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Abstract

Motivated by the representation-theoretic notion of Howe duality, we seek an analo-
gous construction in symplectic geometry in the sense that its geometric quantization
decomposes in a Howe dual fashion.

We find that in the symplectic context, the correct setting is given by two Lie
groups acting on a symplectic manifold when these two actions commute and satisfy
the symplectic Howe condition, i. e., these actions are Hamiltonian and their collective
functions are their mutual centralizers in the Poisson algebra of smooth functions on
the symplectic manifold. Once this condition is satisfied, we can describe the orbit
structure in detail. In particular, there is a bijection between the coadjoint orbits in
one moment image and those in the other moment image – this bijection is what we
call the coadjoint orbit correspondence.

We study the coadjoint orbit correspondence further and show, if the acting Lie
groups are compact and the symplectic manifold is prequantizable, that it preserves
integrality of the coadjoint orbits, so to both coadjoint orbits in the correspondence
an irreducible representation can be associated. We thus have a bijection between
certain parts of the unitary duals of both Lie groups acting on the symplectic manifold.
Applying known results about the interchangeability of quantization and reduction, we
see that for a Kähler manifold, its quantization (as a representation of the product of
both groups acting on the manifold) decomposes into a multiplicity-free direct sum of
tensor products of irreducibles of the individual groups, the pairs being given by the
bijection obtained before – as one would expect according to Howe duality.

This main result is accompanied by a study of the local structure of a manifold
carrying two commuting Hamiltonian action which proves a local version of the orbit
correspondence and by a discussion about the relation of the coadjoint orbit correspon-
dence to the generalized symplectic leaf correspondence in singular dual pairs.



Zusammenfassung

Motiviert durch den darstellungstheoretischen Begriff der Howe-Dualität, suchen wir
eine analoge Konstruktion in der symplektischen Geometrie. Analog bedeutet hierbei,
dass die geometrische Quantisierung eine Zerlegung mit Howe-Dualität besitzen soll.

Wir stellen fest, dass die im symplektischen Kontext korrekte Situation gegeben
ist durch zwei Lie-Gruppen, die auf derselben symplektischen Mannigfaltigkeit wirken,
wenn diese Wirkungen kommutieren und die symplektische Howe-Bedingung erfüllen,
d. h. beide Wirkungen sind Hamiltonsch und die kollektiven Funktionen beider Wirkun-
gen sind gegenseitig ihre Zentralisatoren in der Poisson-Algebra der glatten Funktionen
auf der symplektischen Mannigfaltigkeit. Ist diese Bedingung erfüllt, dann sind wir in
der Lage, die Bahnenstruktur detailliert zu beschreiben und zu zeigen, dass eine Bi-
jektion zwischen den koadjungierten Bahnen im Bild der ersten Impulsabbildung und
denen im Bild der zweiten Impulsabbildung existiert – es ist diese Bijektion, die wir
im folgenden als Korrespondenz koadjungierter Bahnen bezeichnen.

Wir setzen die Untersuchung der Korrespondenz koadjungierter Bahnen fort und
zeigen, dass für Wirkungen kompakter Lie-Gruppen auf präquantisierbaren symplek-
tischen Mannigfaltigkeiten die Integralität der koadjungierten Bahnen erhalten bleibt,
und daher beiden koadjungierten Bahnen gleichzeitig irreduzible Darstellungen zuge-
ordnet werden können. Somit besteht eine Bijektion zwischen bestimmten Teilmen-
gen der unitären Duale beider auf der symplektischen Mannigfaltigkeit wirkenden Lie-
Gruppen. Wendet man nun bekannte Resultate über die Vertauschbarkeit von Quanti-
sierung und symplektischer Reduktion an, dann erkennen wir, dass die Quantisierung
einer Kähler-Mannigfaltigkeit (betrachtet als Darstellung des Produktes beider auf der
Mannigfaltigkeit wirkender Gruppen) in eine multiplizitätenfreie direkte Summe von
Tensorprodukten der irreduziblen Darstellungen beider Gruppen zerfällt, wobei die
Paare durch die zuvor beschriebene Bijektion gegeben sind – wie man es im Sinne der
Howe-Dualität erwartet.

Dieses Hauptresultat wird begleitet von der Untersuchung der lokalen Struktur
einer Mannigfaltigkeit, auf der zwei Hamiltonsche Wirkungen gegeben sind, die eine
lokale Version der Bahnenkorrespondenz liefert, sowie von einer Betrachtung der Bezie-
hung der Korrespondenz koadjungierter Bahnen zur Korrespondenz verallgemeinerter
symplektischer Blätter in singulären dualen Paaren.



Résumé

Motivé par la dualité de Howe dans la théorie des représentations de groupes de
Lie, on cherche une construction analogue en géométrie symplectique, c’est-à-dire on
souhaite que sa quantification géométrique décompose de manière Howe-duale.

On trouve que dans le contexte symplectique, le cadre correct est donné par deux
groupes de Lie agissant sur la même variété symplectique si ces actions commutent et
satisfont la condition de Howe symplectique, i. e., ces actions sont hamiltoniennes et
leurs fonctions collectives sont leurs centralisateurs mutuelles dans l’algèbre de Poisson
des fonctions lisses sur la variété symplectique. Une fois cette condition est remplie,
nous pouvons décrire la structure d’orbites en détail. En particulier, il y a une bijec-
tion entre les orbites coadjointes dans une image d’application moment et celles dans
l’image de l’autre application moment – or, il est cette bijection que nous appelerons
la correspondance d’orbites coadjointes.

On poursuit l’étude de la correspondance d’orbites coadjointes et on montre que, si
les groupes de Lie qui agissent sont compacts et la variété symplectique est préquanti-
fiable, l’integralité est préservée par la correspondance. Ainsi, il est possible d’associer
en même temps des représentations irréductibles aux deux orbites de la correspondance.
Donc, nous avons une bijection entre certaines parties des duaux unitaires des deux
groupes de Lie qui agissent sur la variété symplectique. En appliquant des résultats
connus qui assurent que la quantification et la réduction commutent, nous consta-
tons que la quantification d’une variété kählerienne (vue comme une représentation
du produit des deux groupes qui agissent sur la variété) admet une décomposition en
somme direct sans multiplicités de produits tensoriels des représentations irréductibles
des deux groupes, les paires étant données par la bijection obtenue précédemment –
parfaitement en accord avec la dualité de Howe.

Ce résultat principal est accompagné par l’étude de la structure locale d’une variété
avec deux actions hamiltoniennes qui commutent, ce qui donne une version locale
de la correspondance d’orbites, ainsi que par des réflexions sur la relation entre la
correspondance d’orbites coadjointes et la correspondance de feuilles symplectiques
généralisées dans des paires duales singulières.
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1 INTRODUCTION

1 Introduction

Howe’s duality [How89] is a well-studied notion in the theory of reductive Lie groups. It is
based on the notion of Howe dual pairs, which specialize the concept of a double commutant
to Lie group theory.

Definition 1.1. Given a real reductive Lie group G. A (Howe) dual pair in G is a pair (G1, G2)
of two real reductive Lie subgroups of G which are their mutual centralizers in G, i. e.,

ZG(G1) = G2 and ZG(G2) = G1.

For certain of these pairs and certain representations (%, V ) of the large group G there is
a decomposition of the following type:

V ∼=
⊕

[Vα]∈D

Vα ⊗Wα,

where Vα represents a class [Vα] in D and Wα represents the class Λ([Vα]), D is the set of
occurring irreducible representations of G1, and the occurring irreducible representations of
G1 and G2 are in bijection via an injective map Λ : D → Λ(D) ⊆ Ĝ2, this bijection being
called Howe duality. However, it is not known in general which representations of which
groups admit such a decomposition. For real reductive groups, results have been obtained on
a case-by-case basis. The most prominent dual pair is (Sp(n, R), O(k)) in Sp(nk, R) together
with the Howe dual decomposition of the metaplectic (or oscillator) representation. Examples
for this notion arise from physics [How85].

In this thesis, the question is studied how Howe dual representations emerge via geometric
quantization. The starting point (in section 3) is a symplectic manifold (M,ω) on which two
Lie group actions (of G1 and G2) are given that commute with each other. If both actions are
Hamiltonian with equivariant moment maps Φi : M → g∗i , i = 1, 2, their moment components
Poisson-commute, and thus

Φ∗
i C

∞(g∗i ) ⊆ ZC∞(M)(Φ
∗
jC

∞(g∗j ))

for i + j = 3.
Besides the very important technical requirement that both actions need to be proper,

we impose at first the following condition on the orbits:

(gi · z)∠ = gj · z (i + j = 3),

i. e., in a point z ∈ M of the manifold, the tangent spaces of both orbits are mutually their
symplectic complement. For points satisfying this condition, the symplectic slice theorem
can be specialized, hence we can describe very explicitly local models of the orbits and the
normal forms of the moment maps. Based on this explicit description, one observes a bijection
between the coadjoint orbits lying in the image of one moment map in normal form and those
lying in the image of the other moment map in normal form (see Lemma 3.11 and comments
thereafter).

In order to obtain a global correspondence, we invoke (in section 3.2) the classical (non-
singular) dual pair notions of symplectic geometry. We will remove all (implicit) genericity

3



1 INTRODUCTION

assumptions in these notions and use but the essential conditions in there. In particular, the
symplectic Howe condition

ZC∞(M)(Φ
∗
jC

∞(g∗j )) = Φ∗
i C

∞(g∗i ) (i + j = 3)

will be used and allows, if satisfied, to describe explicitly all level sets of both moment
maps. The preceding condtion is the most natural candidate for the “dequantization” of the
double commutant condition in representation theory (see our Lemma 5.3). From the form
of the level sets, we deduce our central result, the correspondence theorem for coadjoint orbits
(Thm. 3.26). We do not only obtain a bijection between the coadjoint orbits in the moment
images, i. e., Λ : Φ1(M)/G1 → Φ2(M)/G2, but also symplectomorphims between the reduced
spaces constructed using one moment map and the coadjoint orbits in the image of the other
moment map, i. e., Mα1

∼= Λ(Oα1) and Mα2
∼= Λ−1(Oα2).

We have obtained our coadjoint orbit correspondence from the symplectic Howe condition
without special genericity considerations, in contrast to the symplectic leaf correspondence
for classical dual pairs [OR04, Thm. 11.1.9]. This is due to the fact that we dispose of far
more structure in our setting of proper Hamiltonian actions compared to the setting in which
the symplectic leaf correspondence is shown. Alternatively, our correspondence can also be
seen as a consequence of the generalized symplectic leaf correspondence for singular dual
pairs (see Cor. 4.16.1). This is described in detail in section 4.

Eventually, in section 5, we come to quantizing the (G1 × G2)-action on (M,ω) (which
makes us assume from here on that ω lies in an integral de Rham class and that both groups are
compact). Our first result in this section is that the orbit correspondence preserves integrality
of the coadjoint orbits, so it makes sense to quantize (M,ω) and to ask for a decomposition
of the so-obtained (G1 × G2)-representation into the irreducibles of G1 and G2, thought of
as the quantizations of the coadjoint orbits in the moment images. In Thm. 5.17, we actually
get a Howe dual decomposition of the geometric quantization of (M,ω) in case that M is
kählerian. Precisely, we obtain that

Γhol(M,L) ∼=
⊕

α1∈Φ1(M)∩t+Z

Γhol(Oα1 , Lα1)⊗ Γhol(Oα2 , Lα2),

where Oα2 = Λ(Oα1) and t+Z is the set of integral points of a fixed Weyl chamber of g1.
In order to show this, we apply results about the interchangeability of quantization and
reduction.

The remaining sections illustrate the orbit correspondence on natural examples of com-
muting Hamiltonian actions of Lie groups.

4



2 REMINDER ON SYMPLECTIC GEOMETRY AND HAMILTONIAN ACTIONS

2 Reminder on Symplectic Geometry and Hamiltonian Ac-
tions

This section collects standard facts on differentiable manifolds, foliations, symplectic and
Poisson geometry, proper group actions, standard moment maps, slices and normal forms,
and the preservation of slices by a moment map, which will be used throughout the remainder
of this thesis.

2.1 Differential Geometric Conventions

For the convenience of the reader and to avoid ambiguities about certain conventions, some
definitions are fixed in this section. Notation follows often, but not always, those which are
used in [OR04].

Unlike in [OR04], the term manifold stands for differentiable manifolds which are always
assumed to be smooth (C∞), finite-dimensional, Hausdorff and paracompact without stating
this every time.

Let M and N be manifolds. Any smooth map f : M → N admits a derivative which is
a bundle map, defined between the tangent bundles, Tf : TM → TN . Point-wise, one can
consider the dual T ∗

z f : T ∗
f(z)N → T ∗

z M . Explicitly, these maps are given as follows: Take a
vector X ∈ TzM at a point z ∈ M which is represented by a curve cX : (−T, T ) → M with
T ∈ R+, cX(0) = z and d

dt

∣∣
0
cX = X. Then define

Tzf : TzM → Tf(z)N, Tzf(X) =
d
dt

∣∣∣∣
0

f(cX(t)),

and the dual map (α ∈ T ∗
f(z)N)

T ∗
z f : T ∗

f(z)N → T ∗
z M, 〈T ∗

z f(α), X〉 = 〈α, Tzf(X)〉.

A map f : M → N between two manifolds is called a submersion or immersion at a point
z ∈ M if Tzf , its tangent map in that point, is surjective or injective, respectively. If the
respective property holds everywhere, the specification of the point is omitted. The dimension
of the image of Tzf is called the rank of the map f in the point z. Maps of constant rank
have convenient properties which generalize submersions and immersions.1 For later use, we
record the following theorem (see, e. g., [Hel78, Thm. 15.5]).

Theorem 2.1. Let M and N be manifolds of dimensions m and n, and f : M → N be a smooth
map. Suppose that f has constant rank k in a neighbourhood of a point z ∈ M . Then there
exist local charts ξ : Uz → Rm (z ∈ Uz ⊆ M) and η : Uf(z) → Rn (f(z) ∈ Uf(z) ⊆ N) such
that ξ(z) = 0 and η(f(z)) = 0; further

η ◦ f ◦ ξ−1 : (x1, . . . , xm) 7→ (x1, . . . , xk, 0, . . . , 0).

In particular, f(Uz) is a k-dimensional submanifold of N .

1Maps of constant rank are also called subimmersions in [AMR88, Ch. 3.5].
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2.1 Differential Geometric Conventions

Let X (M) = Γ∞(TM) denote the smooth vector fields on a manifold M and Ωk(M) =
Γ∞(

∧k(T ∗M)) the smooth k-forms on M . The symbol is used to denote the contraction of
a vector field with a form: X ω = ω(X, . . .) for X ∈ X (M) and ω ∈ Ωk(M) for any k ∈ N.

Another notation that will be occasionally used but which is not completely standard is
G0 to denote the connected component of a Lie group G which contains the identity.

Foliations and distributions. Let M be a manifold. A smooth vector subbundle E
of the tangent bundle TM is called a distribution. One calls E involutive if for any open
subset U ⊆ M and any vector fields X, Y ∈ Γ∞(U,E), their commutator [X, Y ] lies again
in Γ∞(U,E). It is called integrable if for every point z ∈ M there exists a local submanifold
N ⊆M containing z such that TN = E|N , a local integral manifold of E at z. By the (local)
Frobenius theorem, E is involutive if and only if it is integrable.

Let L = {Lα}α∈A be a partition of M into leaves, i. e., M =
⋃

α∈A Lα and Lα ∩ Lβ =
∅ ∀α, β ∈ A,α 6= β. A partition into leaves L is called a foliation if for any point z ∈ M ,
there exists a chart (U,ϕU ), z ∈ U , with

ϕU : U → U ′ × V ′ ⊆ E × F

such that for any α ∈ A, the connected components (U ∩ Lα)i of U ∩ Lα are given by
ϕU ((U ∩ Lα)i) = U ′ × {ci

α}, where ci
α ∈ V ′ ⊆ F are constants and E and F appropriate

vector spaces.
Define the tangent bundle of a foliation to be T (M,L) =

⋃
α∈A

⋃
z∈Lα

TzLα. The global
version of Frobenius theorem says that a distribution E is involutive if and only if there exists
a foliation L on M such that E = T (M,L). We denote by M/L the space of leaves with its
quotient topology.

The framework we have just established requires all leaves of the distribution to be of the
same dimension – this being too restrictive, in general, the notion of a generalized foliation
will be introduced. Given a partition L of a manifold into leaves (indexed by α ∈ A), L is
called foliated in a general sense if at any point z ∈ M , there exists a chart (U,ϕU ) around
z (ϕU : U → W ⊆ Rm) such that for any α ∈ A, there is a positive integer nα ≤ m (the
dimension of the leaf Lα) and a subset Aα ⊆ Rm−nα satisfying

ϕU (U ∩ Lα) = {(z1, . . . , zm) ∈W | (znα+1, . . . , zm) ∈ Aα}.

Each (zi
nα+1, . . . , z

i
m) ∈ Aα determines a connected component (U ∩ Lα)i of U ∩ Lα.

A leaf Lα of a generalized foliation is called regular if there exists an open neighbourhood
of Lα intersecting only leaves of the same dimension and singular otherwise. The set of points
belonging to regular leaves is open and dense in M .

The same idea which lead us to generalized foliations justifies the definition of generalized
distributions as a subset D ⊆ TM such that at any point z ∈M the intersection D(z)∩TzM
is a linear subspace of TzM . D is called differentiable if for any z ∈ M and any v ∈ D(z),
there exists an open neighbourhood U of z and a section X ∈ Γ∞(U, TM) taking its values
in D such that v = Xz. Further, D is called completely integrable if for any z ∈ M , there
is an integral manifold of D containing z which is of maximal dimension. If D is invariant
under the local flows associated to the differentiable sections of D, it is called involutive.
Finite compositions of these flows starting at z ∈ M define the accessible set of D through

6



2 REMINDER ON SYMPLECTIC GEOMETRY AND HAMILTONIAN ACTIONS

z, which are at the same time the maximal integral manifolds. They constitute a generalized
foliation.

2.2 Hamiltonian Actions on Symplectic Manifolds

This section recalls the basic notions of symplectic geometry (mainly based on [OR04,
Ch. 4.1]).

Definition 2.2. A symplectic vector space is a pair (V, ω) where V is a vector space and ω a
non-degenerate antisymmetric bilinear form on V . A symplectic manifold is a pair (M,ω)
where M is a manifold and ω a symplectic form, i. e., ω is a closed (dω = 0) non-degenerate
2-form on M . For every z ∈ M , the tangent space at z, together with the symplectic form
at z, (TzM,ωz), is a symplectic vector space. A symplectic manifold is called exact if there
is a 1-form ϑ such that ω = −dϑ.

For a linear subspace W of a symplectic vector space (V, ω), one commonly uses the
following defintions.

Definition 2.3. The symplectic complement of W in V is the subspace

W∠ = {v ∈ V | ω(v, w) = 0 ∀w ∈W}.

Remark 2.4. The term complement is justified by the fact that for the dimension of the symplectic
complement W∠ of W in V , one has the relation

dim W + dim W∠ = dim V.

However, unlike for the orthogonal complement (i. e., a complement taken w. r. t. a symmetric
positive-definite bilinear form), we do in general not have W ∩W∠ = {0}.2

Definition 2.5. The subspace W is called isotropic if W ⊆W∠. It is called coisotropic if W∠ ⊆W .
A subspace which is isotropic and coisotropic is called Lagrangian (i. e., W = W∠). A
subspace W is called symplectic if the restricted form ω|W×W is non-degenerate.

These notions carry over to submanifolds by requiring all tangent spaces to have the
corresponding property as a subspace.

For two subspaces with complementary dimension, one can prove:

Lemma 2.6. Let (V, ω) be a symplectic vector space containing the linear subspaces W1,W2. Sup-
pose W1 ⊆W∠

2 and dim W1 + dim W2 = dim V . This already implies W1 = W∠
2 .

Proof. Suppose we have a strict inclusion W1 ⊂ W∠
2 , hence dim W1 < dim W∠

2 . Then by
dim W1 = dim V − dim W2 = dim W∠

2 , we have a contradiction.

Note that by its non-degeneracy, the symplectic form on V defines an isomorphism be-
tween V and its dual space V ∗, which justifies the following definition on a symplectic manifold
(M,ω).

2At this point, notions vary in the literature: The symplectic complement is also called skew-complement,
symplectic orthogonal complement, ω-perpendicular space, etc.
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2.2 Hamiltonian Actions on Symplectic Manifolds

Definition 2.7. A vector field X ∈ X (M) is called Hamiltonian if the form X ω is exact, i. e.,
there exists a function f ∈ C∞(M) such that X ω = df . Conversely, given a function
f ∈ C∞(M), there is the Hamiltonian vector field Xf of f , which is uniquely determined by
Xf ω = df . A vector field X is called symplectic or locally Hamiltonian if LXω = 0 or,
equivalently, X ω is closed. The set of Hamiltonian vector fields on (M,ω) will be denoted
by XH(M,ω), the set of locally Hamiltonian vector fields by XLH(M,ω) (ω may be omitted
if clear from the context).

One has the property [XLH(M,ω),XLH(M,ω)] = XH(M,ω), since [X, Y ] ω = d(ω(X, Y ))
for X, Y ∈ XLH(M,ω).

On a symplectic manifold (M,ω), consider now a smooth action Ψ : G×M →M, (g, z) 7→
Ψg(z) of a Lie group G. If there is no risk of confusion, we will also write g · z for Ψg(z) and
consequently, G · z for the whole G-orbit under this action. The fundamental vector fields of
the G-action are given, for any ξ ∈ g = Lie(G), by ξM

z = d
dt

∣∣
0
exp(tξ) · z (sometimes denoted

differently to be clear about the action, e. g., ξΨ); the space of fundamental vectors for this
action at z will be denoted by g · z = {ξM

z | ξ ∈ g}. Two special actions to occur are the left
and right action of G on itself, induced by Lh : G→ G, g 7→ hg and Rh : G→ G, g 7→ gh.

Definition 2.8. An action is called symplectic if it preserves the symplectic form, i. e., for all g ∈ G,
Ψ∗

gω = ω holds. A symplectic action is called Hamiltonian if all fundamental vector fields are
Hamiltonian, i. e., ξM ω = dΦξ, for some function Φξ. For a Hamiltonian action, a smooth
map Φ : M → g∗ exists which is given by 〈Φ, ξ〉 = Φξ for all ξ ∈ g; it is called a (standard)
moment map. A moment map is called equivariant if Ad∗(g)Φ = Φ ◦Ψg holds for all g ∈ G.

