k-algebra of
finite representation type. Every morphism between finitely presented indecomposable A-
modules that is not invertible is a finite sum of finite compositions of irreducible maps.

The information of mod(A) can be collected in a combinatorial object.
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Definition 6.1.10. The Auslander-Reiten quiver (AR-quiver) I'(A) of the algebra A has
as vertices the isomorphism classes of indecomposable modules. The arrows from [M] to
[N] correspond bijectively to a k-basis of the vector space of irreducible maps Irr(M, N).

The quiver T'(A) is locally finite in the sense that every vertex has only finitely many
neighbors. The Auslander-Reiten quiver is equipped with an extra structure: the trans-
late. It is a bijective map

7: T(A) \ Proj(A) — T'(A) \ Inj(A),

where Proj(A) and Inj(A) denote the sets of isomorphism classes of indecomposable
projective and injective modules, respectively. The following notion is central for the
structure of the AR-quiver.

Definition 6.1.11. A short exact sequence
0—-L—-M—>N-—0

is called almost split or an Auslander-Reiten sequence (AR-sequence), if L and N are
indecomposable and the maps L — M and M — N are irreducible.

The following theorem describes the relation between an indecomposable module N
and its translate 7(N).

Theorem 6.1.12. [ASS06, IV.Theorem 4.4, Theorem 3.1] Let A be a finite dimensional
k-algebra. For every indecomposable non-projective A-module N there is an A R-sequence

n
0—>TN—>@MZ”—>N—>O
i=1

in which n; > 0 and the modules M; are pairwise non-isomorphic indecomposable. Fur-

thermore n; = dimy, Irr(M;, N) = dimy, Irr(7 N, M;).

If N is an indecomposable non-projective module, then the theorem tells us that there
is the same number of arrows in I'(A) ending in [N] as the number of arrows starting in
T[N]. Therefore a typical part of the AR-quiver can be visualized as follows:

Here we assume that n; =1 for all i = 1,...,n. The subquiver starting at a vertex [T N]
and ending in [N] is called mesh. The following example illustrates the structure of the
AR-quiver.
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Example 6.1.13. Let @ be the As-quiver 1+——2+——3. The Auslander-Reiten quiver
of k@ looks as follows:

Ps
PQ%**szfii'
Pe--I---Lc__I___5&

The indecomposable projective modules are Py, P, and Ps.

Every finite dimensional hereditary k-algebra A of finite representation type is Morita-
equivalent to the path algebra of a quiver (). The quiver @) can be obtained from the AR-
quiver I'(A) as the opposite of the full subquiver with the indecomposable projectives as
vertices. Since the category mod(A) is equivalent to mod(kQ), the AR-quiver determines
the module category combinatorially.

The whole module category Mod(A) is determined by the category of finitely generated
modules.

Theorem 6.1.14. [Aus7/, RT7}] Let A be an artin algebra of finite representation type.
Then every module is a direct sum of finitely generated indecomposable modules.

Therefore Auslander-Reiten theory provides a complete picture of both mod(A) and
Mod(A).
6.2 The derived category of hereditary abelian categories

Here we describe the structure of the derived category of a hereditary abelian category
which serves as the main tool to obtain the classification result in Paragraph 6.4.

Definition 6.2.1. An abelian category A is called hereditary if Exth(M , N') vanishes for
all M,N € Aand all i > 2.

Throughout this paragraph let A be a hereditary abelian category.
Example 6.2.2. A module category over a hereditary ring A is hereditary.

There is a canonical embedding i: A ——D(.A) which sends an object M to the stalk
compler -+ — 0 — M — 0 — ... which is concentrated in degree zero. By abuse of
notation we do not distinguish between objects in A and im(z).

