
PROGRAM: SUMMERSCHOOL 2009

Abstract. The aim of this summer school is to understand and explore some

of the modern techniques used in the study of coherent sheaves over weighted

projective lines (in the sense of Geigle and Lenzing). In particular we will
cover the associated Lie algebras, which are loop algebras of Kac-Moody Lie

algebras, and a construction due to Peng and Xiao of Lie algebras from certain
triangulated categories using Hall algebra methods. At the end we will com-

bine these ideas and cover the proof by W. Crawley-Boevey of an analogue of

Kac’s Theorem for weighted projective lines. In addition, there will a couple
of overview talks shedding light on further developments and applications of

certain concepts.

Each participant should contribute a talk and may indicate which topic they
would care to talk about. The final schedule, however, will be arranged by the

organizers and communicated to all participants in due course.

If you have any questions about the program please feel free to contact Marcel
Wiedemann (marcel.wiedemann@math.upb.de).

1. Coherent sheaves on weighted projective lines. (3 x 60 min)
(a) graded sheaf theory, Serre’s Theorem
(b) properties of the category cohX (hereditary, abelian, finite dimensional

homomorphism and extension spaces, Serre duality)
(c) natural tilting configuration, canonical algebras
(d) description of the subcategory of torsion sheaves supported at a given point;

connection with nilpotent representations of cyclic quivers
(e) torsion free sheaves, parabolic bundles on P1 and squids
(f) Grothendieck group, Kac’s Theorem

References: [2], [3], [6], [13], [20], [21, Section 4.4]
2. Kac-Moody algebras and loop algebras (3 x 60 min).

(a) introduction to Kac-Moody algebras (definition, bilinear form, quotient,
triangular decomposition, generators of the radical, root system [esp. finite
and affine type])

(b) classification of f.d. simple Lie algebras via Dynkin diagrams
(c) construction of affine Kac-Moody algebras as loop algebras from f.d. simple

Lie algebras (universal central extension)
(d) definition of loop algebras (input finite type gives corresponding affine type)
(e) input affine type gives description in terms of generators and relations of the

universal central extension of g⊗C[t1, t−1
1 , t2, t

−1
2 ], with g the corresponding

f.d. simple Lie algebra
References: [5], [9, Chapter 1,2,7, and 9], [15], [21]

3. Overview: triangulated categories, derived categories and applications
(2 x 45 min).
(a) introduction to triangulated and derived categories
(b) structure of the derived category for hereditary categories
(c) discussion of certain derived equivalences: coherent sheaves on P1 and

representations of the Kronecker quiver (Beilinson’s Theorem), coherent
sheaves on a weighted projective line and canonical algebras (tilting the-
ory)

References: [1], [6], [7]
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4. How to obtain a Lie algebra from a root category: a construction of
Peng and Xiao (3 x 60 min).
(a) discussion of Kac’s Theorem for quivers (correspondence between positive

roots of the associated Kac-Moody algebra and dimension vectors of inde-
composable representations)

(b) Is it possible to recover this Lie algebra structure from the data given by
the representations? Yes, by the construction of Peng and Xiao.

(c) root categories, Hall algebra methods and the construction of the Lie alge-
bra

References: [8], [10], [11], [16], [17]
5. Overview: Hall algebras (1 x 60 min).

(a) Macdonalds ring of symmetric functions and the Hall algebra of nilpotent
representations of the Jordan quiver

(b) Hall algebras of quivers and quantum groups
(c) Hall algebras of weighted projective lines and quantum loop algebras

References: [14, Section III.3], [18], [19], [20], [21, Section 2.1, 3.1, 4.6]
6. Proof of Kac’s Theorem for weighted projective lines (4 x 60 min).

(a) setup, main theorem, root category and Lie algebra following Peng and
Xiao

(b) map between the loop algebra and the above Lie algebra; state Theorem 2
without proof

(c) proof of Theorem 1: in detail
References: [3], [4, Section 6], [10], [12, Section 5]
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