Remark. Here, Ad∗ denotes the coadjoint action of G on g∗, the dual of its Lie algebra, i. e.,
Ad∗(g) = [Ad(g−1)]∗. With this choice, we differ from the conventions in [OR04].

Note that for an exact symplectic manifold with a 1-form ϑ that is invariant under the
group action, dΦξ = ξM ω = −ξM dϑ = d(ξM ϑ) (by invariance of ω under the group
action), and thus, up to a constant, Φξ = ξM ϑ is (up to constant) the moment map for the
G-action on this manifold.

Observe that if an action is Hamiltonian, there exists a R-linear map λ : g → C∞(M)
which makes the following diagram commute (note that the upper line would be an exact
sequence of Lie algebra homomorphisms, for C∞(M) equipped with its Poisson-Lie structure,
if % was defined to map f 7→ −Xf ; see also the next subsection):

0 // R // C∞(M)
% // XH(M,ω)

g
λ

ffNNNNNNNNNNNN
τ

OO
(2.1)

Here, % : f 7→ Xf assigns to f its Hamiltonian vector field and τ : ξ 7→ ξM gives the
fundamental vector field. So, we have τ = % ◦ λ. Explicitly, λ maps ξ to the corresponding
momentum component Φξ.

In general, the map λ is not a Lie algebra homomorphism, but

{λ(ξ1), λ(ξ2)} = λ([ξ1, ξ2])− Σ(ξ1, ξ2) ∀ξ1, ξ2 ∈ g, (2.2)

8



2 REMINDER ON SYMPLECTIC GEOMETRY AND HAMILTONIAN ACTIONS

where Σ ∈ Z2(g, R) is a two-cocycle. This is proved, together with further identities satisfied
by Σ, in [OR04, Thm. 4.5.25].

In order to state basic properties of the moment map, one needs two further definitions.

Definition 2.9. Let h be a Lie subalgebra of a Lie algebra g. The annihilator of h in g∗ is the
subspace

h◦ = {α ∈ g∗ | α(ξ) = 0 ∀ξ ∈ h}.

Definition 2.10. For a smooth action of a Lie group G on a smooth manifold M , the stabilizer of
a point z ∈M under the action of G is given by

StabG(z) = {g ∈ G | g · z = z},

often simply denoted by Gz. The stabilizer is a Lie subgroup of G. Its Lie algebra is given
by

Lie(StabG(z)) = Stabg(z) = gz =
{
ξ ∈ g | ξM

z = 0
}
.

Proposition 2.11. Let Φ : M → g∗ be a moment map of the Hamiltonian G-action on the
symplectic manifold (M,ω). Then

ker TzΦ = (Tz(G · z))∠

is the symplectic complement of Tz(G · z) in TzM and

im TzΦ = (Lie(StabG(z)))◦

is the annihilator of the stabilizer Lie algebra of z in g, for any z ∈M .

Proof. From the definition of a moment map, one sees

ker TzΦ =
{
X ∈ TzM | ω(ξM

z , X) = 0 ∀ξ ∈ g
}
.

The tangent space of the G-orbit at z is Tz(G · z) = g · z =
{
ξM
z | ξ ∈ g

}
, thus its symplectic

complement in TzM is the kernel of TzΦ.
The proof of the second statement is immediate, too. See also [OR04, Prop. 4.5.12] for a

more general result.

2.3 Some Facts from Poisson Geometry

Another structure, which exists on any symplectic manifold (M,ω), is its Poisson structure.
However, we will in some cases need to deal with manifolds that only have a Poisson structure.
Thus the definition will be given in general.

Definition 2.12. A pair (M, {·, ·}) consisting of a manifold M and a bilinear map (the Poisson
bracket) {·, ·} : C∞(M)×C∞(M)→ C∞(M) is called a Poisson manifold if it makes C∞(M)
into a Lie algebra and is a derivation, i. e.,

{fg, h} = f{g, h}+ {f, h}g ∀f, g, h ∈ C∞(M).

9
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The canonical Poisson structure on a symplectic manifold (M,ω) is given by

{·, ·} : C∞(M)× C∞(M)→ C∞(M), (f, g) 7→ ω(Xf , Xg).

In the Poisson context, a Hamiltonian vector field Xf is assigned to a function f ∈ C∞(M)
via

Xf = {·, f}.

This assignment is a Lie algebra antihomomorpism, i. e.,

X{f,g} = −[Xf , Xg] ∀f, g ∈ C∞(M).

The Poisson bracket depends on its arguments, say f and g, only through df and dg, hence
one can define the Poisson tensor field B by

B(df,dg) = {f, g},

which induces further a vector bundle map B] : T ∗M → TM given by Bz(αz, βz) =〈
αz, B

]
z(βz)

〉
, for any α, β ∈ T ∗M and using the natural pairing of TM and T ∗M (written

here 〈·, ·〉). The image D = B](T ∗M) of this map is a generalized distribution, its dimension
dim Dz at any point z ∈M as a linear subspace of TzM is called the rank of (M, {·, ·}) at z.

An important feature of Poisson manifolds is the fact that they admit a decomposition into
symplectic leaves, i. e., into submanifolds carrying a symplectic structure induced from the
Poisson structure via the characteristic distribution D. This is made precise in the following
theorem (see, e. g., [OR04, Thm. 4.1.28]).

Theorem 2.13. Let (M, {·, ·}) be a Poisson manifold and D its characteristic distribution. Then D
is a smooth and integrable generalized distribution and its maximal integral leaves form a gen-
eralized foliation decomposing M into symplectic submanifolds L, whose symplectic structure
is the unique one which makes the inclusion i : L →M into a Poisson map.

A Poisson map (or canonical map) is a smooth map which preserves the Poisson struc-
tures, i. e., ϕ : M → N such that ϕ∗{f, g}N = {ϕ∗f, ϕ∗g}M for all f, g ∈ C∞(N).

Example 2.14. For our topic, one example of a Poisson manifold will play a central role: the dual
g∗ of a Lie algebra. The Poisson structure on g∗ is given by either of

{f, g}(α) = ±〈α, [δαf, δαg]〉

at α ∈ g∗ for f, g ∈ C∞(g∗). Here, to f has been assigned the element δαf ∈ g by 〈β, δαf〉 =
Tαf(β) for any β ∈ g∗ and identifying Tαg∗ ∼= g∗.

We will always use the Poisson bracket defined with +.
One shows that Hamiltonian vector fields with respect to this Poisson structure are always

tangent to coadjoint orbits, thus the symplectic leaves of g∗ are the connected components
of the coadjoint orbits with the so-called KKS symplectic structure [OR04, Thm. 4.5.31].

2.4 Symplectic Slice Theorem

This section will review the Witt-Artin decomposition, the symplectic slice theorem and the
Marle-Guillemin-Sternberg normal form of the moment map, following [OR04, Ch. 7].
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Proper Actions. We start by recalling the notions of a proper Lie group action and of
slices and tubes for such an action, before actually discussing them in the symplectic context.
This will only include the essential statements which are needed afterwards; more extensive
treatments are in [OR04, Ch. 2.3] or [DK00, Ch. 2]. One has to keep in mind that in the
literature, the definitions of a proper action may differ from the one we use; these differences
are discussed in [Bil04].

Definition 2.15. Let G be a Lie group acting on the manifold M via the map Ψ : G×M → M .
We call Ψ a proper action whenever the map G×M 3 (g, z) 7→ (z,Ψg(z)) ∈M×M is proper.
This is equivalent to: For any two convergent sequences {zn} and {gn · zn} in M , there exists
a convergent subsequence {gnk

} in G. The action is called proper at z ∈ M if this holds for
all sequences {zn} and {gn · zn} converging to z.

Actions of a compact group G are always proper because every sequence in G has a
convergent subsequence.

A first impression of the importance of proper actions is the following proposition which
lists some of their features (details can be found in [OR04, Prop. 2.3.8] or [DK00, Prop. 2.5.2],
among others).

Proposition 2.16. Let G be Lie group which acts properly on the manifold M . Then:

(i) For any z ∈M , the stabilizer Gz is compact.

(ii) The orbit space M/G is a Hausdorff topological space.

(iii) Let N be any G-invariant subset of M and let f ∈ C∞(M) be such that the restriction
f|N is constant on each G-orbit. Then there is a smooth G-invariant function F ∈
C∞(M)G satisfying F|N = f|N .

(iv) M admits a smooth G-invariant Riemannian structure.

For a proper symplectic G-action on (M,ω), the G-invariant Riemannian structure may
be chosen in a way which is compatible with the symplectic structure.

Proposition 2.17. Let (M,ω) be a symplectic manifold with a proper symplectic G-action. Then
there exists an almost complex structure J : TM → TM (i. e., J2 = − id) which is G-
equivariant and compatible with the symplectic form ω, i. e., there is a G-invariant Rieman-
nian metric given by 〈X, Y 〉 = ω(X, JY ) ∀X, Y ∈ X (M).

Proof. For any manifold with proper action, there exists a smooth G-invariant Riemannian
metric by the preceding proposition. Choose an arbitrary G-invariant metric on M and
denote it by 〈·, ·〉′. By the non-degeneracy of the metric and the symplectic form ω, there is
further a map A : TM → TM , invertible for any z ∈M , such that

〈X, Y 〉′ = ω(X, AY ) ∀X, Y ∈ X (M).

Additionally, A is smooth and G-equivariant resulting from the corresponding properties of
the metric and the symplectic form: On the one hand,

ωg·z(TzΨg(·), TzΨg ◦Az(·)) = ωz(·, Az·)

11
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and on the other,

ωg·z(TzΨg(·), Az ◦ TzΨg(·)) = 〈TzΨg(·), TzΨg(·)〉′g·z = 〈·, ·〉′z = ωz(·, Az·),

hence Ag·z ◦ TzΨg = TzΨg ◦Az.
Fix a point z ∈ M , then Az ∈ GL(TzM) and we can apply polar decomposition (w. r. t.

〈·, ·〉′z), i. e., we have smooth maps u : GL(TzM)→ GL(TzM) and s : GL(TzM)→ GL(TzM)
with the following properties: The values of u are unitary maps with respect to the chosen
metric on TzM , the values of s are positive definite linear maps, and for all Az ∈ GL(TzM),
the identity Az = u(Az) ◦ s(Az) holds. Moreover, these maps are uniquely determined by
these properties [Pfl01, Thm.A.2.1].

Now we have to check whether u(Az) and s(Az) are still G-equivariant. But Ag·z ◦TzΨg =
TzΨg ◦Az implies

u(Ag·z) ◦ s(Ag·z) ◦ TzΨg = TzΨg ◦ u(Az) ◦ s(Az),

which gives, by the uniqueness of u and s,

u(Ag·z) ◦ TzΨg = TzΨg ◦ u(Az) and Tg·zΨg−1 ◦ s(Ag·z) ◦ TzΨg = s(Az).

Now, like in the proof of the non-equivariant version of this statement (see, e. g., [Bla02,
Thm. 4.3]), one puts J = u(A) and defines a new metric 〈·, ·〉 through the positive definite
map s(A). One verifies that J2 = − id holds and the compatibility between 〈·, ·〉 and ω is
satisfied. Note that u and s depend smoothly on the point z ∈M .

Slices and Tubes. As a means to describe the structure of a G-manifold locally, slices and
tubes are introduced.

Definition 2.18. Let M be a manifold and G a Lie group acting on M . Let z ∈M such that the
orbit G · z is closed in M . A tube around G · z is a G-equivariant diffeomorphism

ϕ : G×Gz S → U,

where U is a G-invariant neighbourhood of G · z in M and S is some manifold on which Gz

acts. If S is a submanifold of M containing z such that Gz · S = S, then it is called a slice
at z.

The importance of proper actions lies in the fact that for them, slices do always exist
[Pal61, Thm. 2.3.3] (the formulation below taken from [OR04, Thm. 2.3.31]).

Theorem 2.19 (Slice Theorem). Let M be a manifold and G a Lie group acting properly on M
at the point z ∈M . Then there exists a slice for the G-action at z.

Remark 2.20. A linear action of a non-compact reductive group on a vector space is not proper
as the stabilizer of zero is the whole group and thus not compact. In particular, the coadjoint
action is not proper, in general. However, slices may exist under certain conditions, which
will be explained at the end of this section in order to relate slices in M to those in the image
of a moment map.

For the remainder of the section, let (M,ω) be a symplectic manifold and G a Lie group
which acts properly and symplectically on M .
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Witt-Artin decomposition. Having established slices in general, the next step is to find
slices which are adapted to the symplectic structure. As slices are transverse to the orbits,
the restriction of the symplectic form to the tangent spaces of the orbits is considered. Fix
a point z ∈ M ; for this point, we define the following linear subspace of the Lie algebra
g = Lie(G):

k(z) =
{

ξ ∈ g | ξM
z ∈ (g · z)∠

}
⊆ g,

which contains the Lie algebra gz = Stabg(z). The subspace k(z) · z of g · z spanned by the
fundamental vector fields corresponding to k(z) is the degenerate part of the orbit tangent
space; indeed, k(z) · z = (g · z) ∩ (g · z)∠. We actually have (compare [OR04, Thm. 7.1.1(i)]):

Lemma 2.21. k(z) is a Ad(Gz)-invariant Lie subalgebra of g.

Proof. As the subspace property is obvious, it remains to show that k(z) is closed under the Lie
bracket. By the G-invariance of the symplectic form ω, we have for any ξ, η, ζ ∈ g that

0 = (LξM ω)(ηM , ζM ) = ξM (ω(ηM , ζM ))− ω([ξM , ηM ], ζM )− ω(ηM , [ξM , ζM ]).

Inserting this into the definition of the exterior derivative, one obtains

dω(ξM , ηM , ζM ) = −ω([ξM , ηM ], ζM )− ω([ηM , ζM ], ξM )− ω([ζM , ξM ], ηM ) = 0,

the zero being due to the closedness of ω. Applying [ξM , ηM ] = [η, ξ]M and specializing to
ξ, η ∈ k(z), one sees

ωz([ξ, η]Mz , ζM
z ) = −ωz([η, ζ]Mz , ξM

z )− ωz([ζ, ξ]Mz , ηM
z ) = 0,

the whole expression vanishing because ξM
z , ηM

z ∈ (g ·z)∠ by the definition of k(z). Now ζ ∈ g

was arbitrary, so this implies [ξ, η] ∈ k(z).
For the invariance, take g ∈ Gz, ξ ∈ k(z), η ∈ g and note

ωz([Ad(g)ξ]Mz , ηM
z ) = ωz(TzΨg(ξM

z ), ηM
z ) = ωz(ξM

z , [Ad(g−1)η]Mz ) = 0,

hence [Ad(g)ξ]Mz ∈ (g · z)∠.

With this preparation, we state a modified form of the Witt-Artin decomposition given
in [OR04, Thm. 7.1.1].

Theorem 2.22. Let (M,ω) be a symplectic manifold with a proper and symplectic action of a Lie
group G. On M , choose a G-equivariant compatible almost-complex structure J : TM → TM
and the associated G-invariant Riemannian metric 〈·, ·〉. Then for any z ∈M , there is a direct
decomposition of the tangent space at z which is orthogonal w. r. t. this metric:

TzM = k(z) · z ⊕Qz ⊕ Vz ⊕Wz,

where the summands are described by the following definitions and properties.

(i) k(z) · z and Wz = Jz(k(z) · z) are isotropic subspaces of (TzM,ωz). Wz is contained in
the orthogonal complement of g · z in TzM .
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(ii) Qz, given as the orthogonal complement of k(z) · z in g · z, is a symplectic subspace of
(TzM,ωz) and stable under Jz.

(iii) Let Vz be the orthogonal complement of Wz in (g · z)⊥. The linear subspace Vz is a
symplectic subspace of (TzM,ωz) and stable under Jz. We then have

(g · z)∠ = k(z) · z ⊕ Vz,

the direct sum being orthogonal.

(iv) Choose a Ad(Gz)-invariant linear complement of gz in k(z); call it m(z). Then m(z)
and W ∗

z are Gz-equivariantly isomorphic.

Remark. Let us underline that all summands in the decomposition of TzM are Gz-invariant, which
follows immediately from the invariance of k(z) · z and g · z.

Proof. (i) k(z) ·z is isotropic by its definition. With ωz(JzX, JzY ) = ωz(X, Y ) for any X, Y ∈
TzM , this implies that Jz(k(z) ·z) = Wz is isotropic, too. Take Jzη

M
z ∈ Jz(k(z) ·z) = Wz

and ξ ∈ g. Then
〈
Jzη

M
z , ξM

z

〉
= ω(ηM

z , ξM
z ) = 0 because ηM

z ∈ k(z) · z ⊆ (g · z)∠, hence
Wz ⊆ (g · z)⊥. In particular, Wz is orthogonal to k(z) · z.

(ii) By definition, the degeneracy of ω on the orbit is k(z) · z, hence Qz is symplectic.

From (i), we conclude (Wz)⊥ ⊇ g ·z ⊇ Qz; thus JzQz ⊆ (k(z) ·z)⊥ holds. We may write
Qz = (k(z) · z)⊥ ∩ g · z. In order to show that JzQz ⊆ Qz, we check that JzQz ⊆ g · z:
Note first that k(z) · z ⊆ (g · z)∠ implies (k(z) · z)⊥ ⊇ ((g · z)∠)⊥, therefore,

JzQz ∩ g · z = Jz

(
(k(z) · z)⊥ ∩ g · z

)
∩ g · z

= Jz

(
(k(z) · z)⊥ ∩ g · z ∩ ((g · z)∠)⊥

)
= Jz

(
(k(z) · z)⊥ ∩ g · z

)
= JzQz,

and since Jz is an isomorphism on TzM , this gives us JzQz = Qz.

(iii) Now Vz = (g · z ⊕Wz)⊥ = (Qz ⊕ k · z ⊕ Jz(k · z))⊥ is the orthogonal complement of a
Jz-stable linear subspace, hence Vz is stable itself. As a vector space with a complex
structure, Vz is symplectic.

k(z) ·z and Vz are disjoint by definition; they are orthogonal as a consequence of Vz and
Wz being orthogonal. Further, (g · z)∠ = Jz((g · z)⊥) = Jz(Wz ⊕ Vz) = k(z) · z ⊕ Vz.

(iv) Note that m(z) · z = k(z) · z since gz · z = {0}. By restriction to m(z), we have an
isomorphism τz|m(z) : m(z)→ m(z) · z, which is Gz-equivariant since for g ∈ Gz,

τ(Ad(g)ξ)z =
d
dt

∣∣∣∣
0

Ψexp(t Ad(g)ξ)(z) =
d
dt

∣∣∣∣
0

Ψg exp(tξ)g−1(z)

= Tg−1·zΨg(τ(ξ)g−1·z) = TzΨg(τ(ξ)z).
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Further, the symplectic form is non-degenerate and therefore induces an isomorphism
ω] : k(z) · z → W ∗

z , ξM
z 7→ ω(ξM

z , ·) =
〈
Jzξ

M
z , ·

〉
, which is equivariant as Gz acts sym-

plectically.
As with m(z), one can choose a linear complement q(z) of k(z) in g such that q(z) ·z = Qz;

but unlike m(z), it has no further particular property.

Notation. If a point z ∈M is fixed, the explicit mention of the point z in the notation k(z), m(z),
Vz, etc. will be omitted in the sequel.

Remark 2.23. We have decomposed the Lie algebra g into a direct sum gz ⊕ m ⊕ q. However,
we have not yet defined a scalar product on g, hence have no orthogonality. Recall that
m · z = k · z ∼= m and q · z = Qz

∼= q. Thus on m ⊕ q we can use the G-invariant scalar
product 〈·, ·〉 (which is defined on TzM ; here, we restrict it to k · z ⊕ Qz). On gz we choose
an arbitrary Gz-invariant inner product, and we declare gz to be orthogonal to m⊕ q. As gz

and the scalar product are Gz-invariant, m is the (unique) orthogonal complement of gz in k

w. r. t. this scalar product, in particular, m is Gz-invariant. Analogously, q is the Gz-invariant
orthogonal complement of k in g.

A useful property of the subalgebra k in the decomposition (for z ∈M) is recorded in the
following lemma (let gα = Stabg(α) for α ∈ g∗ under the coadjoint action).

Lemma 2.24. Take (M,ω) and G as before, and let the proper G-action be Hamiltonian with
equivariant moment map Φ : M → g∗. Then gα = k for α = Φ(z).

Proof. By its definition, gα = {ξ ∈ g | ad∗(ξ)α = 0}. By the equivariance of Φ, this may be
written as gα = {ξ ∈ g | (TzΦ)(ξM

z ) = 0}. Then Prop. 2.11 about the kernel of TzΦ yields
gα = {ξ ∈ g | ξ ∈ Tz(G · z)∠} = k.

Remark 2.25. Note that by Thm. 26.5 and the corollary to Thm. 26.4 of [GS90], the inclusion
[gΦ(z), gΦ(z)] ⊆ gz holds at all points z ∈M for which the dimension of the coadjoint G-orbit
through Φ(z) is maximal among all coadjoint orbits in the image of the moment map.

Symplectic slice theorem. With the help of the Witt-Artin decomposition, we will obtain
the local structure of a symplectic manifold with proper symplectic action.

Definition 2.26. Let (M,ω) be a symplectic manifold and G a Lie group acting properly and
symplectically on it. Let z ∈ M and let V = Vz be a symplectic vector space carrying a
Gz-action as in Thm. 2.22(iii). Any such space will be called a symplectic normal space at
z. Since the Gz-action on (V, ωz|V×V ) is linear and symplectic, it has an associated moment
map to be denoted by ΦV : V → g∗z and given by 〈ΦV (v), ξ〉 = 1

2ωz(ξV
v , v) (for v ∈ V, ξ ∈ gz).

Here, the fundamental vector field for the Gz-action on V is ξV
v = ξ · v, where gz acts via the

derivative of the linear Gz-action on V .

Proposition 2.27. Let (M,ω) be a symplectic manifold and G a Lie group acting properly and
symplectically on it. Let z ∈ M , let V be a symplectic normal space at z, and m ⊆ g be
the subspace chosen in the Witt-Artin decomposition (Thm. 2.22). Then there exist open Gz-
invariant neighbourhoods m∗

res and Vres of the origin in m∗ and V , respectively, such that the
twisted product

Yz = G×Gz (m∗
res × Vres)
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is a symplectic manifold with symplectic form ωYz given by

ωYz

[g,%,v](T(g,%,v)π(TeLg(ξ1), α1, u1), T(g,%,v)π(TeLg(ξ2), α2, u2)) =

〈α2 + TvΦV (u2), ξ1〉 − 〈α1 + TvΦV (u1), ξ2〉+ 〈% + ΦV (v), [ξ1, ξ2]〉
+ ωz(ξM

1 , ξM
2 ) + ωz(u1, u2),

where π : G × (m∗
res × Vres) → G ×Gz (m∗

res × Vres) is the projection, [g, %, v] ∈ Yz, ξ1, ξ2 ∈ g,
α1, α2 ∈ m∗ and u1, u2 ∈ V .