The derived category D(A) of a hereditary abelian category A is closely related to A
itself since every complex of D(A) is isomorphic to a direct sum (and direct product) of
stalk complexes:

Lemma 6.2.3. For every X € D(A) there are isomorphisms in D(A)

[[E"X[-n=x = H"X[-m].

nez meZ
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A proof of this well known lemma can be found in [Kra04]. The homomorphisms in
D(.A) therefore reduce to

Homj, 4 (M, N) 2= Hom 4(M, N) @ Extly(M, N)

for M, N € A. So the derived category consists of shifted copies of A, and the morphisms
are given by extensions and homomorphisms in 4. This structure is visualized in Figure 1.

Ext D(A) Ext
Al-1] A[0] All]
N NS
Ext
Ext
FIGURE 1

Non-equivalent hereditary abelian categories can give rise to the same derived category:

Theorem 6.2.4. [Hap88, 1.5.5, 5.6] Let k be an algebraically closed field. If Q and Q'
are Dynkin quivers of the same type but of different orientation then D(mod(kQ)) and
D(mod(kQ")) are equivalent as triangulated categories.

This result suggests that for representation finite path algebras the Dynkin type plays
an essential role.

The structure of the derived category motivates why the thick subcategories in D(.A)
should be determined by data in A. If in addition A = mod(kQ) is the module cate-
gory of a path algebra of a Dynkin quiver then we should be able to describe the thick
subcategories combinatorially.

6.3 Thick subcategories of abelian categories

We define and investigate thick subcategories of an abelian category A and discuss Hovey’s
classification of the thick subcategories in the category of modules over a regular coherent
commutative ring.

Throughout this paragraph let A be an abelian category.

Definition 6.3.1. A full subcategory M of A is called thick if for every exact sequence
My — My — Mg — My — Ms
the object Ms is in M if the objects My, My, My, My are in M.

Hovey calls these subcategories “wide” [HovOla]. In the following two lemmas some
easy properties of thick subcategories are deduced. For the convenience of the reader the
proof [Hov0la] is reproduced here.

Lemma 6.3.2. A full subcategory M in A is thick, if and only if it is closed under
forming of extensions, kernels and cokernels.
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Proof. Let M C A be thick and
M1—>M2—>M3—>M4—>M5

be exact in A. If in the exact sequence above M7 = My = 0 and My and My are in
M, then Ms is in M since M is thick. Therefore M is closed under extensions. If we
set My = My = 0, respectively My = My = 0 it follows that M is closed under kernels,
respectively cokernels.

Conversely, let M C A be closed under extensions, kernels and cokernels and let

M1—>M2—>M3—>M4—>M5

be exact with My, My, My, Ms; € M. Since M is closed under cokernels and kernels,
C := coker(M; — Ms) and K := ker(My4 — M3) are in M. Hence we obtain a diagram:

M,y My M3 My M5
/ C K
0 0 0.
Therefore M3 is an extension of C' and K and hence it is in M. O

As an additional property we have
Lemma 6.3.3. A thick category in A is closed under direct summands.

Proof. Let M @& N be in the thick category M. The kernel of the map M &N — M & N
which sends (m,n) to (0,n) is M. O

So a thick subcategory in A is an abelian subcategory in A that is closed under retracts
such that the inclusion functor is exact. This property motivates its name.
There are geometric examples of thick subcategories.

Example 6.3.4. The category of coherent modules over the structure sheaf Ox of a
scheme X is thick [Gro60, 5.3.5].

Other examples of thick subcategories arise from the category add(M) of direct sums
of direct summands of M.

Lemma 6.3.5. Let k be a field.

(i) Let A be an arbitrary k-algebra. If M is an indecomposable finitely presented A-
module with Hom (M, M) = k and Ext!y (M, M) = 0, then add(M) is thick.