The Lie group G acts symplectically on (Yz, ω
Yz) by g · [h, η, v] = [gh, η, v] for any g ∈ G

and [h, η, v] ∈ Yz.
The symplectic manifold (Yz, ω

Yz) will be called the symplectic tube of (M,ω) at z ∈M .

This proposition is proved in [OR04, Prop. 7.2.2] and used to formulate the symplectic
slice theorem [OR04, Thm. 7.4.1].

Theorem 2.28 (Symplectic Slice Theorem). Let (M,ω) be a symplectic manifold and let G be
a Lie group acting properly and symplectically on M . Let z ∈ M and let (Yz, ω

Yz) be the
symplectic tube at z as in the preceding proposition. Then there is an open G-invariant
neighbourhood U of z in M and a G-equivariant symplectic diffeomorphism ϕ : U → Yz

satisfying ϕ(z) = [e, 0, 0].

Marle-Guillemin-Sternberg normal form. Now, the local structure of the symplectic
manifold is known, so it is natural to ask for an adapted form of the moment map. An answer
is given by the following theorem [OR04, Thm. 7.5.5].

Theorem 2.29. Let (M,ω) be a connected symplectic manifold acted symplectically and properly
upon by a Lie group G. Suppose that this action has an associated G-equivariant moment map
Φ : M → g∗. Let (Yz, ω

Yz) be the symplectic tube at a point z ∈M that models a G-invariant
open neighbourhood U of the orbit G · z via a G-equivariant symplectic diffeomorphism ϕ :
(U, ω|U )→ (Yz, ω

Yz) as in Thm. 2.28. Then the symplectic left G-action on (Yz, ω
Yz) admits

a moment map ΦYz : Yz → g∗ given by

ΦYz : [g, %, v] 7→ Ad∗(g)(Φ(z) + % + ΦV (v)).

The map ΦYz ◦ϕ is a moment map for the symplectic G-action on (U, ω|U ). Moreover, if the
group G is connected, this moment map satisfies Φ|U = ΦYz ◦ ϕ.

In particular, ΦYz(ϕ(z)) = ΦYz([e, 0, 0]) = Φ(z).

Orbits and Slices in Φ(M) ⊆ g∗. The normal form of the moment map permits to relate
the orbit structure on g∗ to that on M , especially to show that the moment map sends slices
on M to slices in its image. Therefore, we recall a theorem about slices of the adjoint action
on a reductive Lie algebra [Var77, 1., Thm. 20].

Theorem 2.30. Let G be a real reductive Lie group, g be its Lie algebra and ξ ∈ g a semisimple
element3. Let Gξ = {g ∈ G | Ad(g)ξ = ξ} be its stabilizer under the adjoint action and gξ

3An element of a Lie algebra is called semisimple if its matrix representation is a matrix which is diagonal-
izable over C. This is independent of the chosen basis. In particular, all elements of Lie algebras of compact
Lie groups are semisimple.
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the corresponding Lie algebra. Denote by Z(gξ) the centre of gξ. Define [gξ, gξ](t) = {η ∈
[gξ, gξ] | |λ| < t ∀λ which are eigenvalues of ad(η)} as an invariant4 neighbourhood of the
origin of the semisimple part of gξ. Then there exists an open neighbourhood V of ξ in Z(gξ)
and a number t > 0 such that V × [gξ, gξ](t) is a slice at ξ for the adjoint G-action on g.

As the adjoint and coadjoint action of a reductive Lie group can be identified using a non-
degenerate invariant inner product, this theorem holds analogously in the coadjoint case.

Note that the preimage of Gz×Gz (m∗
res×Vres) under the equivariant symplectomorphism

ϕ : U → Yz of Thm. 2.28 is a symplectic slice for the G-action on M . We will now study the
image of Gz ×Gz (m∗

res × Vres) under the normal form of the moment map, ΦYz , described in
Thm. 2.29. Take [g, %, v] ∈ Gz ×Gz (m∗

res × Vres). Then

ΦYz([g, %, v]) = Ad∗(g)Φ(z) + Ad∗(g)ΦV (v) + Ad∗(g)%.

Due to Gz ⊆ GΦ(z), we see that Ad∗(g)Φ(z) = Φ(z). The image of ΦV is contained in g∗z as it
is a moment map of the Gz-action on V , thus Ad∗(g)ΦV (v) ∈ g∗z. As explained in Rem. 2.23,
m is invariant, thus also m∗, so that Ad∗(g)% ∈ m∗.

Suppose now that Φ(z) is semisimple. Hence ΦYz([g, %, v]) ∈ Φ(z)+g∗z +m∗ = Φ(z)+g∗Φ(z),
so after possibly shrinking m∗

res and Vres, we may apply Thm. 2.30 and see that the image of
a (sufficiently small) slice under ΦYz is contained in a slice for the coadjoint action.

4The invariance is shown in [Var77, Lemma 18].
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3.1 Commuting Hamiltonian Actions: Local Correspondence

3 Orbit Correspondence for Commuting Hamiltonian Actions

In this section, the general results which we have summarized before will be applied to the
particular situation of two Lie groups acting on the same manifold. We assume that these
actions commute. Then, we are able to show relations between their stabilizers, their moment
maps, and to adapt the local model to this situation. From the local model, we obtain a first
natural bijection between coadjoint orbits in the images of the normal forms of both moment
maps.

We also prove a global correspondence theorem. Starting by analyzing the classical dual
pair definitions of symplectic geometry, we see that they already allow to describe a certain
singular behaviour. More precisely, we get a bijective correspondence between the coadjoint
orbits in the moment images of two commuting proper Hamiltonian actions including all orbit
types. Further, we are able to describe explicitly reduced spaces in this setting.

3.1 General Properties of Commuting Hamiltonian Actions, Local Models
and Local Correspondence

Now we are going to consider a situation where we have two Hamiltonian actions on one
symplectic manifold, and we suppose that they commute. This will permit us to say some-
thing about the invariance properties of the moment maps, and applying the results of the
preceding section, about the local structure of these actions. First note the following obvious
fact for commuting actions.

Lemma 3.1. Given two Lie groups G and H acting on a set M . If these actions commute, the
following holds for any point z ∈M :

StabH(z′) = StabH(z) ∀z′ ∈ G · z.

The analogous statement for G and H interchanged is also true.

Proof. Write the action of G on the left and H on the right. Then for any z′ = g · z, one has
(g · z) · h = g · z ⇔ z · h = z by multiplication with g−1.

Now assume that one has symplectic actions of two Lie groups G1 and G2 on the sym-
plectic manifold (M,ω). Denote the fundamental vector fields by ξ(1) for ξ ∈ g1 and η(2) for
η ∈ g2. As the actions are symplectic, they are locally Hamiltonian and

[ξ(1), η(2)] ω = d(ω(ξ(1), η(2)))

holds (see explanations after (4.1.5) in [OR04]). One concludes that, if both actions commute
([ξ(1), η(2)] = 0), the “symplectic angle” ω(ξ(1), η(2)) between the orbits is constant on the
connected components of M . We can say a little more for Hamiltonian actions.

Lemma 3.2. Let (M,ω) be a symplectic manifold. Let the Lie groups G1 and G2 act symplectically
on M, admitting equivariant moment maps Φ1 and Φ2. Assume these actions commute. Then
for any ξ ∈ g1 and any η ∈ g2 the Poisson bracket of the moment components vanishes, i. e.,{

Φξ
1,Φ

η
2

}
= 0.
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3 ORBIT CORRESPONDENCE FOR COMMUTING HAMILTONIAN ACTIONS

Proof. Let λi : gi → C∞(M) be the Poisson homomorphisms corresponding to the Hamiltonian
action of the Gi. Denote by λ = λ1 + λ2 : g1⊕ g2 → C∞(M) the combined map for the joint
action. Then for any ξ1 ∈ g1 and η2 ∈ g2 (and thus ξ1 ⊕ 0, 0⊕ η2 ∈ g1 ⊕ g2), we have

{Φξ1
1 ,Φη2

2 } = {λ1(ξ1), λ2(η2)} =
{λ(ξ1 ⊕ 0), λ(0⊕ η2)} = λ([ξ1 ⊕ 0, 0⊕ η2]) = λ([ξ1, 0]⊕ [0, η2]) = 0.

By
0 = {Φξ

1,Φ
η
2} = ω(ξ(1), η(2)) = −ξ(1)(Φη

2) = η(2)(Φξ
1),

one sees that not only the components of the moment maps Φ1 and Φ2 commute but that the
orbits of both actions are symplectically orthogonal to each other (g1 · z ⊆ (g2 · z)∠ ∀ z ∈M)
and the moment components of one action are constant on the connected components of the
orbits of the other action, i. e., for connected groups (or, at least, connected orbits of) G1

and G2, Φ1 is G2-invariant and Φ2 is G1-invariant.
For the remainder of section 3.1, the objects of study will be two Lie groups G1, G2, a

connected symplectic manifold (M,ω), and two Hamiltonian actions Ψ1 : G1 ×M →M and
Ψ2 : G2 ×M → M which commute. Furthermore, the moment maps Φ1 : M → g∗1 and
Φ2 : M → g∗2 will always be G1- and G2-equivariant, respectively. One additional relation
between these commuting actions will be important.

Definition 3.3. Let (M,ω) be a symplectic manifold. Two commuting actions on M by Lie groups
G1 and G2 will be called symplectically complementary if

(g1 · z)∠ = g2 · z ∀z ∈M.

Two easy lemmas will be stated, the first one giving a simple tool to check for symplectic
complementarity and the second one giving an immediate consequence of this property.

Lemma 3.4. If the actions of G1 and G2 on (M,ω) are symplectically orthogonal, i. e., g1 · z ⊆
(g2 · z)∠ ∀z ∈ M , and the dimensions of their orbits are complementary, i. e., dim g1 · z +
dim g2 · z = dim M , they are symplectically complementary.

Proof. This lemma is an immediate consequence of Lemma 2.6, which states the same for two
linear subspaces of a symplectic vector space.

Lemma 3.5. If the actions of G1 and G2 on (M,ω) are symplectically complementary, the tangent
spaces of the orbits of the simultaneous action of G1 × G2 are coisotropic subspaces of the
tangent spaces TzM , i. e.,

Tz((G1 ×G2) · z)∠ ⊆ Tz((G1 ×G2) · z) ∀z ∈M.

Proof. For every point z ∈M , we can calculate

Tz((G1 ×G2) · z)∠ = [Tz(G1 · z) + Tz(G2 · z)]∠

= Tz(G1 · z)∠ ∩ Tz(G2 · z)∠ = Tz(G2 · z) ∩ Tz(G1 · z)
⊆ Tz((G1 ×G2) · z),

which is the definition of a coisotropic subspace.
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3.1 Commuting Hamiltonian Actions: Local Correspondence

The next step is to make explicit the Witt-Artin decomposition of the tangent spaces of
M for both the individual actions of G1, G2 and for the simultaneous action of G1 ×G2. It
turns out that TzM has a very particular structure if the individual actions are symplectically
complementary.

Again, we need – as in section 2.4 – the Lie subalgebras corresponding to the degenerate
parts of the tangent spaces of the group orbits. Denote them by k1, k2 und k12 for g1, g2 and
g12 (again fixing a point z ∈M and omitting it in the notation).

Proposition 3.6. Let (M,ω) be a symplectic manifold with two symplectic and symplectically
complementary actions of the Lie groups G1 and G2. Suppose the (G1×G2)-action is proper.5

Choose a (G1 × G2)-equivariant compatible almost-complex structure J and the (G1 × G2)-
invariant Riemannian structure 〈·, ·〉 = ω(·, J ·). Then for any z ∈ M , the tangent space
decomposes orthogonally as

TzM = k1 · z ⊕Q1 ⊕Q2 ⊕W,

where the summands are described by the following properties:

(i) k1 · z = k2 · z = k12 · z = Tz(G1 · z) ∩ Tz(G2 · z) and k12 = k1 ⊕ k2,

(ii) the symplectic part of the (G1 ×G2)-orbit is given by Q12 = Q1 ⊕Q2,

(iii) for any choice of Gi,z-invariant complements mi of gi,z in ki (i ∈ {1, 2, 12}), one has
m1
∼= m2

∼= m12; and W ∼= m∗
i Gi,z-equivariantly.

Remark. The fact that the degenerate parts of the orbits coincide reminds one of the common
centre of the groups G1 and G2 in a Howe pair (G1, G2) in G (see App.B for this fact).

Proof. By Thm. 2.22, we may decompose TzM under the simultaneous (G1 ×G2)-action as

TzM = k12 · z ⊕Q12 ⊕ V12 ⊕W12,

the decomposition being orthogonal w. r. t. 〈·, ·〉.

(i) By the symplectic complementarity of the orbits, i. e., g1 · z = (g2 · z)∠, we write
k1 =

{
ξ ∈ g1 | ξ(1)

z ∈ g2 · z
}

and k2 =
{

ξ ∈ g2 | ξ(2)
z ∈ g1 · z

}
. Therefore, k1 · z =

{v ∈ g1 · z | v ∈ g2 · z}, hence k1 · z = k2 · z = g1 · z ∩ g2 · z. Also for the joint ac-
tion, k12 =

{
ξ ∈ g1 ⊕ g2 | ξM

z ∈ g1 · z ∩ g2 · z
}
, i. e., k12 · z = g1 · z ∩ g2 · z. From this

follows that Wi = Jz(ki · z) is independent of i ∈ {1, 2, 12}, so we call it W .

The inclusion k1 ⊕ k2 ⊆ k12 is clear from the definition. Let ξ = η1 + η2 ∈ k12. Then
η

(1)
1,z + η

(2)
2,z ∈ g1 · z ∩ g2 · z ⊆ g1 · z. Because η

(1)
1,z ∈ g1 · z, we have

η
(2)
2,z = (η(1)

1,z + η
(2)
2,z)− η

(1)
1,z ∈ g1 · z,

hence η2 ∈ k2, and in the same manner we obtain η1 ∈ k1; so, the reversed inclusion
also holds, thus k1 ⊕ k2 = k12.

5Recall that this implies that the individual actions of G1 and G2 on M are proper. However, the converse
implication is not true, see e. g., the example of T ∗G with left and right G-action treated in section 7.
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3 ORBIT CORRESPONDENCE FOR COMMUTING HAMILTONIAN ACTIONS

(ii) Another immediate observation is that the symplectic normal space for the simultaneous
action is trivial, V12 = {0}, because

k12 · z ⊕ V12 = [(g1 ⊕ g2) · z]∠ = g1 · z ∩ g2 · z = k12 · z.

From (g1 ⊕ g2) · z = g1 · z + g2 · z = (g1 · z ∩ g2 · z) ⊕ Q1 ⊕ Q2 = k12 · z ⊕ Q1 ⊕ Q2

conclude Q12 = Q1⊕Q2. Here, Q1 and Q2 are the symplectic parts of the orbit tangent
spaces of the individual actions. As Q1 and Q2 are symplectically perpendicular and
both Jz-stable, they are also orthogonal w. r. t. 〈·, ·〉.

(iii) Note that the maps τi,z : gi → TzM (i ∈ {1, 2, 12}), which assign the fundamental
vector fields evaluated in z to the elements of the Lie algebra, have kernel gi,z and are
thus isomorphisms when restricted to mi, i. e., τi,z|mi

: mi → mi · z. Using mi · z = ki · z
and (i), this proves the first claim. The isomorphism with W and its equivariance are
shown as in Thm. 2.22.

The symplectic complementarity further allows to observe g1 ·z = k1 ·z⊕Q1 = (g2 ·z)∠ =
k2 · z ⊕ V2. Using the chosen Riemannian metric, k1 · z and Q1 are orthogonal. Applying (i),
and that the symplectic normal space V2 is the orthogonal complement to k2 · z in (g2 · z)∠,
it follows that V2 = Q1; analogously, we have V1 = Q2.

At first glance, the complements mi (for i ∈ {1, 2, 12}) seem to be unrelated. In the
following two lemmas, we show their relationship.

Lemma 3.7. Define linear subspaces of m1 ⊕m2 by

m±
12 =

{
ξ + η ∈ m1 ⊕m2 | ξ(1)

z = ±η(2)
z

}
.

Both subspaces are G12,z-invariant.

Proof. Note first that for (g1, g2) ∈ G12,z, one has (g1, g2) · z = z, hence g−1
1 · z = g2 · z. Take

ξ + η ∈ m±
12. Then, using the fact that the actions Ψ(1) and Ψ(2) commute, one calculates

[Ad(g1)ξ](1)z =
d
dt

∣∣∣∣
0

exp(t Ad(g1)ξ) · z =
(
Tg−1

1 ·zΨ
(1)
g1

)
ξ
(1)

g−1
1 ·z

=
(
Tg2·zΨ

(1)
g1

)
ξ
(1)
g2·z =

(
Tg2·zΨ

(1)
g1

)(
TzΨ(2)

g2

)
ξ(1)
z

= ±
(
Tg2·zΨ

(1)
g1

)(
TzΨ(2)

g2

)
η(2)

z = ±
(
Tg2·zΨ

(1)
g1

)
[Ad(g2)η](2)

g−1
1 ·z = ±[Ad(g2)η](2)z .

Thus we have shown that Ad((g1, g2))(ξ + η) ∈ m±
12.

Remark 3.8. The G12,z-invariance of m±
12 does not rely on the compactness of G12,z, hence not

on the properness of the (G1 ×G2)-action.

As we already know that m1
∼= m2, we can show similar isomorphisms involving the spaces

m±
12. In particular, in the next lemma we see that the G12,z-invariant space m+

12 is actually a
complement adapted to the decomposition in Prop. 3.6. All notation is used as before.
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Lemma 3.9. The subspace m+
12 is an admissible choice for m12, i. e., it is a G12,z-invariant linear

complement to g12,z in k12. Further hold g12,z = (g1,z ⊕ g2,z)⊕m−
12, m−

12
∼= m+

12, m1 ⊕m2 =
m−

12 ⊕m+
12, and m+

12
∼= m1

∼= m2.

Proof. First, we prove that g12,z = (g1,z ⊕ g2,z)⊕m−
12. For ξ + η ∈ g1⊕ g2 to lie in the stabilizer

of the simultaneous action at z ∈ M , ξ
(1)
z + η

(2)
z = 0 must hold. So, either both summands

are zero (and thus ξ + η ∈ g1,z ⊕ g2,z) or ξ
(1)
z = −η

(2)
z 6= 0 (and thus ξ + η ∈ m−

12).
The isomorphism m−

12
∼= m+

12 is given by ξ + η 7→ ξ − η. The intersection m+
12 ∩m−

12 = {0}
is trivial because ξ

(1)
z − η

(2)
z = 0 and ξ

(1)
z + η

(2)
z = 0 together implies ξ

(1)
z = η

(2)
z = 0. As

m+
12 ⊕m−

12 ⊆ m1 ⊕m2 is clear, we now show that any element of m1 ⊕m2 can be decomposed
into the sum of an element of m+

12 and one of m−
12.

Recall the fact that τi,z|mi
is an isomorphism for i = 1, 2. Take ξ + η ∈ m1 ⊕ m2. Then

one can form the vector v = 1
2(ξ(1)

z + η
(2)
z ) as well as w = 1

2(ξ(1)
z − η

(2)
z ), and verify that

τ−1
1,z (v) + τ−1

2,z (v) ∈ m+
12 and τ−1

1,z (w)− τ−1
2,z (w) ∈ m−

12.
From the preceding calculations, one sees k12 = g12,z ⊕ m+

12, hence m+
12 is an appropriate

choice for m12; also m+
12
∼= m1

∼= m2.

Remark 3.10. The isomorphisms m±
12
∼= mi can be realized as follows: Let pi : m1 ⊕m2 → mi be

the projection. Then its restriction pi|m±12
: m±

12 → mi is an isomorphism as it is clearly linear;
surjectivity and injectivity follow from the fact that for any ξ ∈ mi, there is a unique η ∈ mj

(i + j = 3) such that ξ
(i)
z = ±η

(j)
z . Furthermore, recall that on the gi, we have introduced a

scalar product compatible with 〈·, ·〉 on TzM and yielding an orthogonal direct decomposition
gi = gi,z ⊕ mi ⊕ qi. This induces a scalar product on g1 ⊕ g2, which we will also denote by
〈·, ·〉. Take now ξ + η ∈ m+

12 (i. e., ξ
(1)
z = η

(2)
z ) and ξ′ + η′ ∈ m−

12 (i. e., ξ
′(1)
z = −η

′(2)
z ), so

〈ξ + η, ξ′ + η′〉 = 〈ξ, ξ′〉+ 〈η, η′〉 =
〈
ξ
(1)
z , ξ

′(1)
z

〉
+
〈
η

(2)
z , η

′(2)
z

〉
= −

〈
η

(2)
z , η

′(2)
z

〉
+
〈
η

(2)
z , η

′(2)
z

〉
=

0. Thus m+
12 and m−

12 are orthogonal to each other.

Having this information about the tangent spaces at hand, we proceed to describe the
symplectic tubes, according to Prop. 2.27, for the actions we consider. For G1, the tube takes
the form Y1,z = G1×G1,z (m∗

1×q2 ·z)res; and for G2 analogously, Y2,z = G2×G2,z (m∗
2×q1 ·z)res.

The tube of the simultaneous action of G1 × G2 is Y12,z = (G1 × G2) ×G12,z m∗
12,res, where

we assume that m12 is chosen to be m+
12 (recall that the subscript res is used to denote

neighbourhoods of zero in these vector spaces).
The next step is to give the Marle-Guillemin-Sternberg normal forms of the moment maps

for our setting, applying Thm. 2.29. In this context, terms of the form ωz(ξV
v , v) for v ∈ V and

ξ ∈ gz, the Lie algebra of the stabilizer group of z, occur. In our case, we look at V1 = q2 · z
where v = η

(2)
z ∈ q2 · z. Then for ξ ∈ g1,z, one obtains

ξV1
v =

d
dt

∣∣∣∣
0

TzΨ
(1)
exp(tξ)

(
d
ds

∣∣∣∣
0

Ψ(2)
exp(sη)(z)

)
=

d
dt

∣∣∣∣
0

d
ds

∣∣∣∣
0

Ψ(1)
exp(tξ)(Ψ

(2)
exp(sη)(z))

=
d
dt

∣∣∣∣
0

d
ds

∣∣∣∣
0

Ψ(2)
exp(sη)(Ψ

(1)
exp(tξ)(z)) =

d
dt

∣∣∣∣
0

d
ds

∣∣∣∣
0

Ψ(2)
exp(sη)(z) = 0,
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3 ORBIT CORRESPONDENCE FOR COMMUTING HAMILTONIAN ACTIONS

where the fact that Ψ(1) and Ψ(2) commute has been used, as well as ξ stabilizing z. So, the
terms of this type vanish, and the normal forms of the moment maps are

Φ1,Y1,z : [g1, %1, v1] 7→ Ad∗(g1)(Φ1(z) + %1),
Φ2,Y2,z : [g2, %2, v2] 7→ Ad∗(g2)(Φ2(z) + %2),

Φ12,Y12,z : [(g1, g2), %] 7→ Ad∗((g1, g2))(Φ1(z) + Φ2(z) + %),

for the two individual actions and the simultaneous action. Here, gi ∈ Gi, % ∈ m∗
12,res, and

vi ∈ Vi. Observe that, given %, upon setting %i = %|mi
∈ m∗

i , one has

Φ12,Y12,z([(g1, g2), %]) = Φ1,Y1,z([g1, %1, v1]) + Φ2,Y2,z([g2, %2, v2]) ∈ g∗1 ⊕ g∗2,

even though these moment maps belong to different models. (A common model does, in
general, not exist.)

These explicit formulae permit to make a statement about the relation between the slices
on the manifold and in the moment images.

Lemma 3.11. Let Ω be the intersection of the principal orbit type submanifolds of the G1- and G2-
action (both proper). Let z ∈ Ω be a point where the orbits of G1 and G2 have symplectically
complementary tangent spaces. Assume further that Φi(z) is semisimple (for i = 1, 2). Then
the moment map of the Gi-action maps a slice in z for the (G1×G2)-action on M to a slice
in Φi(z) for the coadjoint Gi-action on Φi(Ω) ⊆ g∗i .

Proof. Around z, the manifold is modelled by Y12,z as above. A slice for the (G1 × G2)-action
corresponds to G12,z ×G12,z m∗

12,res. Take (g1, g2) ∈ G12,z and % ∈ m∗
12,res. By Lemma 3.7,

one has that Φ12,Y12,z([(g1, g2), %]) = Φ1(z)+Φ2(z)+Ad∗((g1, g2))% ∈ Φ1(z)+Φ2(z)+m∗
12,res.

Restricting to either of the gi, this yields slices of the form Φi(z) + m∗
i,res in g∗i if Φi(z) is

semisimple, according to Thm. 2.30 and because

dim mi = dim gi,Φi(z) − dim gi,z

= rk TzΦi − (dim gi − gi,Φi(z)) = dim Φi(Ω)− dim Ad∗(Gi)Φi(z)

has the correct dimension of a slice.

So, locally, this yields a correspondence between the orbit through Φ1(z) + %1 ∈ g∗1 and
the one through Φ2(z) + %2 ∈ g∗2, i. e., M/(G1 × G2) and the Φi(M)/Gi are, close to the
respective orbit through z, parametrized by neighbourhoods of zero in the isomorphic vector
spaces m+

12
∼= m1

∼= m2.

3.2 Symplectic Geometry of Dual Pairs Arising from Group Actions

The next step in our work is to establish a global correspondence between coadjoint orbits
in the images of two moment maps corresponding to two commuting Hamiltonian actions on
the same manifold. This is achieved by adapting the theory of symplectic dual pairs to our
setting and studying the consequences for the orbit structure of our group actions.

We start by citing the (classical) dual pair definitions as in [OR04, Ch. 11], and state some
basic properties.
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3.2 Symplectic Geometry of Dual Pairs Arising from Group Actions

Let (M,ω) be a symplectic manifold and (Pi, {·, ·}Pi
) with i = 1, 2 two Poisson manifolds

such that in the diagram

(M,ω)
π1

xxqqqqqqqqqq
π2

&&MMMMMMMMMM

(P1, {·, ·}P1
) (P2, {·, ·}P2

)

(3.1)

π1 and π2 are surjective submersions preserving the Poisson structures. We then call the
diagram a symplectic dual pair diagram.

Definition 3.12. A diagram of this type is called a symplectic Howe dual pair if the Poisson
subalgebras π∗1C

∞(P1) and π∗2C
∞(P2) centralize each other in (C∞(M), {·, ·}ω), i. e.,

ZC∞(M)(π
∗
1C

∞(P1)) = π∗2C
∞(P2)

and vice versa.

Definition 3.13. A diagram of this type is called a Lie-Weinstein dual pair if

∀z ∈M : (kerTzπ1)∠ = kerTzπ2.

The Lie-Weinstein condition implies the relation dim M = dim P1 + dim P2 for the di-
mensions, which avoids singular behaviour. Both notions of dual pairs are related by the
following proposition [OR04, Prop. 11.1.3].

Proposition 3.14. (i) Given a Lie-Weinstein dual pair whose maps π1 and π2 have connected
fibres. Then this pair is also a symplectic Howe dual pair.

(ii) Given a symplectic Howe dual pair where dim M = dim P1 + dim P2 holds. Then this
pair is also a Lie-Weinstein dual pair.

Now, the aim is to interpret diagrams of the form g∗1 M
Φ1oo Φ2 // g∗2 as symplectic dual

pairs according to the preceding definitions. We place ourselves in a setting similar to that
of section 3.1, in particular Lemma 3.5, and find immediately:

Lemma 3.15. Given commuting Hamiltonian free actions of the Lie groups G1 and G2 on the
symplectic manifold (M,ω) which are symplectically complementary, the moment maps being

Φ1 and Φ2, respectively. Then the diagram Φ1(M) M
Φ1oo Φ2 // Φ2(M) is a Lie-Weinstein

dual pair. The converse also holds.

Proof. ker TzΦ1 = Tz(G1 · z)∠ = Tz(G2 · z) = (kerTzΦ2)∠ ∀z ∈M

The basic motivation for introducing symplectic notions of dual pairs is the close rela-
tionship between the spaces P1 and P2 that one can prove for a dual pair. In particular, the
spaces of symplectic leaves of P1 and P2 are in natural bijection, as described by the following
theorem ([OR04, Thm. 11.1.9], notation used as in the reference, see also [Bla01, App. E]).
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3 ORBIT CORRESPONDENCE FOR COMMUTING HAMILTONIAN ACTIONS

Theorem 3.16 (Symplectic Leaf Correspondence). Let a Lie-Weinstein dual pair be given,

(P1, {·, ·}P1
) (M,ω)

π1oo π2 // (P2, {·, ·}P2
) ,

where moreover π1 and π2 have connected fibres. Then:

(i) The generalized distribution Dz = kerTzπ1+kerTzπ2 (z ∈M) is smooth and integrable;

(ii) There are bijections between the leaf spaces M/D and P1/{·, ·}P1
as well as M/D and

P2/{·, ·}P2
, given by L ∈ M/D 7→ π1(L) and L ∈ M/D 7→ π2(L), respectively. Conse-

quently, π2 ◦π−1
1 : P1/{·, ·}P1

→ P2/{·, ·}P2
,L1 7→ π2(π−1

1 (L1)) gives a bijection between
the spaces of symplectic leaves of P1 and P2.6

(iii) Let L1 ⊆ P1 and L2 ⊆ P2 be two symplectic leaves in correspondence and L the corre-
sponding leaf in M . If iL : L →M is the inclusion, then

(iL)∗ω = (π1|L)∗ω1 + (π2|L)∗ω2,

ω1 and ω2 being the symplectic forms on the symplectic leaves L1 and L2, resp.

It would be possible to apply this theorem directly to our situation of two Hamiltonian
actions which commute and find a natural correspondence between the symplectic leaves,
i. e., the coadjoint orbits, in g∗1 and g∗2. However, assuming the moment maps to be surjective
submersions restricts the applicability of such a result. In the next section we will therefore
introduce the notion of singular dual pairs. Nevertheless, relaxing the non-singular definitions
given above will permit us to establish a correspondence theorem that applies to realistic
group action settings.

Definition 3.17. Let (M,ω) be a symplectic manifold on which mutually commuting Hamiltonian
actions of Lie groups G1 and G2 are given. Denote the equivariant moment maps by Φi :
M → g∗i (i = 1, 2). The symplectic Howe condition is said to be satisfied if

ZC∞(M)(Φ
∗
i C

∞(g∗i )) = Φ∗
jC

∞(g∗j )

for i + j = 3. We then also speak of a Howe pair of symplectic actions.

Definition 3.18. Let (M,ω) be a symplectic manifold on which mutually commuting Hamiltonian
actions of Lie groups G1 and G2 are given. Denote the equivariant moment maps by Φi :
M → g∗i (i = 1, 2). Suppose there is a dense open set Ω ⊆M such that for any z ∈ Ω

(g1 · z)∠ = g2 · z.

Then we say that the Lie-Weinstein condition is satisfied by these commuting actions. We
also speak of a Lie-Weinstein pair of symplectic actions.

6All leaves are seen both as submanifolds and elements of the quotient spaces. The expression π−1
1 (L1) has

to be understood as the union of preimages of the points of the leaf L1, i. e., π−1
1 (L1) =

S
x∈L1

π−1
1 (x), and

π2(π
−1
1 (L1)) is then the image of this union of preimages under π2, which is again a leaf (now in P2).

25



3.2 Symplectic Geometry of Dual Pairs Arising from Group Actions

Both definitions have been given without assuming the actions to be proper. Adding
this assumption, we are able to describe in detail the orbit structure of the commuting
Hamiltonian actions. We first cite the following result [KL97, Cor. 2.6], that one checks to
hold for proper actions even though it is merely stated for actions of compact groups in the
reference (compactness is only used through the closedness of orbits and the slice theorem,
which remain available).

Proposition 3.19. Let (M,ω) be a symplectic manifold acted on properly by a Lie group G which
preserves ω. Let Φ be the moment map for this action. Then

ZC∞(M)(C
∞(M)Φloc) = C∞(M)G0

and ZC∞(M)(C
∞(M)G0

) = C∞(M)Φloc.

Here, the superscript Φ means functions that are constant on all level sets of Φ (merely locally,
i. e., on the connected components of the Φ-fibres, with the corresponding subscript loc).

The centralizers of Φ∗C∞(g∗) ⊆ C∞(M)Φ ⊆ C∞(M)Φloc are all equal to C∞(M)G0
; and

the centralizers of C∞(M)G ⊆ C∞(M)G0
both equal C∞(M)Φloc.

Now we are in a position to show a key consequence of the symplectic Howe condtion: In
the case of proper actions, together with some connectedness conditions, the level sets of the
moment maps are itself orbits of group actions.

Proposition 3.20. Let commuting Hamiltonian proper actions of the connected Lie groups G1 and
G2 be given on the symplectic manifold (M,ω).7 Suppose there are equivariant moment maps
Φ1 and Φ2 whose level sets are connected.

Then the symplectic Howe condition

ZC∞(M)(Φ
∗
i C

∞(g∗i )) = Φ∗
jC

∞(g∗j ) (i + j = 3)

implies that
∀z ∈M : Φ−1

i (Φi(z)) = Gj · z (i + j = 3),

i. e., the levels sets of the moment map of one action are the orbits of the other action.

Proof. Define Nz = Φ−1
1 (Φ1(z)) to be the level set of Φ1 containing the point z ∈M . Note that

the level sets are all closed as they are the preimage of a point under a smooth map.
The level sets Nz are G2-invariant, thus we may restrict the action of G2 to them; this

action on each Nz is again proper, thus its orbits closed. By the connectedness assumption
for the Nz, we have to show that the G2-orbits are open in their respective level set Nz.
Assume now the contrary, i. e., that there is no open G2-orbit in Nz.

Consequently, there exists a non-constant smooth G2-invariant function f : M → R,
which separates (at least) two orbits in Nz. By Prop. 3.19, we now see that this is equivalent
to f ∈ ZC∞(M)(Φ∗

2C
∞(g∗2)). Thus, the symplectic Howe condition implies that f = f ′ ◦ Φ1,

and therefore, f is constant on the level set Nz of Φ1.

Remark 3.21. (i) All levels sets of a moment map are connected if, e. g., the group acting
on M is a connected torus and the moment map is proper [Ati82, Thm. 1][HNP94,
Thm. 4.1], or if G is connected and compact and M a smooth affine complex variety
[Sja98, Cor. 4.13].

7Actually, it is sufficient if all G1- and G2-orbits on M are connected.
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3 ORBIT CORRESPONDENCE FOR COMMUTING HAMILTONIAN ACTIONS

(ii) It is indeed possible to remove the connectedness condition on the level sets, see [BW09].

For the Lie-Weinstein condition, we cannot show such a strong result as for the symplectic
Howe condition. However, the following weakened version holds.

Proposition 3.22. Let commuting Hamiltonian proper actions of the connected Lie groups G1

and G2 be given on the connected symplectic manifold (M,ω). Suppose there are equivariant
moment maps Φ1 and Φ2 whose level sets are connected. Let Ω be the intersection of the
principal orbit type submanifolds of the G1- and the G2-action. Further suppose that there
exists a point z0 ∈ Ω such that g1 · z0 = (g2 · z0)∠. Then:

(i) ∀z ∈ Ω : g1 · z = (g2 · z)∠,

(ii) ∀z ∈ Ω : Φ−1
i (Φi(z)) = Gj · z (i + j = 3).

Proof. (i) Recall that by Lemma 3.2, {Φξ
1,Φ

η
2} = 0 holds for all ξ ∈ g1 and η ∈ g2. This

means that g1 · z ⊆ (g2 · z)∠ for any z ∈ M . But in z0 equality holds, so dim M =
dim g1 · z0 + dim g2 · z0. As on Ω all G1-orbits are of the same dimension, and the same
holds for the G2-orbits, the claim follows from Lemma 3.4.

(ii) Again by Lemma 3.2, we see that Gj · z ⊆ Φ−1
i (Φi(z)) for any z ∈ M . Moreover, note

that for z ∈ Ω, Φ−1
i (Φi(z)) ∩ Ω is a submanifold, and one has

gj · z ⊆ Tz(Φ−1
i (Φi(z))) ⊆ ker TzΦi = (gi · z)∠.

On Ω, the moment maps have constant rank, and thus if we take z ∈ Ω, we know by
(i) that (gi · z)∠ = gj · z, so that on Ω, the inclusions above are equalities, in particular,
gj · z = Tz(Φ−1

i (Φi(z))). Therefore, Gj · z = Φ−1
i (Φi(z)) for any z ∈ Ω.

Remark 3.23. (i) Here, we do no longer assume any maps to be submersions. Therefore, the
Lie-Weinstein condition is weaker than symplectic complementarity as orbits of smaller
dimension (thus violating the implicit dimension condition) are now admitted.

(ii) If two commuting actions satisfy the Lie-Weinstein condition, the joint action of the
product of both groups is coisotropic (same proof as Lemma 3.5), where an action is
said to be coisotropic if there is an open subset such that all orbits contained in it
are coisotropic submanifolds. Details about the definition of coisotropic actions can
be found in Def. 2 and the remarks following it of [HW90] where it is shown that this
notion is equivalent to multiplicity-freeness in the case of actions of compact connected
groups.

Knowing the level sets of the moment maps as precisely as above permits to relate the
stabilizers of the actions on M and on the moment images Φi(M).

Lemma 3.24. Let G1 and G2 be Lie groups and (M,ω) be a symplectic manifold. Let Hamiltonian
actions of both groups on M be given which commute, and denote the equivariant moment
maps by Φi : M → g∗i . Let G12,z = {(g1, g2) ∈ G1 × G2 | (g1, g2) · z = z} be the stabilizer
of a point z ∈ M under the simultaneous action of both groups, write H1 and H2 for the
projections of G12,z to the groups G1 and G2.

Then
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3.3 Orbit Correspondence and Duality between Orbits and Reduced Spaces

(i) H1 is contained in G1,Φ1(z), the stabilizer of the Φ1-image of z under the coadjoint
action (even G1,z ⊆ H1 ⊆ G1,Φ1(z)), and

(ii) if, furthermore, the level sets of Φ1 are actually G2-orbits, then H1 = G1,Φ1(z).

The same statements hold for 1 and 2 interchanged.

Proof. (i) Take g1 ∈ H1, i. e., there exists g2 ∈ G2 such that (g1, g2) · z = z. From this one
obtains

Φ1(z) = Φ1((g1, g2) · z) = g1 · Φ1((e, g2) · z) = g1 · Φ1(z),

where G1-equivariance and G2-invariance of Φ1 have been used.

(ii) Now take g1 ∈ G1,Φ1(z), then Φ1(g1 · z) = Φ1(z), i. e., z and g1 · z lie in a common level
set of Φ1, which is by assumption a G2-orbit. Thus there exists g2 ∈ G2 such that
(g1, g2) · z = z, which was to be shown.

Of course, interchanging both actions does not alter the proof.

3.3 Orbit Correspondence and Duality between Orbits and Reduced Spaces

The particular orbit structure that we have described allows to define a correspondence
between the orbits in the images of the moment maps Φ1 and Φ2. Further, one observes a
duality between coadjoint orbits and reduced spaces, which we define now.

Definition 3.25. Given a symplectic manifold (M,ω) with a Hamiltonian action of a Lie group G
which admits an equivariant moment map Φ : M → g∗, one defines the point-reduced space
at α ∈ g∗ by

Mα = Φ−1(α)/Gα,

and the orbit-reduced space at Oα = Ad∗(G)α ⊆ g∗ by

MOα = Φ−1(Oα)/G.

Historically, reduced spaces are also called Marsden-Weinstein reductions.

Of course, these spaces spaces are in general not manifolds but stratified spaces. However,
for both definitions, the reduced spaces can be endowed with a symplectic structure and they
turn out to be symplectomorphic (see [OR04] for a detailed discussion of the properties of
non-singular and singular reduced spaces).

With these definitions, we state:

Theorem 3.26. Let commuting Hamiltonian proper actions of the connected Lie groups G1 and
G2 be given on the symplectic manifold (M,ω). Suppose there are equivariant moment maps
Φ1 and Φ2 whose level sets are connected. If the symplectic Howe condition is satisfied, then:

(i) There is a bijection Λ : Φ1(M)/G1 → Φ2(M)/G2, given by

Λ : Oα 7→ Φ2(Φ−1
1 (Oα)),

where α ∈ Φ1(M), and Oα = Ad∗(G1)α is seen as an element of Φ1(M)/G1. To each
pair (Oα,Λ(Oα)) belongs a unique orbit (G1 × G2) · z in M given by Φ−1

1 (Oα). We
say that orbits (G1 ×G2) · z, Oα1 and Oα2 are in correspondence if Oα2 = Λ(Oα1) and
(G1 ×G2) · z = Φ−1

1 (Oα1).
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3 ORBIT CORRESPONDENCE FOR COMMUTING HAMILTONIAN ACTIONS

(ii) If Φ1 and Φ2 are open maps, then Λ is a homeomorphism. The same conclusion holds
if the groups G1 and G2 both are compact and Φ1 and Φ2 both are closed maps. Finally,
the same conclusion holds if for i + j = 3, Gi is compact and Φi is closed, and Φj is
open.

(iii) Write Mα1 = Φ−1
1 (α1)/G1,α1 and Mα2 = Φ−1

2 (α2)/G2,α2 for the respective point reduced
spaces of α1 ∈ g∗1 and α2 ∈ g∗2. These spaces can be described as coadjoint orbits of the
other action, i. e., there are G2-equivariant and G1-equivariant, resp., symplectomor-
phisms

Mα1 → Λ(Oα1) and Mα2 → Λ−1(Oα2).

(iv) The reduced space M(α1,α2) for the joint action of G1×G2 is either a point (if Oα1 and
Oα2 are in correspondence) or empty otherwise.

Proof. In order to simplify indices, some statements will only be proved for one action if the
other case is analogous.

(i) By Prop. 3.20, we know that for any z ∈ M , the level sets of both moment maps are
individual orbits: Φ−1

i (Φi(z)) = Gj · z (i + j = 3). This implies that the preimage of
any coadjoint orbit in either moment image Φi(M) (i = 1, 2) is exactly one orbit of the
joint action of G1 ×G2 on M , i. e.,

Φ−1
i (Ad∗(Gi)Φi(z)) = (G1 ×G2) · z,

from which follows that Λ is well-defined and bijective.

(ii) Note that all maps in the diagram

Φ1(M)/G1 Φ1(M)
π1oo M

Φ1oo Φ2 // Φ2(M)
π2 // Φ2(M)/G2

are continuous, and π1 and π2 are always open as well.

Let us denote Λ : Φ1(M)/G1 → Φ2(M)/G2 by Λ12 and its set-theoretic inverse by
Λ21. If Φ1 is open, then for U open in Φ2(M)/G2 we have that Λ21(U) = (π1 ◦
Φ1)(Φ−1

2 (π−1
2 (U))) is an open set, i. e., Λ12 is continuous. Similarly, if G1 is compact

and Φ1 is closed, we have for A closed in Φ2(M)/G2 that Λ21(A) is closed as well, i. e.,
again Λ12 is continuous.

The conclusions of (ii) follow easily.

(iii) Let z ∈ M and α2 = Φ2(z) its value under the moment map of the second action.
Consider the restricted map Φ2|G2·z : G2 · z → Oα2 , and recall that G2 · z = Φ−1

1 (α1) for
α1 = Φ1(z). Recall from Lemma 3.24 that G1,α1 = {h ∈ G1 | ∃g ∈ G2 : (h, g) · z = z}.
This group acts on G2 · z and one has Mα1 = G2 · z/G1,α1 . Thus Φ2|G2·z induces

Φ̃2 : Mα1 → Oα2 ,

which inherits from Φ2 smoothness and G2-equivariance. It is clearly surjective and
we now show that it is injective: Take α ∈ Oα2 , z̃1, z̃2 ∈ G2 · z/G1,α1 so that α =
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3.3 Orbit Correspondence and Duality between Orbits and Reduced Spaces

Φ̃2(z̃1) = Φ̃2(z̃2). Now fixing preimages z1, z2 ∈ G2 · z of z̃1, z̃2, they have the property
Φ2(z1) = Φ2(z2), and for some h ∈ G1, z2 = h · z1 holds because the level sets of Φ2

are G1-orbits. However, z2 = g · z1 for some g ∈ G2, which implies by part (ii) of
Lemma 3.24 that h ∈ G1,α1 . Therefore, z̃1 = z̃2, and Φ̃2 is a bijection. Applying Sard’s
Theorem, one notices that a smooth equivariant bijection between finite-dimensional
homogeneous spaces has a smooth inverse.