(ii) If A is a finite dimensional hereditary k-algebra of finite representation type and M
is an indecomposable A-module, then add(M) is thick.
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Proof. Since M is indecomposable the equation add(M) = {€D;_,; M |n > 0} holds. The
functor Extl(—, —) is additive in both variables. Therefore add(M) is closed under
extensions because M has no non-trivial self-extensions. For positive integers n and m
let f: M™ — M™ be A-linear. Every non-trivial component of f is of the form x-idy; for
some z € k\ {0} because Hom 4 (M, M) = k. Since k is a field every element = € k\ {0}
is invertible. Therefore the kernel and the cokernel of x - id;; are trivial and the kernel
and the cokernel of f are in add(M). Therefore (i) follows.

If M is an indecomposable module over a finite dimensional hereditary k-algebra A of
finite type, then by [ASS06, VII 5.14] Hom4 (M, M) = k and Ext!(M, M) = 0. Hence
(ii) follows from (i). O

Hovey proved a classification result in a commutative situation. Note that if the global
dimension of a ring coherent R is finite, then D?(mod(R)) is equivalent to the category
of perfect complexes DP(R).

Theorem 6.3.6. [Hov0la, Theorem 3.6] Let R be a commutative reqular coherent ring.
There is a one-to-one correspondence between the thick subcategories in DP(mod(R)) and
the thick subcategories of mod(R).

If R is regular noetherian, then a thick subcategory is also closed under subobjects,
quotient-objects and extensions [Hov0la, 3.7] and is therefore a Serre subcategory. Gar-
kusha and Prest generalized Theorem 6.3.6 in the following way: if R is a commutative
coherent ring, then the thick subcategories in DP*(R) correspond bijectively to the Serre
subcategories in mod(R) [GP07, Theorem C].

In these theorems the classifications [Nee92, Tho97] of the thick subcategories of
DPer(R) are used to determine the thick subcategories of mod(R). We go the other
way around and describe thick subcategories of the triangulated category in terms of the
abelian category.

6.4 Classification of thick subcategories

In this section we prove the classification result and determine all thick subcategories in
two examples combinatorially.

Theorem 6.4.1. Let A be a hereditary abelian category. The assignments

f:C—{HC|CeC} and g¢g: M~ {CeD(A)|H"C e MVneclZ}
induce mutually inverse bijections between
e the class of thick subcategories in D’(A) and
e the class of thick subcategories in A.

Proof. The proof mainly uses Lemma 6.2.3. First note that g is well defined because M
is thick and closed under direct summands by Lemma 6.3.3. The map f is well defined
because of the following lemma:

Lemma 6.4.2. Let C C D(A) be thick. The full subcategory f(C) C A is thick.
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It remains to show that f and g are mutually inverse. The inclusion f(g(M)) C M
is obvious. Any object M € M is in f(g(M)) since the stalk complex -+ — 0 — M —
0 — ... isin g(M). Since a complex is determined by its homology (Lemma 6.2.3) the
equality ¢g(f(C)) = C holds. O

In order to prove Lemma 6.4.2 we need the following

Lemma 6.4.3. Ifg: C — D is a map of complexes such that the differentials of C and D
are zero and gm = 0 for all m # n, then ker(g) and coker(g) are retracts of H*(cone(g)).

Proof. The only non-zero differential in cone(g) is cone(g)"~! — cone(g)™:
cone(g)" 2 crl @ prn2
d 0 \ 0
cone(g)"~! cr @ pnt
d 0\ 0
coné(g)” crtl @  Dn
d 0 0 0
cone(‘g)"Jrl crt? @ Drth

Thus we can compute the homology:

cmtl g pm m<n—2orm>n+1
H™(cone(g)) = ker(g) @ D" ' m=n-1
C"tl @ coker(g) m = n.

O

Proof of Lemma 6.4.2. We show that f(C) is closed under extensions, kernels and
cokernels. So let C1,C5 be in C and M € A such that there is a short exact sequence

0— HC; — M — H°Cy — 0.
This sequence corresponds to a triangle
HCy - M — H°C, — SHCy

in D’(A). Here we consider an object of A as a complex in D?(A) by means of the
inclusion A — DP(A) which sends the object M to the complex concentrated in degree
0. By abuse of notation we call it again M. Each homology group of a complex C € C is
again contained in C since by Lemma 6.2.3 H™C is a retract of C' up to isomorphism and C
is thick. Therefore HOC; and H°Cy are in C, and because C is closed under suspensions,
YHOC, € C. Since C is closed under extensions, we conclude that M is in C. Hence
M € f(C) because the zeroth homology of --- -0 — M —0— ... is M.