In remains to show that Φ̃2 is a symplectomorphism. Denote by iG2·z : G2 · z → M
the inclusion of G2 · z = Φ−1

1 (α1) into the ambient manifold. We observe that the
equivariance properties of Φ2 imply i∗G2·zω = (Φ2|G2·z)

∗ωOα2 , where ωOα2 is the KKS
symplectic form. But the symplectic form ωMα1 on Mα1 is defined such that it also pulls
back to i∗G2·zω = π∗ωMα1 , via the quotient map π : G2 · z → G2 · z/G1,α1 . As G2 · z,Oα2

and Mα1 are G2-homogeneous, Φ2|G2·z and π are surjective and G2-equivariant, the
coincidence of the pullbacks (to G2 · z) implies that ωMα1 = Φ̃∗

2ω
Oα2 , which was to be

shown.

(iv) Let Φ = Φ1 ⊕ Φ2. Take α1 ∈ g∗1 and α2 ∈ g∗2. Then

Φ−1(Oα1 ×Oα2)

is empty if Oα2 6= Λ(Oα1); otherwise, for any z ∈ M such that Φ1(z) ∈ Oα1 and
Φ2(z) ∈ Oα2 , holds

Φ−1(Oα1 ×Oα2)/(G1 ×G2) ∼= (G1 ×G2) · z/(G1 ×G2).

This quotient is a point.

We observe that using the special properties of proper actions and the moment map we
have proved a version of the symplectic leaf correspondence that allows for some singular
behaviour, even though starting with conditions closely related to those in Thm. 3.16 which
did not show this feature. Furthermore, Thm. 3.16(iii) continues to hold as its proof can
easily be redone in our setting.

Beside this, one may explain more explicitly why the reduced spaces are indeed manifolds:
Take any z ∈ M and α1 = Φ1(z). Then the global ineffectivity of the G1,α1-action on the
Φ1-level is H1,α1 = {g1 ∈ G1,α1 | g1 · z′ = z′ ∀z′ ∈ Φ−1

1 (α1)}, i. e., the intersection of the
stabilizers of all points in the level set. Here, Φ−1

1 (α1) = G2 · z, hence G1,z′ = G1,z ⊆ H1,α1

(see Lemma 3.1), so H1,α1 = G1,z. Therefore, the proper action of G1,α1 on Φ−1
1 (α1) is

actually equivalent to a free and proper action of G1,α1/H1,α1 , thus the quotient is a smooth
manifold.

As this theorem depends on Prop. 3.20, we can also remove the connectedness condition
on the level sets here, see [BW09].
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4 SINGULAR DUAL PAIRS ARISING FROM GROUP ACTIONS

4 Symplectic Dual Pairs Arising from Group Actions seen as
Singular Dual Pairs

The orbit correspondence of section 3.3 (Thm. 3.26(i)) includes all orbits, not only generic
ones. This indicates that it can be seen in the larger context of singular dual pairs in the
sense of [OR04]. Using this framework, we rederive the orbit correspondence in Cor. 4.16.1.

Therefore, we recall quickly the notion of polar pseudogroups and optimal moment maps
in a way adapted to our setting. Then we can state the generalized symplectic leaf corre-
spondence and show how to conclude our orbit correspondence from it.

4.1 The Polar Pseudo-Group

The classical definitions are of limited use in singular contexts, which was the motivation
for a singular dual pair definition by Ortega and Ratiu. In order to state their definition,
the notion of a polar pseudo-group is introduced. Details of this theory are available in
Sections 5.5 and 11.3 of [OR04].

Let M be a manifold equipped with a Poisson structure {·, ·} : C∞(M) × C∞(M) →
C∞(M). Assume that a Lie group G is acting on this manifold (by Ψ : G × M → M)
canonically, i. e., for all g ∈ G, Ψg preserves the Poisson structure on M .

Definition 4.1. The subgroup of the group of Poisson diffeomorphisms corresponding to the action
of G is denoted by

AG = {Ψg | g ∈ G} ⊆ Diff(M, {·, ·}),

where Ψg : M →M is the diffeomorphism belonging to the action of the element g ∈ G. The
orbit of this action through a point z ∈ M is written AG · z, the tangent space to the orbit
at this point is

AG(z) =
{
ξM
z | ξ ∈ g

}
⊆ TzM,

where ξM is the fundamental vector field of the G-action which is generated by an element
ξ ∈ g.

Having rewritten the action as a subgroup of the diffeomorphism group on M , one may
assign to it its polar [OR04, Def. 5.5.2].

Definition 4.2. The pseudogroup of local Poisson diffeomorphisms generated by the flows of the
Hamiltonian vector fields of locally defined G-invariant functions, i. e.,

A′
G =

{
F

Xf

t | f ∈ C∞(U)G, U ⊆M open and G-invariant
}

,

is called the polar pseudogroup of AG.

Definition 4.3. The polar distribution of AG is the distribution associated to the family{
Xf | f ∈ C∞(U)G, U ⊆M open and G-invariant

}
.

Evaluated at a point z ∈ M , it coincides with the tangent space A′
G(z) to the A′

G-orbit.
The pseudogroup A′

G is called integrable if the polar distribution to which it corresponds is
integrable.
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4.2 Optimal and Standard Moment Map

Of course,
{

F
Xf

t | f ∈ C∞(M)G
}

is contained in A′
G. So, the first natural question that

arises in this context is to identify the cases where A′
G can be described using exclusively

the globally defined invariant functions. An immediate answer is the following proposition
[OR04, Prop. 5.5.3].

Proposition 4.4. If for all z ∈M and any open G-invariant neighbourhood U ⊆M (of z) and any
invariant f ∈ C∞(U)G there exists an open G-invariant neighbourhood V ⊆ U (of z) such
that f|V can be extended to an invariant f̂ ∈ C∞(M)G on all of M (i. e., f̂|V = f|V ), then

A′
G(z) =

{
F

Xf

t | f ∈ C∞(M)G
}
. In particular, this holds if the G-action on M is proper (in

that case, the polar distribution is complete, i. e., it admits a generating family consisting of
complete vector fields).

The following properties are the basis for using the notion of polar pseudogroups in the
context of dual pairs, they are proved in [OR04, Prop. 5.5.4].

Proposition 4.5. Let AG be as above. Then the following hold:

(i) The polar pseudogroup A′
G acts canonically and is integrable.

(ii) The group AG and its polar A′
G commute.

(iii) A′
G acts on M/AG by requiring the projection πAG

: M →M/AG to be A′
G-equivariant.

(iv) AG acts on M/A′
G by requiring the projection πA′G

: M →M/A′
G to be AG-equivariant.

4.2 Optimal and Standard Moment Map

Another notion that needs to be introduced before defining singular dual pairs is given in the
following definition which generalizes the usual notion of a moment map [OR04, Sect. 5.5.5].

Definition 4.6. Let G be a Lie group acting canonically on the Poisson manifold (M, {·, ·}). Let
AG be the associated group of Poisson diffeomorphisms. Then the projection

J : M →M/A′
G

is called the optimal moment map. The topology and G-action on M/A′
G are chosen such

that J is continuous, open (quotient topology) and G-equivariant.

The following property of the optimal moment map is called universality in [OR04,
Thm. 5.5.15] and will allow to compare J to the usual moment map.

Proposition 4.7. Let G be a Lie group acting canonically on (M, {·, ·}) and let K : M → P any
continuous map that is invariant under the flows of all Hamiltonian vector fields Xf of G-
invariant functions f ∈ C∞(M)G. Then this map factors through J , i. e., there is a unique
continuous map ϕ : M/A′

G → P such that

K = ϕ ◦ J ,

ϕ being G-equivariant if K is.
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4 SINGULAR DUAL PAIRS ARISING FROM GROUP ACTIONS

Proof. Define the map by ϕ(%) = K(z) for any % = J (z) ∈ M/A′
G. It is well-defined because

if one takes any z1, z2 ∈ J −1(%) = A′
G · z1, there exists a composition F of flows of invari-

ant functions such that F (z1) = z2, hence K(z2) = K(F (z1)) = K(z1) by the invariance
assumption on K.

If there was another map ϕ′ such that ϕ′ ◦ J = ϕ ◦ J = K, this would imply ∀z ∈ M :
ϕ′(J (z)) = ϕ(J (z)), so by the surjectivity of J , the uniqueness follows.

Let U ⊆ P be any open subset of P . Then we show that ϕ−1(U) = J (K−1(U)) (the
latter being open due to K continuous, J open):

J (K−1(U)) = {J (z) | z ∈M : K(z) ∈ U}
= {J (z) | z ∈M : ϕ(J (z)) ∈ U} = {% ∈M/A′

G | ϕ(%) ∈ U},

where K = ϕ ◦ J and J surjective have been used.
Now suppose that K is G-equivariant and take any g ∈ G, z ∈M . Then:

ϕ(g · J (z)) = ϕ(J (g · z)) = K(g · z) = g ·K(z) = g · ϕ(J (z))

Again, the surjectivity of J implies the claim, that is, ϕ is G-equivariant.

The definition of the optimal moment map and its universality property are available
without requiring M to be symplectic and the G-action on M to be proper. Adding these
assumptions permits to give a very precise statement about the orbits of the A′

G-action (which
itself does not need to be proper!) [OR04, Thm. 5.5.17].

Theorem 4.8. Let G be a Lie group acting properly and symplectically on the symplectic manifold
(M,ω). Then at any point z ∈M ,

A′
G(z) = (g · z)∠ ∩ TzMGz ,

where MGz is the submanifold of M containing all points with stabilizer Gz. If the action
admits an equivariant moment map Φ : M → g∗, then at any z ∈ M with Φ(z) = α and
J (z) = %,

J −1(%) = (Φ−1(α) ∩M z
Gz

)z,

where the superscript z denotes the connected component of the corresponding object which
contains the point z.

In certain cases, this theorem yields an identification of the image of the standard moment
map with the quotient M/A′

G.

Proposition 4.9. Let G be a Lie group acting properly and symplectically on the symplectic
manifold (M,ω) with G-equivariant moment map Φ : M → g∗. Suppose further that all
level sets of Φ are connected and contained in a single isotropy type of the G-action, i. e.,
∀α ∈ Φ(M) : ∀z ∈ Φ−1(α) : Φ−1(α) ⊆ M z

Gz
. Then there is a continuous G-equivariant

bijection ϕ : M/A′
G → Φ(M). This bijection is a homeomorphism if Φ is closed or open.

Further, ϕ preserves stabilizers, i. e., G% = Gϕ(%) for any % ∈M/A′
G.
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4.3 Singular Dual Pairs and Orbit Correspondence

Proof. By Thm. 4.8, one concludes that in the present situation, Φ−1(α) = J −1(%) = A′
G · z for

all appropriate combinations of z ∈M , α ∈ Φ(M) and % ∈M/A′
G.

The invariance properties of the moment map Φ now allow to apply Prop. 4.7. Hence
there is a unique continuous G-equivariant map ϕ such that Φ = ϕ ◦ J .

Here, ϕ is a bijection: Let %1, %2 ∈ M/A′
G be such that ϕ(%1) = ϕ(%2), hence there exist

z1, z2 ∈ M with the same image Φ(z1) = Φ(z2) in Φ(M) and %i = J (zi) (i = 1, 2). Since
the level sets of Φ are A′

G-orbits, there is F ∈ A′
G mapping z1 to z2, therefore %2 = J (z2) =

J (F (z1)) = J (z1) = %1.
Take now any closed set U ⊆M/A′

G. Then, by continuity, J −1(U) is closed, and by the
assumption that Φ is closed, Φ(J −1(U)) is closed, too. One checks that Φ(J −1(U)) = ϕ(U) =
(ϕ−1)−1(U), hence (ϕ−1)−1(U) is closed whenever U is closed and thus ϕ−1 is continuous.
An analogous argument applies when Φ is open.

The stabilizers coincide since the equivariance of ϕ implies G% ⊆ Gϕ(%) and the equivari-
ance of ϕ−1 yields Gϕ(%) ⊆ G%.

4.3 Singular Dual Pairs and Orbit Correspondence

The fact that polar pseudogroups play the role of maximal commutants of a group action
motivates to compare their action to the action of another (pseudo-)group in the sense of the
following definition.

Definition 4.10. Let A and B be subgroups of Diff(M, {·, ·}). The diagram

M/A M
πAoo πB // M/B

is called a singular dual pair if M/A = M/B′ and M/B = M/A′.

In [OR04, Ex. 11.3.4] it is shown that Lie-Weinstein dual pairs with connected fibres are
dual pairs in this new sense. We add the case where such a dual pair is easily obtained from
commuting Hamiltonian actions, so singular dual pairs are an appropriate means to study
these actions and, more specifically, Howe pairs of symplectic actions. Recall that for G
connected, ZC∞(M)(Φ∗C∞(g∗)) = C∞(M)G holds by Prop. 3.19.

Lemma 4.11. Given two commuting Hamiltonian actions, both proper, of connected Lie groups
G1, G2 on the symplectic manifold (M,ω) with equivariant moment maps Φ1 and Φ2. If

C∞(M)G1 = Φ∗
2C

∞(g∗2) and C∞(M)G2 = Φ∗
1C

∞(g∗1),

then M/AG1 ←M →M/AG2 forms a singular dual pair.

Proof. By definition (for G1 acting properly), A′
G1

=
〈
{FXf

t | f ∈ C∞(M)G1}
〉
. Our assumption

on the algebras of invariants allows us to rewrite this as A′
G1

=
〈
{F ξ(2)

t | ξ ∈ g2}
〉

= AG2 .
Thus M/A′

G1
= M/AG2 , and analogously, M/A′

G2
= M/AG1 holds, satisfying the conditions

for a singular dual pair.

The classical definition of Lie-Weinstein dual pairs required symplectic complementarity
of the kernels of the projections in the legs of a dual pair. In the singular setting, this is
weakened to symplectic orthogonality, as the next lemma shows.
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4 SINGULAR DUAL PAIRS ARISING FROM GROUP ACTIONS

Lemma 4.12. In a singular dual pair M/A M
πAoo πB // M/B on a symplectic manifold (M,ω),

the kernels of the projections are symplectically orthogonal, i. e., for any z ∈M ,

ker TzπA ⊆ (ker TzπB)∠.

Proof. Use Tz(M/A) = Tz(M/B′) and note that kerTzπA = B′(z). But ker TzπB = B(z), hence
if we have vector fields Xf and X such that Xf |z ∈ B′(z) and Xz ∈ B(z), then

ω(Xf , X) = df(X) = X(f) = 0,

since by definition of B′, f is invariant under the action of B.

Remark 4.13. On sees from the proof that equality holds for dim M = def TzπA + def TzπB =
dim B′(z) + dim B(z).8 In the setting of commuting Hamiltonian actions as in Lemma 4.11
(put B = AG2), the dimension of B(z) is the dimension of the G2-orbit through z, i. e.,
dim B(z) = dim g2 · z. By Thm. 4.8, the dimension of B′(z) is less or equal the dimension
of (g2 · z)∠ – the latter being true if the symplectic complement of g2 · z lies in the tangent
space of a single isotropy type. In other words, the orbits satisfying this condition satisfy the
Lie-Weinstein condition.

As for the non-singular dual pairs, the aim is to exhibit a correspondence between sym-
plectic leaves. The first step is to generalize the notion of a symplectic leaf to quotients,
which can be done as follows [OR04, Def. 11.4.2, Thm. 11.4.3]. Note that these symplectic
leaves do no longer carry a symplectic structure, except for special cases. Recall that A′

G

acts on M/AG by requiring the canonical projection to be equivariant (as for the AG-action
on M/A′

G).

Definition 4.14. Let G act canonically on the Poisson manifold (M, {·, ·}), let AG be the image of
G in Diff(M, {·, ·}). Then a generalized symplectic leaf in M/AG is an orbit of A′

G in M/AG.

As A′
G is defined through flows of vector fields, its orbits on M are connected; thus the

generalized symplectic leaves are connected, too.

Example 4.15. Let (M, {·, ·}) be acted upon by the trivial group G = {e}. Then A′
G =〈

{FXf

t | f ∈ C∞(M)}
〉
. Hence the A′

G-orbits in this case are the integral manifolds of the
distribution spanned by all Hamiltonian vector fields, i. e., the symplectic leaves in the usual
sense.

In what follows, we will only be concerned with dual pairs whose symplectic leaves are
indeed symplectic manifolds; their part will mainly be taken over by coadjoint orbits.

Using the above definition, [OR04, Thm. 11.4.4] shows that the correspondence holds in
more general setting of singular dual pairs.

Theorem 4.16 (Symplectic Leaf Correspondence). Let (M, {·, ·}) be a Poisson manifold acted
upon canonically by Lie groups G1 and G2. Suppose that M/AG1 ← M → M/AG2 is a
singular dual pair with πi : M →M/AGi (i = 1, 2) the canonical projections. Then the map

(M/AG1)/AG2 → (M/AG2)/AG1 , AG2 · π1(z) 7→ AG1 · π2(z)
8Recall that the defect of a linear map L is defined to be def L = dim ker L.
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4.3 Singular Dual Pairs and Orbit Correspondence

is a well-defined bijection. Analogously, the map

(M/AG1)/AG2 →M/(AG1 ×AG2), AG2 · π1(z) 7→ K = (AG1 ×AG2) · z

is a well-defined bijection.

The second bijection is not given by [OR04] but proved in exactly the same way. Unlike the
generalized symplectic leaves, K is not necessarily connected. If the generalized symplectic
leaves in a singular dual pair are actually symplectic, then the same relation between the
symplectic forms holds that is known from (non-singular) Lie-Weinstein dual pairs; the proof
(as in [OR04, Thm. 11.1.9(iii)]) goes through without significant changes.

Lemma 4.16. Let a symplectic manifold (M,ω) be given and subgroups A,B ⊆ Diff(M,ω). Sup-

pose that M/A M
π1oo π2 // M/B is a singular dual pair. Suppose that the leaves in both

M/A and M/B carry symplectic structures, say ω1 and ω2 on the leaves L1 and L2 in cor-
respondence, respectively. Then the symplectic forms satisfy

(iK)∗ω = (π1|K)∗ω1 + (π2|K)∗ω2,

where iK : K →M is the inclusion of the leaf K in M corresponding to L1 and L2.

Proof. Choose any point z ∈ M , let K be the leaf through z and take u, v ∈ TzK. Then write
these vectors as sums u = u1 + u2 and v = v1 + v2 where u1, v1 ∈ ker Tzπ1;u2, v2 ∈ ker Tzπ2;
such a splitting always exists because the kernels are symplectically orthogonal (it is not
unique, though). Then

ωz(u, v) = ωz(u1, v1) + ωz(u2, v2)
= (π∗2ω2)z(u1, v1) + (π∗1ω1)z(u2, v2)
= ω2|π2(z)(Tzπ2(u1), Tzπ2(v1)) + ω1|π1(z)(Tzπ1(u2), Tzπ1(v2))

= ω2|π2(z)(Tzπ2(u), Tzπ2(v)) + ω1|π1(z)(Tzπ1(u), Tzπ1(v))

= (π∗2ω2)z(u, v) + (π∗1ω1)z(u, v).

This calculation does clearly not depend on the choice of u1, u2, v1, v2.

Now, as a corollary to the theorem, one obtains – as in Thm. 3.26(i) – a bijection be-
tween coadjoint orbits in the moment images of commuting Hamiltonian actions without any
genericity restriction.

Corollary 4.16.1. Let commuting proper Hamiltonian actions of two connected Lie groups G1 and
G2 on a symplectic manifold (M,ω) be given. Suppose that the level sets of the equivariant
moment maps Φi : M → g∗i (i = 1, 2) are connected. Assume these actions satisfy the
symplectic Howe condition. Then there is a bijection Λ : Φ1(M)/G1 → Φ2(M)/G2.

Proof. By the symplectic Howe condition and Prop. 3.19, one has C∞(M)Gi = Φ∗
jC

∞(g∗j ) for
i + j = 3. By Lemma 4.11, we have a singular dual pair in this situation:

M/AG1 ←M →M/AG2
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4 SINGULAR DUAL PAIRS ARISING FROM GROUP ACTIONS

By the symplectic leaf correspondence, there is a bijection

π2 ◦ π−1
1 : (M/AG1)/AG2 → (M/AG2)/AG1 ,

where πi : M → M/AGi are the canonical projections and the symplectic leaves are seen as
subsets of the space in which they are lying.

By the symplectic Howe condition and Prop. 3.20, the level sets of the moment maps are
Φ−1

i (Φi(z)) = Gj · z for any point z ∈ M and i + j = 3. By Lemma 3.1, the Gj-orbits and
thus the Φi-level sets are contained in a single Gi-isotropy type submanifold. Now Prop. 4.9
applies and therefore, M/AG1 = M/A′

G2
= Φ2(M) and M/AG2 = M/A′

G1
= Φ1(M) hold.

Explicitly, when ϕi : M/A′
Gi

= M/AGj → Φi(M) (i + j = 3) are the bijections coming
from Prop. 4.9, then

Λ = ϕ2 ◦ π1 ◦ π−1
2 ◦ ϕ−1

1 = ϕ2 ◦ J2 ◦ (ϕ1 ◦ J1)−1 = Φ2 ◦ Φ−1
1

is a well-defined bijection on the level of coadjoint orbits.

Thus we have placed our orbit correspondence (Thm. 3.26(i)) in the context of singular
dual pairs. By Thm. 4.8, we see that for all points z ∈M , the following generalization of the
Lie-Weinstein condition is satisfied (i + j = 3):

gi · z = (gj · z)∠ ∩ TzMGj,z .

Remark 4.17. Observe that we did not rederive the duality between coadjoint orbits and reduced
spaces of Thm. 3.26(iii), although results about reduced spaces are available in the context
of singular dual pairs (see, e. g., [OR04, Cor. 11.6.11]).
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5 Geometric Quantization of Symplectic Dual Pairs

Before quantizing symplectic dual pairs, we recall some basic properties of representations
of Howe dual pairs, followed by a reminder on the procedure of geometric quantization.
Thereafter, we describe the behaviour of symplectic dual pairs and the orbit correspondence
under quantization.

In particular, we obtain that the orbit correspondence is compatible with the integrality
of the orbits, i. e., it maps integral orbits to integral ones. Finally, using results on multiplic-
ities and reduced spaces, we can show that the (G1 × G2)-representation on the geometric
quantization space admits a decomposition that satisfies the representation-theoretic Howe
condition, as recalled below.

5.1 Howe Dual Pairs and Howe Condition

Our final result, Thm. 5.17, will show that the symplectic Howe condition implies a special
decomposition of the (G1×G2)-representation obtained via geometric quantization from the
commuting Hamiltonian actions of G1 and G2.

This decomposition does not come as a surprise – indeed, it is the same one that is known
as Howe’s duality in the representation theory of reductive Lie groups (and in invariant
theory), valid for certain representations of Howe (dual) pairs [How89].

Definition 5.1. Let G be a Lie group. A Howe (dual) pair in G is a pair (G1, G2) of two Lie
subgroups of G which are their mutual centralizers in G:

ZG(G1) = G2 and ZG(G2) = G1.

All Lie groups are assumed to be real reductive.

We will restrict ourselves to compact groups in the sequel, see a listing of compact exam-
ples of Howe dual pairs in App. B. Representations of Howe dual pairs are natural candidates
for representations satisfying the following condition.

Definition 5.2. Given a product G1×G2 of two compact Lie groups linearly represented on a finite
dimensional complex vector space V (% : G1×G2 → GL(V )), we say that the representation
satisfies the representation-theoretic Howe condition if in the unitary dual Ĝ1 of G1, there is
a subset D ⊆ Ĝ1, and, defined on it, an injective map Λ : D → Ĝ2 such that

V ∼=
⊕

[Vα]∈D

Vα ⊗Wα, (5.1)

where Vα represents a class [Vα] in D and Wα represents the class Λ([Vα]). The map [Vα] 7→
[Wα] from D ⊆ Ĝ1 to Λ(D) ⊆ Ĝ2 is called a representation-theoretic Howe duality.

Condition (5.1) for the representation (%, V ) is equivalent to another condition, which we
can interpret as quantum counterpart of the symplectic Howe condition. Note that by %, we
mean the representation of the Lie group as well as of its Lie algebra.
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Lemma 5.3. Let a product G1 × G2 of two compact connected Lie groups be linearly represented
on a finite-dimensional vector space V over C by % : G1×G2 → GL(V ). The representation-
theoretic Howe condition is equivalent to the double commutant condition

ZEnd(V )(%i(Ugi)) = %j(Ugj) for i 6= j, (5.2)

where Ugk is the universal enveloping algebra (over C) of a Lie algebra gk, %k = %|Gk
is the

restriction of the given representation to a member of the product G1×G2 (for k = 1, 2), and
for S ⊆ End(V ), ZEnd(V )(S) is the centralizer of S in the endomorphisms of V .

Proof. This equivalence is a consequence of the double commutant theorem [GW98, Thm. 3.3.7]
and the general duality theorem [GW98, Thm. 4.5.12] for the implication (5.2) ⇒ (5.1).

Lemma 3.1.9 in [GW98] and Burnside’s theorem show (5.1) ⇒ (5.2).

Remark 5.4. We see the symplectic Howe condition (Def. 3.17) as the natural classical analog
of this double commutant condition for two representations. Here, the endomorphisms in
End(V ) play the role of the quantum analog of the classical observables C∞(M); and %i(Ugi)
is the quantized counterpart of the collective functions Φ∗

i C
∞(g∗i ).

Such a situation may be generated from Howe pairs.

5.2 Reminder on Geometric Quatization

Before actually quantizing our symplectic dual pair setting, we give a quick review of geo-
metric quantization.

Given a symplectic manifold (M,ω) with integral symplectic form, i. e., [ω] ∈ H2
dR(M, Z),

there exists a complex line bundle L→M with a connection ∇ and a Hermitean form h on
L such that the curvature of ∇ is ω and the connection is metric with respect to the form h.
We call such a line bundle a prequantizing line bundle. This bundle is unique if there are no
non-trivial flat line bundles over M , i. e., in particular, if M is simply connected (this is the
case for coadjoint orbits of compact groups: notice that the coadjoint orbits do not change
when going to the simply connected cover of the group). In the sequel, we use the following
notation.

Notation. If (M,ω) is a symplectic manifold with integral form, we denote by L(M,ω) a cor-
responding prequantum line bundle, i. e., a complex line bundle with first de Rham Chern
class equal to [ω]. We may omit ω if there is no ambiguity about the symplectic form.
For a coadjoint orbit Oα, we will write Lα = L(Oα), the KKS symplectic form ωOα being
understood.

If a group action of a Lie group G is given on the symplectic manifold (M,ω), the question
arises whether it can be lifted to L. An answer is given by the following theorem [Kos70,
Thm. 4.5.1], which assumes the action to be Hamiltonian with equivariant moment map.

Theorem 5.5. Let (M,ω) be a symplectic manifold with integral form such that there exist a
prequantum line bundle p : L → M , a Hermitean structure on the sections of L, and a
connection on L with curvature ω and metric with respect to the Hermitean structure.

Let a compact, connected and simply connected Lie group G be given with a Hamiltonian
action on (M,ω), the moment map Φ : M → g∗ being assumed to be equivariant.
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Then there exists a lift of the action of G to L; the fundamental vector fields of this action,
for any ξ ∈ g, are given by

ξL = p∗Φξ (2πi)L + ξ̃M , (5.3)

where Φξ is the corresponding component of the moment map, (2πi)L the fundamental vector
field for the natural fibrewise U(1)-action on L, and ξ̃M is the horizontal lift of the funda-
mental vector field for the action on M .

This theorem does not include torus actions nor of other groups that are not simply
connected; the following extension of its scope is possible (compare [Dui96, Prop. 15.4] and
[Wur96]).

Proposition 5.6. If G = T is a torus, then there exists a lift to L of the Hamiltonian action of T
on M . If G = K is a compact Lie group, then there exists a finite covering of K whose action
admits a lift to L. In both cases, the lift can be chosen to preserve the connection 1-form and
the Hermitean structure.

Assume from now on that a lift of the G-action to L has been chosen. Then the action of
a stabilizer Gz of a point z ∈M lifts to a linear action on the fibre Lz = p−1(z) in L. As any
fibre Lz is isomorpic to C, this action can be seen as a character χ : Gz → C× = GL(1, C),
even as a unitary character as the lifted action preserves the Hermitean form on L. If Gz is
connected, then Kostant’s formula (5.3) yields an explicit formula for this character, using
that any h ∈ Gz may be expressed as h = exp ξ:

χ(h) = e−2πiΦξ(z) ∈ U(1). (5.4)

In order to proceed from prequantization to quantization, one has to take a close look
on the space of sections Γ∞(M,L) of the prequantum line bundle. The G-action on L
induces a G-action on the sections. However, this space is often too big to be an irreducible
representation and does not satisfy other requirements suggested by canonical quantization in
physics (e. g., square integrability). That is why one introduces so-called polarizations, i. e.,
subbundles of TM with respect to which sections are required to be covariantly constant.
Here, we will take the following short-cut: In the case of M being Kähler, the space Γhol(M,L)
of holomorphic sections can be considered as the geometric quantization of (M,ω) – this is
what we will do in the sequel. In particular, for G a compact Lie group, its coadjoint orbits
are Kähler, and saying that the spaces of polarized sections over these orbits are irreducible
as G-representations is a reformulation of the Borel-Weil theorem.

With our results about the duality of orbits and reduced spaces (Thm. 3.26(iii)), we ar-
rived at precise statements about the occurring reduced spaces. This knowledge can be
exploited for the quantization, given that we know how reduced spaces behave under geo-
metric quantization. For that reason, we recall the quantization-commutes-with-reduction
theorem for the case that the reduced spaces are manifolds [GS82, Thm. 3.2].

Theorem 5.7. Let (M,ω) be a prequantizable symplectic manifold with Hamiltonian G-action (G
compact connected Lie group), equivariant moment map Φ and line bundle L(M) equipped
with a connection ∇ on L(M) whose curvature coincides with ω. If the G-action on the level
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5 GEOMETRIC QUANTIZATION OF SYMPLECTIC DUAL PAIRS

set Φ−1(0) is free, then the reduced space M0 = Φ−1(0)/G is a manifold, and there exists a
unique line bundle L(M0) over M0 such that

π∗L(M0) = i∗L(M) and π∗∇0 = i∗∇,

where π : Φ−1(0)→ Φ−1(0)/G is the quotient map and i : Φ−1(0)→M the inclusion.

By the shifting trick, any reduced space may be regarded as a reduced space at 0. More
precisely, one has the following folklore result (see, e. g., [OR04, Thm. 6.5.2]).

Theorem 5.8. The reduced space at α ∈ g∗, Φ−1(α)/Gα, is symplectomorphic to the reduction of
M ×O−α at 0, where O−α denotes the coadjoint orbit through α with the KKS symplectic form
multiplied by −1.

Let us recall that for G a compact connected semisimple Lie group and α ∈ g∗, Oα is an
integral symplectic manifold if and only if there exists a character χα : Gα → U(1) such that
(χα)∗e = 2πiα. Thus one defines:

Definition 5.9. (i) Let G be a compact connected Lie group and α ∈ g∗. We call α integral if
there exists χα : Gα → U(1) such that (χα)∗e = 2πiα.

(ii) If α is integral, we call Oα an integral orbit.

We observe that integral coadjoint orbits are integral symplectic manifolds but the con-
verse statement is not true in general because of the possible presence of a positive-dimensional
centre.

5.3 Prequantization: Reduced Spaces and Integral Orbit Correspondence

The aim now is to show that the coadjoint orbit correspondence which we have obtained in
Thm. 3.26(i) does preserve the integrality of the orbits. By Thm. 3.26(iii), we know that the
preservation of integrality is closely related to the reduced spaces occurring in our setting.

From Thm. 5.8 we conclude that any reduced space Mα1 admits a prequantizing line bun-
dle L(Mα1) if the coadjoint orbit Oα1 does. Take our symplectomorphism Φ̃2 : Mα1 → Oα2 ,

then we obtain the bundle
(
Φ̃−1

2

)∗
L(Mα1) over Oα2 . As coadjoint orbits of compact con-

nected Lie groups are simply connected (which can be seen by going to the simply connected
cover of the Lie group which has the same coadjoint orbits), there are no non-trivial flat
vector bundles, hence no torsion line bundles. Therefore, for any α1 such that (Oα1 , ω

Oα1 )

is an integral symplectic manifold, the bundle
(
Φ̃−1

2

)∗
L(Mα1) is the unique prequantum line

bundle over Oα2 . Thus we have proved:

Proposition 5.10. Let Oα1 and Oα2 be two coadjoint orbits in correspondence as in Thm. 3.26(i).
Then (Oα1 , ω

Oα1 ) is an integral symplectic manifold if and only if (Oα2 , ω
Oα2 ) is an integral

symplectic manifold, too.

Let us from now on assume that the (G1×G2)-action on M comes with a fixed “lineariza-
tion on L”, i. e., there is given a fibrewise linear (G1 × G2)-action on L = L(M,ω) covering
the (G1 ×G2)-action on M .

41



5.4 Explicit Characters for the Integral Orbit Correspondence

Theorem 5.11. Let Oα1 and Oα2 be two coadjoint orbits in correspondence as in Thm. 3.26(i).
Then Oα1 is integral if and only if Oα2 is integral.

Proof. Let α ∈ g∗1 be integral. Since the G2-actions on M and L commute with the G1-actions,
the G2-action on L descends canonically to a G2-action on L(Mα1) covering the natural
G2-action on Mα1 . (See [GS82] for the construction of the bundle L(Mα1).)

Denoting the G2-equivariant symplectomorphism Φ̃2 : (Mα1 , ω
Mα1 ) → (Oα2 , ω

Oα2 ) from
above by Ψ, we have the bundle (Ψ−1)∗L(Mα1) = L(Oα2) together with a G2-invariant
connection ∇ given by pulling back the G2-invariant connection induced on L(Mα1) by a
(G1 × G2)-invariant connection on L → M . (See again [GS82] for the construction of the
connection on L(Mα1).) We thus arrive at the following commuting diagram (where p denotes
the bundle projection and L(Oα2)α2 = p−1(α2)):

G2 × L(Oα2) //

id×p

��

L(Oα2)

p

��
G2 ×Oα2

// Oα2 ,

yielding a homomorphism χ : G2,α2 → U(L(Oα2)α2) = U(1).
It remains to show that χ = χα2 , i. e., χ∗e = 2πiα2. Since the G2-action on L(Oα2) and

the connection ∇ come from the reduced bundle with connection L(Mα1) and this comes
in turn from a connection on L → M , we have the usual Kostant formula (5.3) for the
fundamental vector fields of the G2-action on L(Oα2) (compare Thm. 5.5). More precisely,

given ξ ∈ g2, ξL(Oα2 ) = ξ̃Oα2 +p∗(ΦOα2
2 )(2πi)L(Oα2 ), where ξN denotes the fundamental vector

field associated to ξ on a G2-manifold N , X̃ denotes the ∇-horizontal lift of a vector field X
on Oα2 to L(Oα2), 2πi ∈ iR ∼= u(1) also has a fundamental vector field on the bundle by the
canonical U(1)-action on it, and ΦOα2

2 is the G2-moment map on Oα2 .
For ξ ∈ g2,α2 , the field ξL(Oα2 ) is now tangent to the p-fibre L(Oα2)α2 over α2 and equals

there (2πi)L(Oα2 )〈α2, ξ〉. Thus χ∗e : G2,α2 → U(1) is equal to d
dt

∣∣
0
e2πi〈α2,ξ〉t = 2πi〈α2, ξ〉.

5.4 Explicit Characters for the Integral Orbit Correspondence

Having checked that integrality is preserved under the orbit correspondence, it is natural to
search directly for a relation between the characters χi : Gi,αi → U(1) and the character
χ : G12,z → U(1) coming from the (G1 ×G2)-action on L over a point z ∈M .

Kostant’s result (Thm. 5.5) will now allow us to prove a more explicit version of the
integral correspondence, at the price of stronger assumptions on connectedness and simply-
connectedness compared to Thm. 5.11.

Theorem 5.12. Let (M,ω) be an integral symplectic manifold, with commuting Hamiltonian ac-
tions of connected and simply connected compact Lie groups G1 and G2. Assume the moment
maps Φi : M → g∗i (i = 1, 2) to be equivariant. Abbreviate G12 = G1×G2 and Φ12 = Φ1⊕Φ2.
Require all stabilizers belonging to any occurring action to be connected.

Assume further that the orbits of G1 are level sets of Φ2 and vice versa such that the
coadjoint orbits in Φ1(M) and Φ2(M) are in correspondence via the map Λ of Thm. 3.26.
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5 GEOMETRIC QUANTIZATION OF SYMPLECTIC DUAL PAIRS

In this situation, the integrality of an orbit Oα1 ⊆ Φ1(M) implies the integrality of the
corresponding orbit Oα2 ⊆ Φ2(M) and vice versa. The characters χ, χ1 and χ2 of G12,z, G1,α1

and G2,α2, resp., satisfy the following relation:

χ((g1, g2)) = χ1(g1)χ2(g2)

for any (g1, g2) ∈ G12,z.

Proof. By Thm. 5.5, the action of the group G12 does lift to the prequantization bundle L over
M . The action of the stabilizer G12,z of a point z ∈M does lift to a linear action on the fibre
Lz over z. Hence, it can be expressed as a map χ : G12,z → C×, as C× = GL(Lz).

If h ∈ G12,z, write it as h = exp ξ for some ξ ∈ g12,z. Then by (5.4), we know that the
character is given by χ(h) = e−2πiΦξ(z).

Having assumed that the level sets of the moment maps of one action are the orbits of the
other action, we may apply Lemma 3.24, which says that the stabilizer G1,α1 of the element
α1 = Φ1(z) ∈ g∗1 under the coadjoint action can be expressed as

G1,α1 = {g1 ∈ G | ∃g2 ∈ G2 : (g1, g2) ∈ G12,z},

and analogously for G2,α2 . Moreover, in this setting, we have the orbit correspondence of
Thm. 3.26. Therefore, there is a bijection between the G12-orbits in M , the coadjoint G1-
orbits in Φ1(M) and the coadjoint G2-orbits in Φ2(M) given by G12 · z ↔ Ad∗(G1)α1 ↔
Ad∗(G2)α2.

Having this information at hand, we can now verify that the orbit correspondence does
send integral coadjoint G1-orbits to integral coadjoint G2-orbits. For a stabilizer G12,z of
the G12-action on M , we have constructed the character χ. Let αi = Φi(z) (i = 1, 2) and
Gi,αi be its stabilizers. Analogously, a character χ1 of G1,α1 can be constructed for ωOα1 ;
the existence of such a character is the very definition of integrality of the coadjoint orbit. If
h = (h1, h2) = (exp ξ1, exp ξ2) ∈ G12,z, then one calculates

χ(h)
χ1(h1)

=
e−2πiΦξ(z)

e−2πi〈α1 | ξ1〉

=
e−2πi(〈α1 | ξ1〉+〈α2 | ξ2〉)

e−2πi〈α1 | ξ1〉

= e−2πi〈α2 | ξ2〉,

thus the quotient does not depend on h1. Therefore, it is possible to define χ2(h2) =
χ(h)χ1(h1)−1; and χ2 actually is a character. In other words, the integrality of one coadjoint
orbit in the correspondence implies the integrality of the other one and the characters are
related as claimed.

5.5 Quantization of Commuting Hamiltonian Actions

In order to make general statements about the geometric quantization of our setting, we will
restrict our assumptions further. More precisely, we will assume that M is Kähler, the acting
groups are compact and connected and that the moment maps are admissible in the sense of
[Sja95, p. 109].
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Definition 5.13. Choose a G-invariant inner product on g with corresponding norm and define
the function µ = ‖Φ‖2. Let Ft be the gradient flow of −µ. A moment map is called admissible
if for every z ∈ M , the path of steepest descent Ft(z) through z (t ≥ 0) is contained in a
compact set.

Remark 5.14. Examples of admissible moment maps are all proper moment maps and the moment
map of the natural linear U(n)-action on Cn.

One then has the following theorem [Sja95, Thm. 2.20].

Theorem 5.15. Let G be a compact connected Lie group acting by holomorphic transformations
on a Kähler manifold M with admissible equivariant moment map Φ. Suppose this action
extends to an action of the complexification GC of G. For every positive weight α of G,
the space of holomorphic sections Γhol(Mα, Lα) of the prequantum line bundle Lα over the
symplectic reduced space Mα is naturally isomorphic to HomG(Vα,Γhol(M,L)), the space of
intertwining operators from the irreducible representation Vα with highest weight α to the
quantization Γhol(M,L) of M .

Remark 5.16. The reduced spaces Mα inherit, also in the singular case, “sufficient” structure in
order to define holomorphic sections of Lα →Mα (compare [Sja95]).

Assume now that we are again in the setup of Thm. 3.26 and assume that G1 and G2

act by holomorphic transformations, (M,ω) is Kähler, and [ω] is an integral class. Let a lift
of the (G1 × G2)-action to the prequantizing line bundle L → M be fixed. Of course, the
lifted transformations are assumed to be holomorphic as well. By the Borel-Weil theorem,
the geometric quantizations, Vαi

∼= Γhol(Oαi , Lαi) with αi integral, realize the irreducible
representations of Gi, thus Γhol(Oα1 × Oα2 , Lα1 � Lα2) the irreducibles for G1 × G2. Here
Lα1 � Lα2 →M1 ×M2 is given as p∗1(Lα1)⊗ p∗2(Lα2) with pj : M1 ×M2 →Mj denoting the
j-th projection for j = 1, 2. Now,

HomG1×G2 (Γhol(Oα1 ×Oα2 , Lα1 � Lα2),Γhol(M,L))
∼= Γhol

(
Φ−1(Oα1 ×Oα2)/(G1 ×G2), L(α1,α2)

)
By Thm. 3.26(iv), the reduced space may be empty (if the coadjoint orbits are not in corre-
spondence), hence the space of sections Γhol(Φ−1(Oα1 × Oα2)/(G1 × G2), L(α1,α2)) is trivial;
otherwise the reduced space is a point and the space of sections is simply C. So, one concludes
for the multiplicities of G1 ×G2-representations in the quantization of M :

dim HomG1×G2 (Γhol(Oα1 ×Oα2 , Lα1 � Lα2),Γhol(M,L)) ≤ 1,

the equal sign being true if and only if Oα2 = Λ(Oα1).
Interpreting the line bundles Lα1 , Lα2 and Lα1 � Lα2 as sheaves and their holomorphic

sections as their zeroth cohomology group, one concludes from a standard Künneth formula
(compare [SW59] and [Kau67]) that

Γhol(Oα1 ×Oα2 , Lα1 � Lα2) ∼= Γhol(Oα1 , Lα1)⊗ Γhol(Oα2 , Lα2).
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5 GEOMETRIC QUANTIZATION OF SYMPLECTIC DUAL PAIRS

Recall that by 3.26(iii), the coadjoint orbit corresponding to Oα1 ∈ Φ1(M)/G1 is sym-
plectomorphic to the orbit reduced space of Oα1 , i. e.,

Λ(Oα1) ∼= Φ−1
1 (Oα1)/G1 = Mα1 .

This implies that the multiplicity space of one action coincides with an irreducible repre-
sentation of the other one, i. e., for Oα2 = Λ(Oα1),

HomG1(Vα1 ,Γhol(M,L)) ∼= Γhol(Mα1 , L(Mα1)) = Γhol(Oα2 , Lα2).

The preceding statements can be summarized as follows.

Theorem 5.17. Let G1 and G2 be compact connected Lie groups acting by holomorphic transfor-
mations on a Kähler manifold M such that the actions extend to actions of the respective
complexified groups. Suppose that the actions of G1 and G2 commute and are Hamiltonian
with admissible equivariant moment maps Φ1 and Φ2. Denote by L the prequantum line bun-
dle over M , and by t+Z the integral points in a Weyl chamber t+ in the dual t∗ of a maximal
abelian subalgebra t ⊆ g1.

Assume further the symplectic Howe condition to be satisfied and that the Φ1- and Φ2-level
sets are connected so that the orbit correspondence map Λ is available. Then:

Γhol(M,L) ∼=
⊕

α1∈Φ1(M)∩t+Z

Γhol(Oα1 , Lα1)⊗ Γhol(Oα2 , Lα2),

where Oα2 = Λ(Oα1).

Remark 5.18. (i) Let (M,ω) be a compact complex manifold together with an integral Kähler
form and L → M a prequantizing holomorphic line bundle. Let furthermore the con-
nected compact Lie group G1×G2 act by holomorphic transformations and in a Hamil-
tonian fashion on M . If the pair of actions (i. e., the G1-action and the G2-action)
satisfies the symplectic Howe condition, the preceding theorem applies.

(ii) As in Prop. 3.20 and Thm. 3.26, it is possible to remove the connectedness condition on
the level sets of the moment maps, see [BW09].