So it only remains to show that f(C) is closed under kernels and cokernels. Let Cy,Cy
be in C and f be a morphism in the exact sequence in A:

0 — ker(f) — HCy L5y - coker(f) — 0.
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Now extend f to a map of complexes

P E"Ci[-n] — B H™Cy[-m]

nez mEZ

which is f in degree 0 and zero in all other degrees. We call it again f. Since C; =
@D,.cz H'Ci[-n] for i = 1,2, the map f belongs to C. The cone of f is in C. By
Lemma 6.4.3 ker(f) and coker(f) are retracts of H°(cone(f)) and are hence (considered
as stalk complexes) in C. Therefore the kernel and cokernel of f, considered as objects in

A, are in f(C). O

Corollary 6.4.4. Let A and A’ be hereditary abelian categories. If D°(A) and Db(A’)
are triangle equivalent, then there is a one-to-one correspondence between the thick sub-
categories in A and the thick subcategories in A’.

With this theorem we have reduced the classification of thick subcategories in the
triangulated category DP(A) to the task of understanding thick subcategories in A. In
easy examples it is possible to determine them combinatorially. Let k£ be a field and A
be a representation finite hereditary k-algebra. As a consequence of Lemma 6.3.5 there
are examples of thick subcategories of the category of finitely presented modules mod(A).
As an immediate consequence we are able to determine the thick subcategories of finite
dimensional representations of an As- and an As-quiver. For the two examples let k
be an algebraically closed field, ) the respective quiver, A = kQ the path algebra and
A = mod(kQ) the category of finitely presented modules over A. We use the Auslander-
Reiten quiver to describe the category A combinatorially.

Example 6.4.5. Let @ be the quiver 1<—— 2. The Auslander-Reiten quiver I'yq is the
following graph:
Py

There are exactly four non-trivial thick subcategories: add(P;), add(P), add(%) and
mod(kQ).

Example 6.4.6. Let QQ be the quiver 1+«——2+——3. The Auslander-Reiten quiver has
the following shape:

as
NN,

Lemma 6.3.5 tells us that there are six thick subcategories containing exactly one inde-
composable. Furthermore there are two thick subcategories that contain two indecom-
posable modules, four with three indecomposables and the whole module category with
six indecomposables.
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The left column of Table 1 shows the thick subcategories in terms of the contained
indecomposable modules. E.g. (Pj, P3) is the smallest thick subcategory containing P;
and Ps. The right column displays the part of the corresponding Auslander-Reiten quiver
that is contained in the thick subcategory C. Modules in C are labelled with fat bullets
and morphisms in C with full arrows.

(P1),...,(Ps/P1) .
(Py, P3/Py) .
L .
e A, 4
<P3>P2/Pl> 10_.
-
L :
____________________________ O
(P, Py, P>/ Py) R
@ e \(
. / \ A .
(P2/ Py, P3Py, P3| Py) N

(P3, P, P3| Py)

(P1, P, P3/ Py)

<P1>P2>P3>

TABLE 1
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The thick subcategories are symmetric with respect to reflection at the axis going through
P3 and % in the Auslander-Reiten quiver. The categories add(Ps), add(%), (Ps, %),
(Py, %) and mod(kQ) are invariant under the reflection. Under the reflection add(Ps)
corresponds to add(ﬁ—?), add(P;) corresponds to add(%)7 <P1,P2,%> corresponds to

<%, %, %> and (Py, Ps, %’> corresponds to (P, P, %>.

It would be interesting to work out all thick subcategories for all representation finite
algebras.
In fact, the orientation of the quiver does not play a role.