In the setting of Thm. 5.17 we thus have that the symplectic Howe condition for the actions
on M implies the representation-theoretic Howe condition for the linear representation on the
(geometric) quantization of (M,ω).
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6.1 Definitions

6 The Action of (U(n), U(m)) on Mat(n, m; C)

6.1 Definitions

The object of the following considerations will be the action of the Howe pair (U(n), U(m)) in
U(nm) on the symplectic manifold of (n×m)-matrices M = Mat(n, m; C) (n ≥ m ≥ 1) with
symplectic form given by ωz(A,B) = Im tr(ĀTB) for z ∈M and A,B ∈ TzM or, equivalently,
in coordinates,

ω =
i
2

m∑
i=1

n∑
j=1

dzij ∧ dz̄ij = −dϑ,

i. e., ω is an exact form with potential ϑ = i
4

∑m
i=1

∑n
j=1(z̄ijdzij − zijdz̄ij) or ϑz(A) =

−1
2 Im tr(z̄TA).
On this symplectic manifold, an action is to be defined which preserves the symplectic

form. An element U ∈ U(n) will act on z ∈M by matrix multiplication from the left,

(U, z) 7→ U · z;

commuting with this action, V ∈ U(m) will act by matrix multiplication with the inverse of
V from the right,

(V, z) 7→ z · V −1 = z · V̄ T.

Having defined these two obviously commuting actions, the simultaneous action of both
groups may be regarded, too.

One notes that the defined action is even Hamiltonian, i. e., there exists a moment map.
The fundamental vector fields are as follows (left, right and joint action):

ξ(L)
z =

n∑
i,k=1

m∑
j=1

(
ξikzkj

∂

∂zij
− ξkiz̄kj

∂

∂z̄ij

)
= ξ · z ∀ξ ∈ u(n)

η(R)
z =

n∑
i=1

m∑
j,l=1

(
−ηljzil

∂

∂zij
+ ηjlz̄il

∂

∂z̄ij

)
= −z · η ∀η ∈ u(m)

ζM = (pru(n)(ζ))(L) + (pru(m)(ζ))(R) = ξ · z − z · η ∀ζ ∈ u(n)⊕ u(m),

using the projections pru(n) : u(n)⊕ u(m)→ u(n) and pru(m) : u(n)⊕ u(m)→ u(m).
By the definition of the moment map, one has dΦξ = ξM ω = −ξM dϑ = d(ξM ϑ)

(by invariance under the group actions) and thus, up to a constant, Φξ = ξM ϑ:

Φξ
(L)(z) =

i
2

n∑
i,k=1

m∑
j=1

(ξikzkj z̄ij) = −1
2
Im tr(ξzz̄T)

Φη
(R)(z) = − i

2

n∑
i=1

m∑
j,l=1

(ηljzilz̄ij) =
1
2
Im tr(ηz̄Tz)

The moment map of the joint action is the sum

Φζ(z) = Φ
pru(n)(ζ)

(L) (z) + Φ
pru(m)(ζ)

(R) (z) ∈ u(n)∗ ⊕ u(m)∗.
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6 THE ACTION OF (U(n), U(m)) ON Mat(n, m; C)

For the next calculations, the Hermitian scalar product 〈·, ·〉 : Cn × Cn → C, (v1, v2) 7→
〈v1, v2〉 = v̄T

1 v2 (matrix product between a row and a column) will be needed.
One notes the following property of the moment maps for the action of U(n) and U(m)

(which is an adapted version of Witt’s theorem):

Lemma 6.1. Each level set of Φ(L) is exactly one U(m)-orbit and each level set of Φ(R) is exactly
one U(n)-orbit.

Proof. Consider first the case of the map Φ(R), which is, like z̄Tz, obviously invariant under
U(n). It has to be shown that for any z1, z2 ∈ M satisfying z̄T

1 z1 = z̄T
2 z2, there exists

U ∈ U(n) such that z2 = Uz1.
Now interpret z ∈ M ∼= (Cn)m as a collection of m column vectors {v1, . . . , vm} where

vi ∈ Cn for i = 1, . . . ,m. Then

z̄Tz =

 〈v1, v1〉 · · · 〈v1, vm〉
...

. . .
...

〈vm, v1〉 · · · 〈vm, vm〉

 ,

where 〈·, ·〉 is the Hermitian scalar product. This explicit form of z̄Tz shows that, instead of
proving the existence of a U ∈ U(n) such that z2 = Uz1, it is equivalent to show that for
any two ordered sets of m vectors each, {v1, . . . , vm} ⊂ Cn and {w1, . . . , wm} ⊂ Cn, with
〈vi, vj〉 = 〈wi, wj〉 ∀i, j ∈ {1, . . . ,m}, there is a U ∈ U(n) such that wi = Uvi ∀i ∈ {1, . . . ,m}.

We start with the case where n = m and both sets consist of linearly independent vectors,
hence both sets form a basis for Cn. Then a linear map U defined by Uvi = wi is automatically
unitary: 〈Uvi, Uvj〉 = 〈wi, wj〉 = 〈vi, vj〉.

Now let n > m and take two sets of m linearly independent vectors. Both sets span a
linear subspace of Cn: E = spanC{v1, . . . , vm} and F = spanC{w1, . . . , wm}. Then consider
the orthogonal complements E⊥ and F⊥, choose orthonormal bases {vi}ni=m+1 and {wi}ni=m+1

on them. Again define U by Uvi = wi. For 1 ≤ i, j ≤ m, one again has 〈Uvi, Uvj〉 =
〈wi, wj〉 = 〈vi, vj〉 by assumption; for 1 ≤ i ≤ m < j ≤ n, we have vi ∈ E, vj ∈ E⊥, wi ∈ F
and wj ∈ F⊥, therefore 〈Uvi, Uvj〉 = 〈wi, wj〉 = 0 = 〈vi, vj〉; and for m < i, j ≤ n the
orthonormality of the chosen bases in E⊥ and F⊥ proves that U is unitary.

The next case to be treated is when one has two sets of m vectors {v1, . . . , vm} ⊂ Cn and
{w1, . . . , wm} ⊂ Cn, with 〈vi, vj〉 = 〈wi, wj〉 ∀i, j ∈ {1, . . . ,m}, where the first k vectors of
each set are a maximal linearly independent subset (k < m ≤ n). Note that the assumption
on the scalar product implies that k is the same on both sides: Otherwise, we would have k
linearly independent vectors in the first set and l in the second. W. l. o. g., assume l ≥ l′ > k,
then for any such l′ there would be coefficients αi (not all zero) such that vl′ =

∑k
i=1 αivi.

Assume further that {v1, . . . , vk} and {w1, . . . , wl} are orthonormal (always possible with
Gram-Schmidt), then (1 ≤ j ≤ k)

0 = 〈wj , wl′〉 = 〈vj , vl′〉 =
k∑

i=1

αi〈vj , vi〉 = αj ,

thus k = l. For these k linearly independent vectors (k < n), there exists a map U as in
the preceding case (where we had m linearly independent vectors). As all possible scalar
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products between vectors from the first and the second set, respectively, coincide, Gram-
Schmidt yields identical transformations for both sets to obtain orthonormal ones, so assume
the first k vectors of both sets are already orthonormal. Then the remaining m − k vectors
behave as they are supposed to (1 ≤ j ≤ k < l < m):

〈Uvj , Uvl〉 =

〈
Uvj ,

k∑
i=1

αiUvi

〉
=

〈
wj ,

k∑
i=1

αiwi

〉
= 〈wj , wl〉 = 〈vj , vl〉,

where αi = 〈wi, wl〉 = 〈vi, vl〉 – so U is unitary.
For Φ(L), the proof works identically: One has to show that for two sets of n vectors each

which are now contained in Cm and satisfy the analogous condition on the scalar products,
there exists a map V ∈ U(m) mapping the first set to the other one. As n ≥ m ≥ k, these
sets will never be linearly independent unless n = m.

6.2 Singular Value Decomposition of z ∈M

In order to obtain a normal form for the actions of the Howe pair (U(n), U(m)), the singular
value decomposition of a rectangular matrix z ∈M will be recalled.

First note that the products z̄Tz and z̄zT are Hermitian matrices; consequently, their
eigenvalues are real. With respect to the Hermitian scalar product, both are positive-
semidefinite (for any v ∈ Cm, v̄T(z̄Tz)v = (zvT)(zv) = ‖zv‖2 ≥ 0), therefore, their eigenval-
ues are non-negative, and one further has:

Lemma 6.2. The eigenvalues of z̄Tz and z̄zT are the same; they appear with the same multiplicities
(except for the eigenvalue 0).

Proof. If v ∈ Cm is an eigenvector of z̄Tz, i. e., (z̄Tz)v = λv, then zv is an eigenvector of zz̄T,
hence zv one of z̄zT, for the same eigenvalue λ – and vice versa. Take {vi}ki=1 to be k linearly
independent eigenvectors of z̄Tz for the eigenvalue λ ∈ R+. Suppose now that {zvi}ki=1 is a
linearly dependent set. Then for some constants µi which are not all zero,

0 = z̄Tz

(
k∑

i=1

µivi

)
= λ

(
k∑

i=1

µivi

)
,

which is a contradiction.

Define a matrix Σ ∈M by

Σ = Σ(σ1, . . . , σm) =



σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σm

0 0 · · · 0
...

...
0 0 · · · 0


,
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where σi =
√

λi are the square roots of the eigenvalues of z̄Tz, appearing according to their
multiplicity and ordered such that σ1 ≥ σ2 ≥ . . . ≥ σm ≥ 0.

Let k be the highest index for which σk 6= 0. Choose a unitary matrix V ∈ U(m) where
the first k columns Vi are eigenvectors of z̄Tz of length one corresponding to the eigenvalues
λi, which are orthogonal with respect to the Hermitian form. Complete the remaining m− k
columns by choosing m − k arbitrary linearly independent vectors, make them orthonormal
using Gram-Schmidt.

Let U ∈ U(n) be given as follows: For i = 1, . . . , k, give the columns by Ui = 1
σi

z · Vi. By
the definition of V , they are orthogonal of length one (for the Hermitian form). Complete U
by adding n− k vectors {Uk+1, . . . , Un} ⊂ Cn such that {Ui}ni=1 is linearly independent and
apply Gram-Schmidt. Then any z ∈M may be written as z = UΣV̄ T.

The matrix Σ obtained in this decomposition is unique (by the definition of eigenvalues
and the imposed ordering), the matrices U and V may differ by an element of the stabilizer,
which will be calculated next.

6.3 Slices, Stabilizers and Orbits on M

Slices. From the singular value decomposition one concludes that any orbit of the joint
(U(n) × U(m))-action contains exactly one element of the type Σ = Σ(σ1, . . . , σm) ∈ M .
Define the set S = {Σ ∈ M | Σ = Σ(σ1, . . . , σm), σ1 > . . . > σm > 0}. Its closure S =
{Σ ∈ M | Σ = Σ(σ1, . . . , σm), σ1 ≥ . . . ≥ σm > 0} is a global slice for the joint action of
U(n)× U(m), S will turn out to be a slice for the generic orbits.

Orbits of the individual actions of U(n) and U(m) are represented by elements ΣV̄ T and
UΣ, respectively.

Stabilizers. In order to describe the orbits corresponding to these actions, the stabilizers
of elements of the slice S will be calculated. At first, the generic case σ1 > . . . > σm > 0 is
treated. This will give the stabilizer of smallest dimension, hence the generic orbits.

Joint action of U(n)× U(m) on a generic element. The stabilizer is defined to be the
subgroup of U(n)× U(m) given by

StabU(n)×U(m)(Σ) = {(U, V ) ∈ U(n)× U(m) | UΣV̄ T = Σ}.

The stabilizer condition is equivalent to UΣ = ΣV , which can be written as

 | |
σ1U1, · · · , σmUm

| |

 =



σ1V1̄
...

σmVm̄

0 · · · 0
...

...
0 · · · 0


, (6.1)

where Ui is the ith column of U and Vī the ith row of V .
This equality of matrices yields the following set of conditions:
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1. σjUij = σiVij (1 ≤ i, j ≤ m)

2. σjUij = 0 (1 ≤ j ≤ m < i ≤ n)

3. Uij arbitrary (1 ≤ i ≤ n, m + 1 ≤ j ≤ n)

However, the third condition is restricted, because the second condition, together with
unitarity, implies that Uij = 0 for 1 ≤ i ≤ m < j ≤ n. Obviously, the entries Uij for
m + 1 ≤ i, j ≤ n form an element of U(n−m).

The interesting part of the stabilizer follows from the first condition. Together with
unitarity and the ordering on the σi,

1 =
n∑

i=1

Ūi1Ui1 =
m∑

i=1

(
σi

σ1

)2

V̄i1Vi1 ≤ |V11|2 +
m∑

i=2

|Vi1|2 = 1.

Equality only holds if
∑m

i=2 |V1i|2 = 0, which yields V11 ∈ U(1) and Vi1 = 0 for i = 2, . . . ,m.
Repeating this calculation for all rows and columns, one obtains that Vii ∈ U(1) for all
i = 1, . . . ,m. Hence (U, V ) ∈ StabU(n)×U(m)(Σ) has the form

U =


U11 · · · 0 |

. . . 0
0 · · · Umm |

0 Ũ

 , V =

U11 · · · 0
. . .

0 · · · Umm

 ,

where Uii ∈ U(1) and Ũ ∈ U(n−m).
From this calculation follows that, in the generic case, the stabilizer StabU(n)×U(m)(Σ) ∼=

(U(1))m · U(n − m) has real dimension m + (n − m)2. Noting that dimR M = 2mn and
dimR(U(n) × U(m)) = n2 + m2, one concludes that dimR(U(n) × U(m)) · Σ = 2mn −m =
dimR M − m. The codimension of the orbit equals the dimension of the slice S, as it is
supposed to.

Individual actions of U(n) and U(m) on a generic element. For these stabilizers one
simply has StabU(n)(Σ) ∼= U(n −m) and StabU(m)(Σ) = {idCm}. The first one is seen from
the condition UΣ = Σ, which is equivalent to Uijσj = σjδij (1 ≤ i ≤ n, 1 ≤ j ≤ m) and
no condition on the remaining entries. Therefore, Uij = δij in the upper left block of size
(m×m), the lower right block being an arbitrary element of U(n−m). The second calculation
is analogous.

Joint action of U(n)×U(m) on non-generic elements. Two non-generic cases are going
to be considered which represent well the general case. To start with, let σ = σ1 = . . . =
σk > σk+1 > . . . > σm > 0. The second and third condition which follow from (6.1) remain
unchanged, only the first one needs to be revisited. By these conditions and unitarity, the
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following holds for j ≤ k:

1 =
n∑

i=1

ŪijUij =
m∑

i=1

(σi

σ

)2
V̄ijVij =

k∑
i=1

V̄ijVij +
m∑

i=k+1

(σi

σ

)2
V̄ijVij

≤
k∑

i=1

V̄ijVij +
m∑

i=k+1

V̄ijVij = 1,

where equality holds only for
∑m

i=k+1 V̄ijVij = 0. Then (U, V ) stabilizes Σ = Σ(σ1, . . . , σm)
if it is of the form

U =


Ũ1 0 0

Uk+1,k+1 0

0
. . . 0

0 Umm

0 0 Ũ

 , V =


Ũ1 0

Uk+1,k+1 0

0
. . .

0 Umm

 ,

where Ũ1 ∈ U(k), Uii ∈ U(1) (i = k + 1, . . . ,m), Ũ ∈ U(n−m).
The other non-generic situation under investigation is σ1 > . . . > σk > σk+1 = . . . =

σm = 0. Here, only the third condition continues to hold, while the first and second condition
become less restrictive on the elements in the stabilizer. For i = 1, . . . , k, the diagonal entries
Uii ∈ U(1) appear as before, for the remainder there is no condition. Thus, an element (U, V )
of the stabilizer has the form:

U =


U11

. . .
Ukk

Ũ

 , V =


U11

. . .
Ukk

Ṽ

 ,

where Ũ ∈ U(n− k) and Ṽ ∈ U(m− k).
The stabilizer of an arbitrary Σ = Σ(σ1, . . . , σm) ∈ M with σ1 ≥ . . . ≥ σm ≥ 0 is block-

diagonal, each block being a copy of U(k) where k is the multiplicity of the corresponding
non-zero eigenvalue. For the zero eigenvalues and the last n −m entries of U(n), there are
blocks like Ũ and Ṽ in the preceding calculation.

Individual actions of U(n) and U(m) on non-generic elements. For the non-zero
entries of Σ = Σ(σ1, . . . , σm) ∈ M with σ1 ≥ . . . ≥ σm ≥ 0, the condition from the generic
case remains unchanged. For the zero entries (say σk+1 = . . . σm = 0), there is no condition
on the corresponding part of the stabilizing unitary matrix, just as in the case of the joint
action. Hence, U ∈ StabU(n)(Σ) if and only if U = diag(1, . . . , 1, Ũ) with Ũ ∈ U(n − k).
Analogously, V ∈ StabU(m)(Σ) if and only if V = diag(1, . . . , 1, Ṽ ) with Ũ ∈ U(m− k).

Conjugacy of the stabilizer groups. For a smooth group action, the stabilizers of the
points of one orbit are all conjugated to each other. In the present setting, there is a further
property: The stabilizers StabU(n)(z) are all the same for all z which lie in the same U(m)-
orbit, and vice versa, a special case of Lemma 3.1.
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Invariants. One notices that the momentum maps of the left and right action are invariant
functions: Φ(L) is invariant under the action of U(m), and Φ(R) under U(n). Indeed, the
algebra of invariant functions coincides with the collective functions of the other action,
i. e., C∞(M)U(n) = Φ∗

(R)C
∞(u(m)∗) and C∞(M)U(m) = Φ∗

(L)C
∞(u(n)∗), as is seen by the

following lemma (keep in mind M ∼= (Cn)m).

Lemma 6.3. The algebra of U(n)-invariant smooth functions on (Cn)m (m copies of the defining
representation of U(n)) is generated by the functions

〈i | j〉 for 1 ≤ i ≤ j ≤ m,

where 〈v1, v2〉 is the Hermitian scalar product between v1, v2 ∈ Cn and 〈i | j〉 : (Cn)m →
C, (z1, . . . , zm) 7→ 〈zi, zj〉 = (z̄Tz)ij, if the zi are regarded as columns of z ∈M .

The proof of this lemma is explained in App. A.

6.4 Symplectic Properties of the Orbits

The first thing to note is that the slice S = {Σ ∈M |Σ = Σ(σ1, . . . , σm), σ1 > . . . > σm > 0}
is isotropic. Two vectors Λ1,Λ2 ∈ TzS = {Λ ∈ Mat(n, m; R) | Λ = Σ(λ1, . . . , λm)} have only
real matrix entries, so has Λ̄T

1 Λ2, hence ωz(Λ1,Λ2) = Im tr(Λ̄T
1 Λ2) = 0, by which TzS ⊆ TzS

∠.

Coisotropy of the joint (U(n)× U(m))-orbits. We are going to show that the orbits of
the joint action are coisotropic. This can be concluded from the orthogonality of the slice S
and the orbits.

For an element (ξ, η) ∈ u(n) × u(m), the flow of the corresponding vector field on M is
ϕ

(ξ,η)
t (z) = etξ · z · e−tη. Consequently, the tangent space to the orbit, Tz((U(n)×U(m)) · z),

is spanned by vectors ξ · z − z · η.
Associated to the symplectic form ω, there is a Riemannian metric gz(A,B) = Re tr(ĀTB).

Let Λ ∈ TzS and ξ · z − z · η ∈ Tz((U(n)× U(m)) · z) for z = Σ. Then gΣ(Λ, ξ · z − z · η) =
Re tr(Λ̄TξΣ − Λ̄TΣη). As the trace is purely imaginary, this becomes zero and shows the
desired orthogonality. For the trace, one calculates

tr(ΛTξΣ) = tr(ΣΛTξ) = − tr(ΣΛTξT) = − tr(ξΛΣT) = − tr(ΛΣTξ).

But ΛΣT = ΣΛT = diag(λ1σ1, . . . , λmσm, 0, . . . , 0) and thus the claim is true. By the in-
variance of the symplectic form under the group action, this orthogonality holds everywhere
in Ω = U(n) · S · U(m). Define for now E = TzS and F = Tz((U(n) × U(m)) · z). The
orthogonality gives, using the associated complex structure J ,

F∠ = J(F⊥) = JE ⊆ E⊥ = F.

The inclusion JE ⊆ E⊥ follows from g(e, Je′) = ω(e, e′) = 0 ∀e, e′ ∈ E (E isotropic).
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Symplectic complementarity of the orbits corresponding to the individual actions.
Take z ∈M, ξ ∈ u(n), η ∈ u(m). Then

ωz(ξ(L)
z , η(R)

z ) = Im tr(ξzT · zη)

=
1
2

[
tr(ξzT · zη)− tr(η̄Tz̄Tξz)

]
=

1
2
[
− tr(z̄Tξzη) + tr(z̄Tξzη)

]
= 0,

i. e., the orbits of both actions are symplectically orthogonal (which was already clear from
the invariance properties of the moment maps we observed earlier). By Lemma 3.4, we know
that it suffices to calculate the dimensions of these orbits in order to decide whether they are
also complementary.

In section 6.3, the stabilizers of the occuring actions were calculated. From this we
know that dimR(U(n) · Σ) ≤ n2 − (n − m)2 = 2nm − m2 and dimR(Σ · U(m)) ≤ m2 for
Σ ∈ S; if Σ ∈ S, equality holds. That is, the generic G1- and G2-orbits are symplectically
complementary because their dimensions add up to dimR M = 2nm.

6.5 Coadjoint Orbits in the Image of the Moment Map

Now we ask which coadjoint orbits occur in the image of the moment maps. As Φ(L) and Φ(R)

are both equivariant for one and invariant under the other action, it is sufficient to consider
the image (under the moment maps) of matrices Σ = Σ(σ1, . . . , σm), σ1 ≥ . . . ≥ σm ≥ 0, i. e.,
in the closure of the slice S. Attention will be restricted to the action of U(n) from the left,
the right action behaves analogously. First note for any ξ ∈ u(n),

Φξ
(L)(Σ) =

i
2

tr(ξΣΣ̄T) =
i
2

tr(ξ · diag(σ2
1, . . . , σ

2
m, 0, . . . , 0)).

Yet the stabilizer of such a point under the coadjoint U(n)-action is needed in order to
describe the orbit passing through it. An element U ∈ U(n) stabilizes Φ(L)(Σ) if and only if

tr(ξΣΣ̄T) = tr(ξ(UΣ)(UΣ)T) ∀ξ ∈ u(n).

This condition is equivalent to tr(ξ(ΣΣ̄T − (UΣ)(UΣ)T)) = 0, hence to ΣΣ̄T = (UΣ)(UΣ)T,
and eventually to σ2

j Ujk = σ2
kUjk – which is equivalent to saying

U ∈ StabU(n)(Φ(L)(Σ)) ⇔ U ∈ prU(n)(StabU(n)×U(m)(Σ)),

which has been calculated earlier. Analogously,

StabU(m)(Φ(R)(Σ)) = prU(m)(StabU(n)×U(m)(Σ)).