Corollary 6.4.7. Let k be an algebraically closed field. Let Q and Q' be quivers whose
underlying graph is Dynkin of the same type but whose orientation is different. Then
mod(kQ) contains the same number of thick subcategories as mod(kQ').

Proof. By Theorem 6.2.4 mod(kQ@) and mod(kQ’) are derived equivalent and Corol-
lary 6.4.4 yields the assertion. O

If the algebra A is not of global dimension one, then Lemma 6.2.3 does not remain true.
But if the global dimension of A is finite the Happel functor D?(mod(A)) — mod(A) is an
equivalence [Hap88, 11.4.9]. Here, A denotes the repetitive algebra of A. A generalization
of the classification Theorem 6.4.1 may possibly be achieved by characterizing the thick

A~

subcategories of mod(A) in terms of the thick subcategories of mod(A).

6.5 Classification of localizing subcategories

In this section we use the strategy of Theorem 6.4.1 to classify the localizing subcategories
of the full derived category of a hereditary Grothendieck category. As an application we
prove that the Smashing Conjecture is true for D(A) for a hereditary artin algebra A of
finite representation type.

Recall that a full subcategory of a triangulated category with arbitrary direct sums is
called localizing if it is thick and closed under arbitrary direct sums. These categories are
the unbounded analogues of the thick subcategories. Recall from Example 2.1.3 that for
a Grothendieck category A the unbounded derived category exists.

Theorem 6.5.1. Let A be a hereditary Grothendieck category. The assignments

f:C—{HC|CeC} and g:M—{CeD(A|H"CeMVnecll
induce mutually inverse bijections between
e the class of localizing subcategories in D(A) and
e the class of thick subcategories in A that are closed under small coproducts.

Proof. Adding the following comments the proof of Theorem 6.4.1 applies. Lemma 6.2.3
is not limited to the bounded derived category, and hence can be used here. The map
g is well-defined, since the homology functor commutes with infinite direct sums. And
finally if C is localizing, then f(C) is closed under direct sums for the same reason. O
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Since the module category of a representation finite algebra is determined by the finitely
generated modules by Theorem 6.1.14, we can show the following

Corollary 6.5.2. Let A be a hereditary artin algebra of finite representation type.

(i) Ewery thick subcategory M C Mod(A) that is closed under direct sums is the small-
est thick subcategory that contains M N mod(A) and is closed under direct sums.

(ii) Every localizing subcategory C C D(A) is determined by its intersection with the
perfect complexes: C = (C N DP(A))oc.-

Proof. By Theorem 6.1.14, (i) is true. For the assertion (ii) let C C D(A) be localizing
and C € C be an object. By Lemma 6.2.3 it suffices to show that HC is contained
in (C NDP*"(A))jo.. Because of Theorem 6.1.14 there are a set I and finitely generated
modules {M; |i € I} such that H°C = €, ; M;. Since C is thick, it follows that M, € C.
For every M; choose a projective resolution

O—>PQ—>PA1—>MZ-—>O

K3 K3

such that PZ-O, PZ-1 are finitely generated. The complex F;: 0 — PiO — PZ-1 — 0 is perfect
and hence in DP*f(A). Since P; — M,; is a quasi isomorphism and M; € C we can conclude
that P, € C N DP*(A). Hence HC is a direct sum of perfect complexes in C. O

Since the perfect complexes form precisely the compact objects in D(A), Corollary 6.5.2(ii)
shows:

Corollary 6.5.3. The Smashing Conjecture 2.4.7 is true for the derived category of a
hereditary artin algebra of finite representation type.

In fact, even all localizing subcategories are determined by the intersection with the
compact objects.

If A is not of finite type the Smashing Conjecture is possibly also true since every
module over A is a filtered colimit of finitely presented modules. Choosing a clever
indexing category may lead to a proof of the Smashing Conjecture for arbitrary hereditary
algebras.
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