Taking a generic Σ ∈ S, the coadjoint orbits through Φ(L)(Σ) and Φ(R)(Σ) are diffeomorphic
to U(n)/(U(1)m · U(n−m)) and U(m)/U(1)m, respectively.
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6.6 Duality Properties of the Orbits

From Prop. 3.19 and Lemma 6.3 we conclude that the symplectic Howe condition is satisfied
because

Φ∗
(L)C

∞(u(n)∗) = C∞(M)U(m) = ZC∞(M)(Φ
∗
(R)C

∞(u(m)∗))

and vice versa. Further, the orbits of both group actions as well as the level sets of both
moment maps are connected. Therefore, Thm. 3.26 applies in this situation, i. e., we do have
a bijective correspondence between the coadjoint orbits in the moment images. Explicitly,
the correspondence map is given by Φ(L)(S) 3 (λ1, . . . , λm, 0, . . . , 0) 7→ (−λ1, . . . ,−λm) ∈
Φ(R)(S), for λ1 ≥ . . . ≥ λm ≥ 0. Quantizing this setting as in Thm. 5.17 makes us reobtain
Thm. 5.2.7 of [GW98] about the GL(n, C)-GL(m, C) duality (note that U(n) is maximal
compact in GL(n, C)).
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7 The Action of (G, G) on T ∗G

In this section, a natural correspondence between coadjoint orbits will be regarded. This
correspondence will be constructed using the moment maps of the simultaneous left and right
action of G × G on the cotangent bundle T ∗G of a Lie group G together with its canonical
symplectic form. Later, the obtained correspondence can be compared to the decomposition
of L2(G) given by the Peter-Weyl theorem (in the case where G is compact).

The following definitions will be made without further assumptions on the Lie group G,
however, they will have to be imposed later on.

7.1 Definitions

Take a Lie group G and its cotangent bundle T ∗G, the latter possessing a symplectic structure
ω = ωT ∗G given by the exterior differential of the canonical form dϑ,

ωβg = −dϑβg = −d(βg ◦ Tβg pr),

at a point βg ∈ T ∗
g G, where pr : T ∗G → G is the canonical bundle projection (Tβg pr maps

a vector from Tβg(T
∗G) to one in TgG, to which βg assigns a scalar, hence βg ◦ Tβg pr ∈

Ω1(T ∗G)). This symplectic form is exact.
The bundle T ∗G is trivial, hence there exist global trivializations T : T ∗G→ G× g∗. For

the following calculations, T is chosen to be the right trivialization (of a αg ∈ T ∗
g G)

T : αg 7→ (g, (T ∗
e Rg)αg),

using the right action R of G on itself. It is an isomorphism, its inverse being

T −1 : (g, αe) 7→ (T ∗
g Rg−1)αe = αe ◦ TgRg−1 ,

where g ∈ G and αe ∈ T ∗
e G ∼= g∗. All objects to be defined may be considered both on T ∗G

and G× g∗; the trivialized symplectic form is [OR04, Thm. 6.2.4]

T ω(g,α)((ug, µ), (vg, ν)) =
〈
ν, TgRg−1ug

〉
−
〈
µ, TgRg−1vg

〉
−
〈
α, [TgRg−1ug, TgRg−1vg]

〉
,

where g ∈ G;α, µ, ν ∈ g∗ and ug, vg ∈ TgG.
On the symplectic manifold (T ∗G, ω), a compatible action of G×G is obtained by lifting

the natural left and right actions of G on itself to the bundle. Note that the individual left
or right action of G on T ∗G is always proper. More properties of these lifts are going to be
summarized in the sequel, they can be found in [OR04, pp. 54, 128, and 218].

The left action Ψ(L)
h = Lh : g 7→ hg (g, h ∈ G) lifts to

Ψ̃(L)
h = T ∗

hgLh−1 : T ∗
g G→ T ∗

hgG, βg 7→ βg ◦ ThgLh−1 ,

and analogously, the action of G from the right, written as a left action, Ψ(R)
h = Rh−1 : g 7→

gh−1, lifts to
Ψ̃(R)

h = T ∗
gh−1Rh : T ∗

g G→ T ∗
gh−1G, βg 7→ βg ◦ Tgh−1Rh.

The action in the trivialization is obtained by requiring T to be equivariant, this gives
T Ψ̃(L)

h ((g, α)) = (hg,Ad∗(h)α). Note that the orbits of the left G-action on G×g∗ ∼= T ∗G are
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isomorphic to coadjoint G-orbits. For the right action, one has T Ψ̃(R)
h ((g, α)) = (gh−1, α).

The orbits of the right G-action are of the form G× {α}.
For later calculations, we record the fundamental vector fields for the left and right action

of G on T ∗G, denoted by ξ(L) and η(R) for ξ, η ∈ g. The infinitesimal generators of these
(trivialized) actions are

T∗(ξ(L))(g,α) =
d
dt

∣∣∣∣
0

T Ψ̃(L)
exp(tξ)((g, α)) = (exp(tξ)g,Ad∗(exp(tξ))α) = (ξ(L)

g , ad∗(ξ)α),

where ξ
(L)
g is the fundamental vector field for the left G-action on itself, evaluated in g ∈ G,

and

T∗(η(R))(g,α) =
d
dt

∣∣∣∣
0

T Ψ̃(R)
exp(tη)((g, α)) = (g exp(−tη), α) = (η(R)

g , 0),

where η
(R)
g is as above, but now for the right action. As both actions commute, the simulta-

neous action of G×G is generated by the fundamental vector field

T∗((ξ ⊕ η)T ∗G)(g,α) = ((ξ ⊕ η)G
g , ad∗(ξ)α),

where ξ ⊕ η ∈ g ⊕ g. All fundamental vector fields have to be understood as on T ∗G or
G, depending on the context (i. e., according to the superscript T ∗G or G, or whether it is
evaluated in a point of T ∗G or G).

One easily checks that the action defined above is symplectic; actually, it is Hamiltonian.
Using d(ξT ∗G ϑ) = ξT ∗G ω, one has a moment map (determined up to a constant), its
components are given by the contraction of a fundamental vector field with the canonical
form. The values at the point βg ∈ T ∗G of the moment maps for the left and right action,
Φξ

(L) and Φη
(R), are given by (ξ, η ∈ g)

Φξ
(L)|βg

= βg(ξ(L)
g ) and Φη

(R)|βg
= βg(η(R)

g ).

These moment maps are surjective and equivariant, as one sees immediately from their triv-
ialized forms:

T Φξ
(L)|(g,α) = α(ξ) and T Φη

(R)|(g,α) = −[Ad∗(g−1)α](η).

The trivialized forms of the moment maps also permit to read off their level sets. The
moment map for the right G-action is constant precisely on the left G-orbits; the right G-
orbits are the level sets of the left moment map.

7.2 Properties of the Orbits on T ∗G

Now the orbit types will be determined. Therefore, the stabilizers corresponding to the
different actions are calculated. In the trivialization T , a point (g, α) ∈ G × g∗ is fixed by
the following subgroup of G×G under the simultaneous action:

StabTG×G ((g, α)) = {(g1, g2) ∈ G×G | (g1, g2) · (g, α) = (g, α)}
= {(g1, g2) ∈ G×G | (g1gg−1

2 ,Ad∗(g1)α) = (g, α)}
= {(g1, g

−1g1g) ∈ G×G | g ∈ StabG(α)}
∼= StabG(α) = {g1 ∈ G | Ad∗(g1)α = α}
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By specializing to g1 = e and g2 = e, resp., the stabilizers of the left and right action of G
turn out to be trivial, thus the individual actions to be free:

StabT{e}×G ((g, α)) = StabTG×{e} ((g, α)) = {e}

Note that the stabilizer of (g, α) under the simultaneous action is isomorphic to the
stabilizer of α under the coadjoint action, hence it does not need to be compact if G is not –
the simultaneous left and right action of G on T ∗G is, in general, not proper. However, for a
compact group G, the generic stabilizer is isomorphic to a maximal torus in G. Note further
that triviality of the left and right stabilizer implies that the moment maps of the individual
actions are submersions because by Prop. 2.11, the image of the tangent map of the moment
map is the annihilator of the stabilizer Lie algebra.

Knowing now the structure of the (G × G)-orbits, we continue by showing that these
orbits are coisotropic. Let V be the tangent space to the (G×G)-orbit at (g, α):

V = T(g,α)(G×G) · (g, α) = {(TeRg(ξ)− TeLg(η), ad∗(ξ)α) | ξ, η ∈ g},

which is seen from the explicit form of the fundamental vector fields. As the action of G on
itself is transitive, TeRg and TeLg : g→ TgG are surjective and we may write:

V = {((TeLg)ξ, α ◦ ad(η)) | ξ, η ∈ g}

It can be split into the direct sum V = E⊕F , where E = {((TeLg)ξ, 0)|ξ ∈ g} = TgG×{0} and
F = {(0, α◦ad(η)) |η ∈ g}. The symplectic complement of V is now given by V ∠ = E∠∩F∠.
Therefore, we calculate the complements of E and F separately.

(ug, µ) ∈ E∠ ⇔
0 = T ω(g,α)((ug, µ), ((TeLg)ξ, 0))

= −
〈
µ, (TgRg−1)(TeLg)ξ

〉
−
〈
α, [TgRg−1ug,Ad(g)ξ]

〉
= −〈µ,Ad(g)ξ〉 −

〈
α, ad(TgRg−1ug)(Ad(g)ξ)

〉
= −〈µ,Ad(g)ξ〉+

〈
ad∗(TgRg−1ug)α, Ad(g)ξ

〉
=
〈
ad∗(TgRg−1ug)α− µ,Ad(g)ξ

〉
∀ξ ∈ g

⇔ µ = ad∗(TgRg−1ug)α

(ug, µ) ∈ F∠ ⇔
0 = T ω(g,α)((ug, µ), (0, α ◦ ad(η)))

=
〈
α ◦ ad(η), TgRg−1ug

〉
= −

〈
α, ad(TgRg−1ug)η

〉
=
〈
ad∗(TgRg−1ug)α, η

〉
∀η ∈ g

⇔ ad∗(TgRg−1ug)α = 0

From this follows:

V ∠ = E∠ ∩ F∠ = {(ug, 0) | ad∗(TgRg−1ug)α = 0} ⊆ TgG× {0} = E ⊆ V

57



7.3 Duality Properties

This means that the (G×G)-orbits on T ∗G are coisotropic.
The orbits of the individual left or right action do not have a particular symplectic prop-

erty. If they were isotropic or coisotropic, they would be Lagrangian (by dimension) and
the symplectic form would vanish when restricted to the tangent space of the orbit. Conse-
quently, the moment map would be constant on the connected components of the orbits, its
image being zero-dimensional (for G having a countable number of connected components).
But, in general, this is not the case. It it were symplectic, the dimension of the orbit would
not change under the moment map, which is not true, either.

For the individual left and right action, one easily finds a global slice: T ∗
e G ⊂ T ∗G meets

every G×{e}- and {e}×G-orbit exactly once. As the actions on T ∗G are lifts from transitive
actions on G, the tangent spaces of the orbits are complementary to those of T ∗

e G. As this
slice is common for both actions, there is a slice for the simultaneous G × G-action which
lies in T ∗

e G: Note that diag(G) ⊂ G × G acts on T ∗
e G = g∗ by the coadjoint action, where

slices exist under the conditions of Thm. 2.30. As the moment maps, when restricted to T ∗
e G,

are simply the identity, the slice for the G × G-action on T ∗G is again mapped to a slice
under Φ(L) and Φ(R). Here, the preservation of slices which was shown in Lemma 3.11 can
be observed for global slices (as the orbit structure in this example is very simple).

7.3 Duality Properties

The computation which establishes the coisotropy of the orbits allows for another conclusion:
Note that the vector space E is at the same time the tangent space at g ∈ G for the orbit of
the right action. E∠ turns out to be the tangent space for the left action. Hence the tangent
spaces of both orbits are symplectically complementary and thus satisfy the Lie-Weinstein
condition for a symplectic dual pair.

If G is connected, one easily deduces the following identities, which show that the sym-
plectic Howe condition is satisfied, i. e., 9

ZC∞(M)(Φ
∗
(L)C

∞(g∗)) = GC∞(M) = Φ∗
(R)C

∞(g∗)

and

ZC∞(M)(Φ
∗
(R)C

∞(g∗)) = C∞(M)G = Φ∗
(L)C

∞(g∗).

We have used Prop. 3.19 and the fact that the components of the moment maps separate the
orbits (because the level sets of each moment map are orbits of the other action).

As both moment maps are surjective submersions, we are in a completely generic situta-
tion and thus we may apply Thm. 3.16 directly (of course, the general orbit correspondence
of Thm. 3.26 also holds here). Therefore, we have a bijection between the symplectic leaves
in g∗ (i. e., the coadjoint orbits) for the left and the right action. The maps are represented

9The superscript G denotes invariance under the left and right G-action on M , resp.
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by a diagram:

(g, α)5

zzuuuuuuuuuuuuuuuuuuuuuuu 	

$$IIIIIIIIIIIIIIIIIIIIIII

G× g∗
T Φ(L)

||xx
xx

xx
xx

x T Φ(R)

""FF
FF

FF
FF

F

α g∗ g∗ −Ad∗(g−1)α

Both moment maps being equivariant, there is a well-defined map

Λ : g∗/G→ g∗/G, Oα 7→ O−α,

providing an explicit orbit correspondence between the coadjoint orbits Oα (containing α)
and O−α (containing −α). Further, by Thm. 3.26(iii), we reobserve the known fact that the
reduced spaces for the moment map of the right G-action are the coadjoint orbits in the
image of the moment map of the left G-action (see also [OR04, Thm. 6.1.4]).

The orbit correspondence we have found matches the decomposition of the space L2(G)
(which is identified with the geometric quantization of T ∗G with respect to the standard
vertical polarization) given by the Peter-Weyl theorem.

Theorem 7.1 (Peter-Weyl). Let G be a compact connected Lie group. Let G act on L2(G) via the
left-regular representation. Then

L2(G) ∼=
⊕
α∈ bG

Vα ⊗ V ∗
α ,

where Vα denotes the representation space corresponding to the highest weight α and V ∗
α its

dual, which corresponds to the lowest weight −α.

59



A INVARIANT FUNCTIONS ON Mat(n, m; C) UNDER THE ACTION OF U(n)

A Invariant functions on Mat(n, m; C) under the action of U(n)

Let an element U ∈ U(n) act on z ∈ M = Mat(n, m; C) by matrix multiplication from the
left: (U, z) → Uz, i. e., each column of z is acted on independently, columns are not mixed.
We interpret M as a real 2nm-dimensional vector space with complex structure given by
multiplication with the imaginary unit i.

The aim is to find all smooth (but not necessarily holomorphic as we work over R)
functions on M which are invariant under this action. By the following theorem of G. Schwarz
([Sch75], see also [OR04, Thm. 2.5.3]), this problem actually reduces to finding the invariant
real polynomials.

Theorem A.1. Let K be a compact Lie group acting linearly on the real vector space V and suppose
{p1, . . . , pk} generates the algebra of K-invariant real polynomials on V . Then the map

p : C∞(Rk)→ C∞(V )K , f 7→ f ◦ (p1, . . . , pk)

is surjective.

Therefore, we will find a Hilbert basis for the U(n)-invariants in R[M ] in order to describe
C∞(M)U(n). We first record the following identity:

Lemma A.2.
C⊗R HomR(M, R) = HomC(M, C)⊕HomC(M, C)

Here, HomC denotes the C-antilinear homomorphisms.

Proof. This becomes obvious when one writes out bases for these vector spaces. Observe first

HomR(M, R) = spanR{z 7→ Rezij , z 7→ Imzij | 1 ≤ i ≤ n, 1 ≤ j ≤ m},

i. e., the real dual space to M is spanned by the real and imaginary parts of all coordinate
functions. Its complexification can be written as follows:

C⊗R HomR(M, R) = spanC{z 7→ zij , z 7→ z̄ij | 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

These are the C-linear and the C-antilinear complex coordinate functions on M . Both parts
can be considered separately,

HomC(M, C) = spanC{z 7→ zij | 1 ≤ i ≤ n, 1 ≤ j ≤ m}

and
HomC(M, C) = spanC{z 7→ z̄ij | 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

By comparison, the claim follows.

Remark A.3. Note that, if S(V ) denotes the algebra of symmetric tensors over a vector space V ,
we have C[M ] = S(HomC(M, C)), C[M ] = S(HomC(M, C)) and R[M ] = S(HomR(M, R)).
From the preceding lemma,

S(C⊗R HomR(M, R)) = C[M ⊕M ].
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It still needs to be shown that

S(C⊗R HomR(M, R))U(n) = C⊗R (R[M ]U(n)),

in order to link the preceding identity to the determination of the invariants on R[M ]. The
fact that symmetrization and complexification commute is clear as symmetrization is purely
combinatorial and does not depend on the underlying field.

Lemma A.4.
(C⊗R R[M ])U(n) = C⊗R (R[M ]U(n))

Proof. In fact, C ⊗R R[M ] = C[M ], but if q ∈ C[M ]U(n), then Req and Imq lie in R[M ]U(n),
hence q ∈ C ⊗R (R[M ]U(n)). The opposite inclusion is clear because any complex-linear
combination

∑
i λiqi ∈ C[M ], with λi ∈ C and qi ∈ R[M ]U(n), is invariant under U(n), thus

lies in (C⊗R R[M ])U(n).

At this point, we know that determining the invariants in C[M ⊕ M ] is equivalent to
describing C⊗R (R[M ]U(n)).

By the definition of the unitary group, for any U ∈ U(n) we have

U = (U−1)T.

This can be interpreted as equivalence between the complex conjugate representation of U(n)
on Cn and the contragredient representation of U(n) on (Cn)∗ [Sep07, Cor. 2.20(1)]. Using
this and M = (Cn)m, one sees

C[M ⊕M ]U(n) = C[(Cn)m ⊕ (Cn)∗m]U(n).

Using the fact that U(n) is, at the same time, a maximal compact subgroup and a real
form of GL(n, C), we may apply the unitary trick.

Suppose K = U(n) acts on a vector space W by the representation % : K → GL(W ).
Let w ∈ W be such that %(k)w = w ∀k ∈ K, i. e., %(k)|Cw = idCw and Cw is a one-
dimensional invariant subspace on which K acts trivially. Consequently, one has for the
derivative %∗(X)w = 0 and %∗(X)|Cw = 0 on the whole Lie algebra k of K. If %∗ is extended
C-linearly to the complexification k ⊕ ik, this writes %∗(Y + iZ)|Cw = 0 for any Y, Z ∈ k.
By the exponential map, this maps to %(exp(Y + iZ))|Cw = exp(%∗(Y + iZ)|Cw) = idCw. As
K = U(n) is a real form of GL(n, C), the complexification of k equals k ⊕ ik = gl(n, C).
Therefore, the the invariant subspaces for the actions of U(n) and GL(n, C) are the same,
hence

C[(Cn)m ⊕ (Cn)∗m]U(n) = C[(Cn)m ⊕ (Cn)∗m]GL(n,C).

The latter algebra of invariants is known by the First Fundamental Theorem for the general
linear group [Pro07, p. 245].

Theorem A.5 (FFT for GL(n, C)). The ring of polynomial functions on (Cn)m⊕ (Cn)∗m that are
invariant under the action of GL(n, C) is generated by the functions fi(zj) where (z1, . . . , zm,
f1, . . . , fm) ∈ (Cn)m ⊕ (Cn)∗m.

Translating this back to the initial problem by fi(zj) = 〈wi, zj〉, the algebra of invariants
R[M ]U(n) is generated by the real and imaginary parts of the Hermitian scalar products on
M .
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B Structure and Classification of Howe Dual Pairs

Howe dual pairs are the natural candidates for creating examples of commuting Hamiltonian
actions. Of course, their classification and structure theory are well-studied. For a complete
classification, we refer to e. g., [Rub94] and [Sch99]. Mainly based on the former, we will
give a very brief summary of some of their structural properties, in terms of the notion of
a Howe dual pair of Lie algebras, i. e., a pair of real reductive Lie subalgebras (g1, g2) in a
real reductive Lie algebra g satisfying Zg(g1) = g2 and Zg(g2) = g1. One easily sees [Rub94,
Lemma 5.1 and 5.2]:

Lemma B.1. Write g = Z(g)⊕ [g, g]. If (g1, g2) is a Howe dual pair in g then g1 = Z(g)⊕ h1 and
g2 = Z(g)⊕ h2 where (h1, h2) is a Howe dual pair in [g, g]. Conversely, any Howe dual pair
in [g, g] gives a Howe dual pair in g by this construction. Further, g1∩g2 = Z(g1) = Z(g2) ⊇
Z(g).

Lemma B.2. Let g be a semisimple complex Lie algebra and (g1, g2) a Howe dual pair in g with
gi complex (i = 1, 2), and define z = Z(g1) = Z(g2). Further, define lz = Zg(z). Then lz
is a Levi subalgebra10 of g, the centre of lz is z. Write lz = z ⊕ [lz, lz], g1 = z ⊕ [g1, g1] and
g2 = z⊕ [g2, g2]. Then ([g1, g1], [g2, g2]) is a Howe dual pair in [lz, lz]. Conversely, any Howe
dual pair in a Levi subalgebra of g is a Howe dual pair in g.

If one has a complex Howe dual pair in a complex semisimple Lie algebra g, then the
decompositions into simple ideals of g and of the Lie subalgebras in the pair are compatible.
Further, one knows the following statement about Cartan subalgebras in a complex Howe
dual pair [Rub94, Thm. 5.4].

Theorem B.3. Let g1 be a complex Lie subalgebra of the complex Lie algebra g belonging to a
Howe dual pair in g, and let h1 be a Cartan subalgebra of g1. Then h1 is the centre of a Levi
subalgebra in g.

Further, we provide a table of the Howe dual pairs in a compact classical Lie group,
extracted from the complete classification of irreducible reductive Howe dual pairs (see, e. g.,
[Sch99, Table 4]).

G G1 G2

O(n1n2) O(n1) O(n2)
O(2n1n2) U(n1) U(n2)
O(4n1n2) Sp(n1) Sp(n2)
U(n1n2) U(n1) U(n2)
Sp(n1n2) O(n1) Sp(n2)
Sp(n1n2) U(n1) U(n2)

10By a Levi subalgebra, we mean a subalgebra of g which is constructed as follows: Take a Cartan subalgebra
in g, choose a ±-symmetric subset of the root system which is closed under addition, then the Levi subalgebra
is the direct sum of the Cartan subalgebra and the root spaces corresponding to the chosen symmetric subset.
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